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It is shown that the normal coordinates for molecular vibration are determined by simply taking 
those linear combinations of mass-weighted displacements that are irreducible bases of the group 
relevant to the molecule. 

I. INTRODUCTION 

Since Wigner applied the symmetry principle to molec
ular vibrations many years ago, I group theoretical argu
ments have played important roles in discussing selection 
rules for infrared absorption by molecular vibration, I vibra
tion--electronic interaction, e.g., the Jahn-Teller effect,2 etc. 

Quantization of the molecular vibration is carried out 
for normal coordinates, which are usually classified accord
ing to the irreducible representations of the symmetry group 
relevant to the molecular configuration. It is physically an
ticipated that the normal coordinates are at the same time 
the irreducible bases; however, no group theoretical proof 
has been published for this anticipation.3 In this brief paper a 
proof is given with some remarks. 

II. THEOREM AND PROOF 

Let us consider a molecule consisting of N atoms that 
possesses a point symmetry. The molecule is transformed 
into itself by aset of point transformations {P}; the set forms 
a group. Linear combinations of "mass-weighted displace
ments" S ia'S of atoms from the equilibrium position, i = 1, 
2, ... ,N and a = x, y, z, are to be simply called linear combi
nations in the following. 

When the 3N-dim~nsional reducible representation 
{p}, with matrix P for {p} referred to the Sia 's, is completely 
reduced to irreducible representation that are all different, 
the following theorem is proved. 

Theorem: The linear combinations that are irreducible 
bases for the point group relevant to the molecule are the 
normal coordinates. 

The potential and kinetic energies, Vand T, are written 

2 V = L L SiaKia,jpSjP = s' . K . S, (1) 
i,j a.p 

2T= L L (tia)2 =t' ·t, (2) 
i a 

where K = (Kia,jp) is the "mass-weighted force matrix," 
S' = ( ... Sia'" ), and the superscript t stands for transposi
tion. Since the molecule is transformed by P into itself, one 
obtains 

PKP- I =K or PK=KP. (3) 

The 3N-dimensional orthogonal matrix 0, which com
pletely reduces the representation {p}, transforms the rela
tion (3) to 

OPKO -I = OKPO -1; 

this is rewritten 

RA=AR, 

where 

OPO -I Rand OKO -I=A. 

(4) 

Since the matrix R is completely reduced, it is written as 

o 
B 
o 

o ). (5) 

where the O's are generally rectangular null matrices, and A, 
B, ... are square matrices. The sets {A}, {B} , ... are irreducible 
representations, respectively. Corresponding to (5), the ma
trix A is written as 

} (6) 

The matrix relation (4) is further rewritten in more detail 

AAI = AlA, BA2 = A~, ... , 
and 

AX = XB, BY = YA, .... 

(7) 

(8) 

Since the matrix relations (7) hold for the irreducible repre
sentations, {A},{B}, ... , the submatrices A I,A2, ••• are con
stant matrices by Schur's lemma.4 

When the reduction of {p} contains each irreducible 
representation only once, i.e., the irreducible representations 
{A},{B}, ... are all different, the submatrices X,Y, ... are null 
on account of (8).4 Therefore, one obtains 

C 
0 

) A= 0 A2 
(9) 

The potential and kinetic energies, (1) and (2), with the 
replacement 

OS=Q, 

are rewritten as 

2V= (Qs)t.A. (Os) =Qt.A.Q, 

2T= (ot)'· (Ot) = Q'. Q. 

(10) 

(11) 

(12) 

Since the matrix 0 transforms the bases Sia'S into the linear 
combinations that are irreducible bases, the expressions 
( 11) and ( 12) clearly show that the column matrix Q is that 
of normal coordinates. 
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III. REMARKS 
When all the irreducible representations {A}, {B} , ... are 

different, the normal coordinates are easily determined by 
finding those linear combinations that are irreducible bases 
for the point group. When two or more vibrational modes 
are classified according to one and the same irreducible rep
resentation, the above method fails to uniquely determine 
their vibrational normal coordinates. 

When there are translational (and/or rotational) and 
vibrational motions that are classified according to the same 
irreducible representation, the following is to be noted: The 
vibrational normal coordinates can be determined by taking 
the linear combinations to be orthogonal to the correspond-
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ing translational (and/or rotational) normal coordinates, 
which are easily obtained by inspection. 
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A new method is proposed for labeling a basis for any irreducible representation, with top weight, 
of a simple Lie algebra (LA). It has two advantages over Gel'fand-Zetlin patterns: (i) being 
exactly the same for all LA's both exceptional and classical and (ii) providing labels that are 
much more compact. Thus it may prove useful in discussing large representations such as those 
Es ® Es that occur in superstring theory. The method makes essential use of the Weyl group and is 
based on a theorem that associates to each weight a symmetric matrix with integer coefficients 
whose rank equals the multiplicity of the weight. 

I. INTRODUCTION 

Just as Noah had a big problem in keeping track of the 
animals in the ark, so in quantum mechanics we often en
counter difficulty in giving names to the possible pure states 
of a system. In the past two decades irreducible representa
tions of various Lie groups have been brought into playas a 
tool to solve this problem. The chain of unitary groups 
U(m):JU(m-l), n>m>l, was used by Gel'fand and 
Zetlin 1 to give unique names for the elements of a basis for 
any irreducible representation ofU (n). These names, some
times known as GZ patterns, are widely used. A group theo
retical explanation of the GZ pattern was given by Baird and 
Biedenharn.2 Later, a similar procedure was proposed by 
Gould3 for representations of the orthogonal group. There is 
now a considerable literature devoted to variations on the 
basic approach used by Gel'fand and Zetlin in which a chain 
of subgroups, chosen as most appropriate to the particular 
problem under consideration, is used to name the states of 
the system. Once a system for labeling states is adopted it 
becomes of interest to calculate the matrices for generators 
of the group [formulas (C9)] and to obtain the Wigner
Gordan-Clebsch coefficients for the decomposition of ten
sor products of irreducible representations. The chief object 
of this paper is to propose a uniform method of defining and 
labeling an orthonormal basis for the states of any irreducible 
representation of a simple Lie group possessing a top weight. 
To this end we shall use the notation for irreducible repre
sentations of simple Lie groups introduced by Cartan in his 
remarkable paper on the representations of complex simple 
Lie groupS.4 This has the advantage over some notations 
currently widely used by physicists of being a common nota
tion applicable to all irreducible representations of all simple 
Lie groups. As will be seen in Appendix B, it is also much 
more compact than the GZ patterns. 

For an irreducible representation with top weight 11" we 
shall associate to each dominant weight J.l occurring in the 
representation a matrix CIl, with integer entries and degree 
sl-" We shall prove that the rank ofCIl is the multiplicity ml-' 
of J.l. To mil linearly independent columns of Cil we shall 
associate vectors v~, t..;i<mll , which span the J.l weight 
space. There is considerable flexibility in the choice of v~ . 
For example, using only integer arithmetic, we can arrange 
that they are mutually orthogonal. Normalization will re-

quire at most extracting the square root of an integer. It 
should not be too difficult to arrange that the v~ are adapted 
to any chosen chain of subgroups, 

By action of the Weyl group, the set {v~} for a dominant 
J.l can be mapped onto a basis for the weight space of any 
weight conjugate to J.l. Consequently any element of an or
thogonal basis can be labeled by (J.l,bf,w), where J.l is a 
dominant weight, b f could be an sll-tuple of integers, and w 
is a representative of an element of W /Wil . Here W is the 
Weyl group and Wil is the stability group of J.l. 

It must be admitted that the above notation will seem 
novel and somewhat esoteric especially to satisfied GZ users! 
However, it should easily be amenable to manipulation by 
computers and the fact that it is exactly the same for all 
simple Lie groups will, hopefully, make it popular. In fact, 
once standard tables have appeared for any group, the w can 
be deleted from the label, the restriction of J.l to be dominant 
can be lifted, and the label could take the form (J.l,b f), where 
J.l is a weight and l<i<mll • 

II. IRREDUCIBLE REPRESENTATIONS OF SIMPLE LIE 
GROUPS 

In this section we recall some basic ideas about the irre
ducible representations of simple Lie algebras and describe 
our notation. Readers who are familiar with these matters 
should skip to the statement of the Cartan theorem in which 
our notation is defined. 

The facts we summarize about the representations of Lie 
groups, which were known to Cartan before 1913, but even 
in 1960 seemed esoteric to most mathematicians, are now 
widely known because of excellent expositions in several re
cent books.5 However, the topic is so rich that no consensus 
has yet been achieved as to the most efficient notation. What 
is here proposed results from 35 years meditation by the 
author who had the privilege of studying with Coxeter in 
Toronto and Chevalley in Princeton. 

In order to state the essential facts as quickly as possible, 
assume that our group G is simple and compact. Then a max
imal connected Abelian subgroup will be toroidal, that is, a 
direct product of n circle groups. Such a maximal toroid, 
TC G, is a Cartan subgroup (CSG). All CSG's have the 
same dimension and are conjugate in G. The dimension of a 
CSG, for which we shall reserve the letter n, is called the 
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rank of G. The rank is an important invariant, playing a key 
role in the classification of simple Lie groups. 

Killing6 showed that a simple Lie group belongs either 
to one off our infinite classes, now denoted by A n (n > 1 ), B n 

(n>2), Cn (n>3), andDn (n>4) oris one of five exception
al groups, of rank 2, 4, 6, 7, or 8 denoted by G2, F4, E6 , E 7, and 
Es. The four infinite classes contain 7 the so-called classical 
groups. Thus An contains SU(n + 1); Bn, SO(2n + 1); Cn' 
Sp(2n); and Dn, SO(2n). 

Cartan4 showed how to obtain the finite-dimensional 
irreducible representations of a simple Lie group. To any 
such group he associated n inequivalent fundamental repre
sentations r "r 2, ••• ,r n' which can be described, roughly, as 
the n lowest-dimensional irreducible representations by ma
trixgroups. Then for each choice of1T = (P"P2, ... ,Pn ), where 
pj is a non-negative integer, there is a unique irreducible 
representation of G that appears as the first representation in 

the reduction of the tensor product r)' X r~2 X ... X r,:" into 
irreducibles. Cartan thus established a 1: 1 mapping between 
finite-dimensional irreducible representations of the simple 
group G of rank nand n-tuples of non-negative integers. 

The reader is doubtless aware that the study of a Lie 
group G is greatly facilitated by means of its Lie algebra 
(LA) L. The LA of G is a vector space that can be thought of 
as the tangent space to G at the neutral or identity element I. 
This L is closed under formation oflinear combinations, that 
is for x,yeL, and a,beR, ax + by also belongs to L, but there 
is another binary operation that associates to x and y their 
"product," an element of L that we denoteS by xoy. This 
operation satisfies two conditions, for all x,y,zeL: 

(i) xoy + yOx = 0, 

(ii) xo(yoz) +yo(ZOx) +ZO(xoy) =0. 

Condition (i) says that the Lie product anticommutes. The 
so-called Jacobi identity (ii) is a reflection in the LA of the 
associative property of multiplication in the group. 

Fix a CSG T of a simple Lie group (LG) G, then the LA 
of T, which we shall denote by K, will be Abelian, that is, 
h,kEK~hok = O. Recall that n, the rank of G, is the dimen
sion of K. Therefore a basis {h j } of K will consist of n 
linearly independent elements of KCL. It can be shown 
that if G is compact there exists a negative definite quadratic 
form on L, which is invariant under the action of G, on the 
tangent space at the identity, induced by the map g: G----.G 
defined by s----.gsg-' = gs for allseG. Further, the basis of K 
can be supplemented by {ea }, where ae~ takes 2m values 
such that n + 2m = r is the dimension of Land {h j ,ea } is a 
basis of L such that for all hEK and all i,je[ 1,2, ... ,n] 

(i) hjohj = 0; 

(ii) hoea=a(h)ea,forae~, 

where a(h) is a linear function of h; 

(iii) eaoep = Napea +p' 

The index set ~ is crucial, determining which particular sim
ple LA is being described. The Coxeter-Dynkin diagram 
discussed below is essentially a symbol that encodes the 
structure of ~ . For some pairs (a,{3), a + fJe~ and ~ satis
fies the following two conditions. 

(i) ae~~ - ae~. 
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(ii) If a,{3e~ then if a + fJe~, Nap=l=O whereas if 
a + fJff.~, NaP = O. Thus in the latter case ea oep = O. The ea 
are unique up to multiplicative factors that can be chosen so 
that N _ a, _ p = - NaP' When this is done the NaP are inte
gers equal numerically to 4 at most. Only for G2 is 4 attained. 

The linear forms a (h) defined on K are called the roots 
of the LA because they first appeared as the roots of an equa
tion of degree r, which played a key role in Killing's classifi
cation of the simple LA's. Since K is of dimension n there 
are at most n linearly independent a. Since x . y, the restric
tion to K of the above-mentioned invariant quadratic form, 
is nondegenerate, it is possible to find vectors rain K such 
that a(h) = ra . h for all hEK. We can identify a with ra 
and regard ra as a member of the set~. Property (i) of ~ 
implies that together with r a' - r a belongs to ~. 

A fact of capital importance, which was known to Car
tan9 in 1927, is that it is possible in many ways to choose n 
linearly independent roots, which we denote by {r j }, 1 <.J<n, 
such that for any rae~, ra = m~rj with m~ integers and 
for a given a all nonzero m~ have the same sign. The roots r a 

for which m~ >0 are called positive roots. A set of n roots 
with this property is called a set of simple roots because none 
of them can be expressed as a sum of two other positive roots. 
It is implicit in Cartan's paper that the number of possible 
ways of selecting a set of simple roots is equal to the order of 
the Weyl group. 

The Weyl group W is a group of orthogonal transforma
tions of K generated by the n reflections 

R j: h----.h-2[(h.rj )/(rj .rj)]rj. 

The R j permute the roots. That is, ~ is invariant under the 
action of the Weyl group. From this it follows that W is a 
finite group. Although he did not have an interpretation of 
the Weyl group as orthogonal transformations of K, Kill
ing6 made essential use of the very same group, which he 
regarded as a permutation group of the elements of~. It is 
fairly easy to deduce that 

2(ra . rp )/(rp . rp) 

is 0, ± 1, ± 2, or ± 3. This greatly restricts ~ and led to 
Killing's classification of simple LA's. 

Coxeter studied finite groups generated by reflections 
and in 1931 introduced a graph 10 with n nodes to character
ize the irreducible groups. A node corresponds to one of the 
n reflections R j that generate the group. Two nodes i andj 
are joined if RjRj has order greater than 2. The branch join
ing the i andj node is marked with the order of RjRj . For 
simple LA's the only orders for RjRj that can occur are 2, 3, 
4, or 6. In fact, only when n = 2 can 6 occur. Since (R j Rj )2 

= J~RjRj = RjR j, Witt" introduced the convention that 

if (RjRj )mij = J, the i and j nodes are joined by mij - 2 
branches. With these conventions, for example (i) A 2 , (ii) 
A 3, (iii) Bs, (iv) G2, and (v) Ds have the graphs 

( i) 

( ii) 

( iii) 

( iv) 

(v) ----=:00::::::::: 

A. J. Coleman 1934 



                                                                                                                                    

In these diagrams instead of marking the order p of R; Rj we 
have indicated it by joining the i andj nodes by p - 2 bonds. 
When two nodes are joined by an odd number of bonds, the 
corresponding R; are conjugate in Wand the r; are of equal 
length. When two nodes are joined by an even number of 
nodes, which occurs once in the graph of G2, F4, Bn , and Cn , 

the corresponding r; differ in length. A happy convention, 
the inventor of which I have not been able to discover, adds 
an inequality sign to the branch and thus 

) _. 

denotesBs indicating that Irsl < Ir41, whereas 

denotes Cs. The best compilation of information about the 
roots and these graphs known to the author is in the Appen
dices to the idosyncratic book 12 of Freudenthal and de Vries. 

In 1944, Dynkin 13 rediscovered the concept of a set of 
simple roots and, independently of Coxeter and Witt, intro
duced a diagram similar to Coxeter's to describe the interre
lation of the r; in such a set. Bourbaki learned of the idea 
from Dynkin's article and named the graph a Dynkin dia
gram. Mter 1949, when I drew Chevalley's attention to Cox
eter's work, Bourbaki introduced a distinction between the 
Coxeter and the Dynkin diagrams. Since the two diagrams 
convey identical information I regard the distinction as spur
ious. Indeed, I was once vigorously attacked for not admit
ting that the great contribution of Dynkin was putting the 
inequality sign on the diagram when in fact there are no such 
signs in the diagrams in Dynkin's article-at least in the 
AMS Translation! Dynkin's contribution to the study of 
LA's is certainly considerable so I feel justice to history is 
done by referring to these very useful graphs as Coxeter
Dynkin diagrams or CD diagrams for short. 

We have not yet exhausted the meaning ofthe CD dia
grams. So far a node denotes either a simple root r; or the 
corresponding R;, which is one of n generating reflections of 
the Weyl group W. However, we can still associate to the 
nodes the n fundamental representations r; referred to 
above. 

Geologists and solid-state physicists who wander 
around in Brillouin zones are aware of the advantage of de
fining a dual or reciprocal basis. Thus corresponding to the 
basis {ri } of simple roots in K, there is a dual basis {r'} such 
that 

r'. rj = 8;. 
This has the property that if k i are integers then (k;r') . ra 
= (k; r') . ~rj = kj nta is an integer. So {r'} spans the lat

tice of points h in Ksuch thath . ra is an integer for every a. 
These are points of K that Cartan recognized as corre
sponding to elements of the center of G under the exponen
tial map. 

For any representation r: g--+r(g), where r(g) is a 
linear operator on a complex linear space V, since a CSG Tis 
Abelian it is possible to choose a basis of V consisting of 
simultaneous eigenvectors of T. The corresponding repre
sentation of K, which we also denote by r, will have the 
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same set of simultaneous eigenvectors. The r -image of an 
element of L will be denoted by capital letters. Thus 
r(h) = H, r(ea ) = Ea. SupposexA. is an eigenvector of H, 
then HxA. =f(h)xA.' where it can be shown thatf(h) is a 
linear function on K. Thus there is a vector A.eK such that 
f(h) = A. . h so for all heK 

(2.1 ) 

When (2.1) holds for XA. ¥OandA. ¥O, we say that A. . h (or, 
by abuse of language, A.) is a weight of r corresponding to 
weight vector x A. . In the special case V = L, weights are called 
roots. 

Since in a representation of a LA, 
xoy--+[X,y] =XY - YX, 

HEaxA. = [H,Ea ]XA. + EaHxA. 

= ra . hEaxA. +A.. hEaxA. = (A. + ra) . hEaxA.' 

It follows that EaxA. has weight A. + ra' Thus yP = E~xA. 
has weight A. + pra or yP = O. Since for distinct p, yP are 
linearly independent, in a finite-dimensional representation 
yP¥O for only a finite set of p's. Since E _ a corresponds to 
- r a' starting from any x A. ¥ 0, there is maximal finite chain 
(A. + sra ), - q<:,s<.p, of weights corresponding to nonvan
ishing eigenvectors. From this it easily follows that 

2[(A..ra )/(ra .ra )] =q-p, 

for any a. If we set 

ha = [2/(ra . ra )]ra' 

condition (2.2) implies 

A.. haEZ, 

where Z denotes the integers, and in particular 

(2.2) 

(2.3) 

(2.4) 

A. . h;EZ, (2.5) 

for 1 <:,i<:,n, where {hJ is clearly a basis for K. Let {h'} be 
the basis of the K dual to {h i} such that 

h;.hj =8;. (2.6) 

Then if A. = Pih i, 

A..hj=pjEZ. (2.7) 

Conversely (2.7) implies (2.4). 
We can now formulate the Cartan theorem for represen

tations of simple Lie algebras. 
Let r be a finite-dimensional irreducible representation 

of a simple LA L, which associates to xeL, a linear operator 
r(x) = X on a carrier space V such that for a,bee, x, yeL, 

(i) r(ax + by) = aX + bY, 

(ii) r(xoy) = [X,y] =XY - yx. 
Then there is a top vector X1T such that 

(i) HXfr = (1T. h )xfr , for all hEK, 

(ii) Eix 1T = 0, for lo;;;io;;;n, 

and n simple positive roots, ri , 

(iii) 1T = p;h i, withp; non-negative integers. (2.8) 

Ifwe denote r(e -a) by Fa' then Vis spanned by 

(2.9) 

where l<:,ij <.n (Ea and Fa are called raising and lowering 
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operators, respectively). A vector xIJ of the form (2.9) has 
weight 

(2.10) 

where k i are non-negative integers. We shall call k = ~k i 
the depth ofxw For fixedll, the set of all vectors (2.9), for 
the sIJ = k !Ink i! permutations of the SUbscripts, span the Il 
weight space Vw The carrier space Vis a direct sum of the VIJ 
over all weights Il which actually occur in V. 

Remark 1: The above, formulated slightly differently, is 
the main content of Cart an's paper.4 

Remark 2: For fixed Il the sIJ vectors (2.9) are, in gen
eral, not linearly independent. Indeed some may be zero. 
The dimension of VIJ is called the multiplicity of the weight Il 
and denoted by mw 

Remark 3: It follows from (2.10) that the difference 
between any two weights of r rr is an integral combination of 
the roots of L. This is another indication of the importance of 
~ for the structure and properties of Land G. 

Remark 4: The top weight 'IT of an irreducible represen
tation is not necessarily an integral combination of roots. 
Indeed it is precisely because half-integer combinations oc
cur for representations of the orthogonal groups that funda
mental particles exhibit "spin." Thus Cartan's paper, in 
which spinors were defined for the first time, may justly be 
regarded as the most basic mathematical paper for quantum 
chemistry. 

Remark 5: Weyl14 obtained an explicit form for the 
character of an irreducible representation of a simple LA 
from which it is easy to deduce the dimension of the carrier 
space V of the irreducible representation r rr' Define 

Then the dimension d rr of V is given by 

d =n('IT+I5).ra 

rr nl5 . r ' 
a 

where the products are over all positive roots. 

(2.11 ) 

(2.12) 

For example, for Al orsu(2), hi = !rl, 'IT = mh I, O..;;m. 
The product in (2.12) has one factor for r I and 15 = !r I' SO 

drr = [(!m + pr l
. rd/(!r l 

• r l ) = m + I, 
corresponding to the well-known fact that all positive inte
gers occur as dimensions of representations of su (2) . 

Remark 6: If in succession we setpi in (2.8) (iii) equal 
to l5ij we obtain the fundamental irreducible representations 
rj corresponding, respectively, to h j. In the reduction of the 

tensor product r)' ® r~' ® ... ® r~" into irreducibles, the irre
ducible r rr' with top weight 'IT = Pih i, occurs exactly once. 
The top weight of any other irreducible occurring in this 
tensor product is below 'IT. This was Cartan's original obser
vation. 

III. THE MATRIX C" 

If m,.. = 1 for all weights Il that occur in a representa
tion. then Il can be used as a label for a basis vector in the one
dimensional space VIJ' However, the state-labeling problem 
is nontrivial if mIJ > I and is that of naming a basis of VI' for 
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those Il that actually occur as a weight in the irreducible 
representation. 

Our approach involves associating to each weight Il of 
r rr a matrix C I' of a degree s/L such that m,.., the multiplicity 
ofll' equals the rank ofC/L. That is, mIJ = rank(C/L). Thus 
we can already infer that mIJ ,,;;sIJ = k !Ink iL 

If Il = 'IT - 2rl - r2 and Xrr is a top vector for r rr' then 
VIJ is spanned by 

FIFIF~rr' FIF2Flx rr • and F2FIFlx rr • 

corresponding to thesIJ = 3!11!2! permutations of{I.I.2}. It 
is also helpful to associate these three vectors with "paths" 
from 'IT to Il. e.g .• FIFIF~rr corresponds to the path 

'IT-'IT - r2-'IT - r2 - rl-'IT - r2 - 2r l • 

each step of which goes "deeper" into the potential weight 
spaces of r rr' We say "potential" because. for example, if 
'IT = 2h I + 3h 3, then, as we shall see. 'IT - r 2 would not occur 
as a weight in r rr and F~rr = 0 so that FIFIF~rr = 0 and we 
could immediately conclude that m < 3 = S • 

I' I' 

If 'IT -Il = k ir;. k ieZ, k i>O, ~k i = k, then by a path 
from 'IT to Il we shall mean a permutation of the set of k I, I's, 
k 2, 2·s, .... k n, n's. Thus if in the preceding example 
(Il = 'IT - 2rl - r2), we say that A is a path from 'IT tOil, then 
A is one of the three sequences (1.1,2), (1,2.1), (2,1,1). 

If A = (1, 1,2), then FA will denote the lowering opera
tor FA = FIFIF2. But EA will denote a raising operator with 
the order of the sequence A reversed. Thus E A = E2E IE I for 
our present example. For all paths A and B from 'IT to Il, 
EAFBX)' will be a multiple, possibly zero, of Xrr ' We define 
C~B by 

(3.1 ) 

Main Theorem: The matrix C,.. = (C ~B) has the fol
lowing properties. 

(i) The rank of CIJ equals mIJ' the dimension of the 
weight space VI" i.e., the multiplicity of Il. 

(ii) The elements C ~B are integers. 
(iii) C~B = C'tJA' that is, C/L is symmetric. 
Proof The proof of (i) is straightforward involving only 

basic linear algebra. We shall denote by P; the set of possible 
paths from 'IT to Il· Thus, the cardinality of P;, IP; I = s/L' 
For Xrr the top vector on V, the vectors VB = FBxrr , for 
Be.P;, span Vw If mIJ <sIJ' there exist linear dependencies 
among VB' Suppose 

bBvB = bBFBXrr = 0, (3.2) 

where not all the scalars b B vanish. Therefore 

bBEAFBXrr =bBC~BXrr =0. 

Now Xrr #0, therefore 

C~BbB =0, (3.3 ) 

for aliA. Thus (b B) is in the null spaceofC/L. This is the case 
for each relation (3.2) among {VB}' This implies that 
rank(C/L)..;;m/L' 

But conversely, suppose (3.3) holds for all AEP;, then 
(3.2) must hold. Because if not. then 

v=bBFBxrr#O and VEV/L' 

If Ei V = 0 for all i then V would be a nonzero top vector but in 
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an irreducible representation there is only one top vector, 
which in our case is XfT' Thus there is at least one i for which 
E; v:f O. By induction there must exist a path A such that E A V 

:f0. But EAv = b BC~BXfT = 0 by (3.3). This proves (i). 
The proof of (ii) [and (iii) ] could get a bit messy if we 

try to set it out in complete detail. The argument will seem 
familiar to anyone who has used Wick's theorem for expand
ing Green's functions. Its essential aspects become clear 
from particular cases. We first recall that if i=J:j then F;Ej 

= EjF;. This follows from the fact that for simple positive 
roots r; and rj , r; - r/tl:. For if r; - rj is a positive root, then 
r; = (r; - rj ) + rj would be the sum Of two positive roots, 
which is impossible for a simple root. Whereas if ri - rj is 
negative, then rj - ri would be positive and rj = (rj - ri ) 
+ riO Therefore eio jj = 0, which implies [Ei,F}] = 0 or 

E;Fj =Fj Ei. 
Recall also that 1T' = Pih i with Pi non-negative integers. 

Further [Ei Fi ] = Hi' and Hix fT = (1T" hi )xfT·Firstconsid
er I" of depth 1, that is, k = l:k i = 1. Suppose P; = {(i)}. 
TakeA = B = (i), 

EiFiXfT = [EiFi ]XfT + FiEiXfT 

= Hix fT +0 

= (1T' . hi )XfT = PiXfT' 

Thus the weight 1T' - ri of depth k = 1 actually occurs in r fT! 

if and only if Pi> O. Thus C'" = (p;), which is integral and 
symmetric! 

Now, suppose A = B = (1,2). Calculate C~B: 

C~BXfT = EAFBxfT = E2E,F,F~fT 

= E2[E,Ft1F~fT + E~,E,F~rr' 
(3.4) 

But E ,F2 = F2E, and E 'Xrr = 0 since XfT is the top vector, so 
the second term vanishes. Further [E,F,] = H" and F~rr 
has weight 1T' - r2' Thus the first term in (3.4) is 

(1T'-r2) ·h,E2F~rr = (p,-a12)p~rr' (3.5) 

Thus C~A = (p, - a'2)P2' Similarly if B = (2,1), 

C~B = (P2 - a2' )p,. This is an integer since P"P2' and a'2 
are integers. Herea'2 = h, . r2. In general the Cartan matrix 
aij = hi' rj is integral. Now, letA = (1,2), B = (2,1), 

C~BXrr = E2E,F2F,xrr = E2F2E,F,xrr 

= p,E2F~rr = p, P~rr' 

C ~B = p, P2' which is an integer. 

Clearly C ~A is obtained from C ~B by interchanging 1 and 2 
so C ~B = C ~A as asserted in (iii). 

As a final example, let A = (1,1,2), B = (1,2,1), and 
calculate C ~B = C ~A : 

C~BXrr = E2E,E,F,F2F,xrr = (1T' - r, - r2) . h,E2E,F~,xfT + E~,F,E,F~,xrr 
= (p,-all-a'2)p,p~rr +p,E~,F,F~rr = (p,-all-a'2)p,p~fT +p,(p,-a12)p~rr' 

".C~B =p,P2(2p, - 2 - 2a'2) 

(3.6) 

-an integer! Now 

C~AXrr = E,E2E,F,F,F~rr = (1T' - r, - r2) . h,E,E~,F~rr + E,E~,E,F,F~rr 
= (p, - all - a'2)p,p~fT + (1T' - r2) . h,E,E2F,F~rr = (p, - all - a'2)p,p~rr + (p, - a12 )P2P,Xrr , 

".C~B = C~A' (3.7) 

Notice that in the second terms on the right-hand side (rhs) 
of (3.6) and (3.7), though the order in which the factors 
appear in the calculation is different, the factors are the 
same. 

The calculation is like peeling off levels of an onion ex
cept we start from the inside, that is, with the k th raising 
operator and work it over to the right until it annihilates x rr . 
A contribution to the final expression comes only from the 
encounter of an Ei with an Fi. 

To prove (iii) we merely notice that interchanging A 
andB leaves the set of such encounters unchanged. Ordinary 
mortals may find this argument unconvincing but Wick's 
theorem practitioners will accept it in a flash! 

There is a neater proof of (iii), which is not quite as 
elementary since it assumes that a compact group has a uni
tary representation in which E r = F;. Then if we take Xrr of 
unit norm 

1937 

C~B = (xrrIEAFBxrr ) 

= (FAxrrIFBxrr ), 
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so C ~B is Hermitian, but since it is real it is symmetric. Also 
in this interpretation C'" is the so-called Grammian or Gram 
matrix of the set of vectors FAxrr . It is well known that the 
dimension of the space spanned by a set of vectors is equal to 
the rank of their Grammian. In this way we have another 
proof of (i) and can even conclude that for unitary represen
tations C" is positive semidefinite. 

Remark 1: It is clear from our discussion of (ii) that the 
calculation of C'" is straightforward and easily could be pro
grammed for computer once the Cartan matrix (aij ) is given 
and this is strictly equivalent to the choice of simple LA. For 
given k iri = 1T' -1", C'" can be given in terms of 1T' and (aij) 
in a form universally valid for all simple LA's. 

Remark 2: The calculation of C'" does not require that 
r rr be finite dimensional but only that it has a unique top 
vector. If an infinite-dimensional representation has a top 
vector of weight 1T', we can still express 1T'in the form P I h ; but 
now thep; will not be integers so part (ii) of the theorem will 
not necessarily be true. However, (i) and (iii) will still ob
tain. 

A. J. Coleman 1937 



                                                                                                                                    

IV. THE LABELING OF STATES 

The elements of:Jr consisting of linear combinations of 
{r'} or {h i} with non-negative real coefficients constitute a 
closed convex cone, usually called a Weyl chamber, which 
we shall denote by WC. Here Ri is a reflection in a face of a 
WC. As remarked above, the n reflections Ri generate a fin
ite group of orthogonal transformations of :Jr, which per
mute the roots ~. The vector 1 (or the vector h i) is a basis 
for one ofthe edges of the WC. The simple root r i is perpen
dicular to the face ofthe WC opposite the edge I. Choosing 
the sense of all the r i to point inwards into the WC estab
lished the distinction between the positive ~ + and the nega
tive roots ~ -, ~ = ~ +u~ -. Of basic importance is that a 
WC is a fundamental region for the action of the Weyl group 
Won:Jr. That is, every vector in:Jr is equivalent under W to 
precisely one vector in the We. Any element of W sends the 
WC into another simple convex cone, which could have been 
used to define a different set of simple roots. This justifies our 
previous remark that the number of possible sets of simple 
roots equals I WI, the order of W. 

Any vector interior to WC (i.e., h = uih i with Ui > ° for 
all i) has I W I distinct images under the action of Won :Jr. 
But, for example hI, which is not interior to WC, is fixed 
under R 2,R3, ... ,Rn and therefore, under the subgroup WI' 
generated by these reflections. The orbit of h I will therefore 
contain [W: WI] = I Will WI I vectors. 

It follows from all this that any weight of r 1T is equiva
lent to a unique,u = mih i with all mi>O. If WJl is the stabil
ity group of,u then the equivalence class of weights for which 
,u is an unambiguous label contains [W: WJl] weights. For 
WEW let w,u denote the image of,u by w, then w: VJl-VwJl' 
Thus if {Xi } is a basis of V , {wx:.} is a basis of VWJl and we 

Jl Jl ~ {'} 
can denote wx~ by x~Jl' Thus if we had l~bels for ~ basis x~ 
of VJl , bases for the other weight spaces 10 the orbIt of VJl can 
be labeled by a set {wa } of representatives of the left cosets of 
W with respect to WJl' 

However, by comparing (3.2) and (3.3) we see that 
linearly independent vectors bf such that C~Bbf#o, with 
I <i<,mJl , define a basis 

v~ = b fFB x 1T (4.1) 

of VJl' .. .. 
Clearly if mJl > I there wtll be great fleXIbIlIty for the 

choice of (b f) and at this stage it is too early for the author 
to confidently propose one or more "canonical" choices 
since what will prove to be most appropriate will probably 
appear only after considerable experimentation with this 
new notation. However, the following observations may 
prove relevant. Since C Jl is a symmetric matrix, with integer 
entries it will have real eigenvalues and mJl linearly indepen
dent eigenvectors with real coefficients. These would give 
rise to a basis for V and if the eigenvalues of C Jl happened to Jl 
be distinct, which in general would be probable, each real 
eigenvalue would provide a label for the corresponding v~ . 

Alternatively, row reduction of C ~B will quickly lead to 
a basis of VJl in which each v~ is a single F BX1T for an appro
priate choice of B. 

When the representation of G is unitary, F1 = E B' and 
there is a scalar product defined on V so that 
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(v~ Iv~) = b 1b !(FAx 1T IFBx 1T ) 

= b1b!(x1T IEAFBx 1T ) 

= b1b!C~B(X1Tlx1T) 

. ·.v~lv~¢:?qilqj with respect to CJl. 

It will therefore be possible to obtain a basis of mutually 
orthogonal vectors {v~}, with purely rational and therefore 
integral coefficients (by multiplying by the LCM of the de
nominator). To normalize the basis will, in general, require 
the extraction of square roots of integers. 

Some of these possibilities are illustrated in the Appen
dices. 

V. CONCLUDING REMARKS 

Hopefully the reader is convinced that the scheme pro
posed in this paper provides a solution of the state labeling 
problem that is universal in the sense of being a uni~orm 
approach for all simple LG's. It circumvents the neceSSIty of 
calculating parentage coefficients, which complicates the 
common solution oflabeling by recourse to subgroup chains. 
In some situations, of course, a subgroup chain can throw 
significant light on the physical problem. 

For the sake of consistency it will be desirable to make 
canonical choice of the WJl coset representatives w. The 
most intelligible and perspicuous choice will depend on the 
peculiarities of the individual Weyl groups but should not 
present an insurmountable difficulty since these groups have 
been studied l5 in exquisite detail by Cartan, Coxeter, and 
others. 

A critical test for the proposed notation will be the ease 
with which it enables the Wigner-Clebsch-Gordan coeffi
cients to be calculated and described. 

The author plans to address these practical questions in 
subsequent papers along lines suggested in the following Ap
pendices. 
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APPENDIX A: THE MATRIX C'" 

Case 1 (s = 1): This occurs when there is only one path 
from 1T to ,u, ~hich happens if and only if 1T - ,u = kri . Set 
C~A = Ck • We easily see that if EiF7x1T = ak F7 - IX1T , then 
ak = Pi - 2(k - 1) + ak _ I and a l = Pi whence, by induc
tion, 

(Al) 

since Ck = rrJ= I aj' Thus the longest straight ri-chain start
ing from x" has length Pi' In particular, if Pi = 0, all paths 
starting with ri give rise to zero elements of C Jl. 

Case2(s =2): This occurs ifand only if1T -,u = r i + rj 
with i#j. With no loss of generality, assume i = 1, j = 2: 

Cf2.12X" = E2EIFIFzX1T 

= (1T - r2) . h1E2FzX1T = (PI - aI2)pzX1T' 
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Recall that the Cartan matrix of a simple LA (aij) is 
defined by 

aij = h/· rj = (2r/· rj)/(r/. r/). (A2) 

As before, Ct2.21 = Cil.12 = PIP2' Hence CI' is given by 

(12) 

(21) 

(12) 

[
(PI - al2)P2 

PIP2 

(21 ) 

PIP2 ] . 
(P2 - a21 )Pl 

(A3) 

Since the Cartan matrices for A2,B2,G2, are, respectively, 

[~1 ~1], [~2 ~1], [~3 ~1], 
the CI' for arbitrary 1T when 1T - P, = r l + r2 for A2,B2,G2, 
are, respectively, 

[(PI + l)p2 

PIP2 
PIP2 ] 

(P2 + 1)PI ' 

[(PI + l)p2 PIP2 ] (A4) 
PIP2 (P2 + 2)PI ' 

[(PI+l)P2 

PIP2 
PIP2 ] 

(P2 + 3)PI . 

We recall that the dimension of the irreducible representa
tion (PI,P2) for A2 is 

dfT = !(PI + I)(Pz + 1 )(Pl + P2 + 2), (AS) 

for B2 is 

dfT = i(PI + I)(Pz + 1 )(PI + P2 + 2)(2Pl + P2 + 3), 
(A6) 

and for G2 is 

dfT = -do(PI + 1 )(P2 + 1 )(PI + P2 + 2) 

X (PI + 2P2 + 3)(PI + 3P2 + 4)(2PI + 3p2 + 5). 
(A7) 

These result immediately from Weyl's formula (2.12). 
We note that for A 2' both (1,0) and (0,1) give represen

tations of dimension 3 corresponding to SU ( 3) and to the 
representation SU (3) 1\ SU (3) on antisymmetric bivectors. 
The adjoint representation of dimension 8 is given by 
1T= (1,1). 

For B2, d(\,Q) = 5 is the defining representation SO(5), 
whereas d(O.2) = 10 is the adjoint representation. 

For G2, d(\,Q) = 7, the lowest-dimensional representa
tion of G2 and d(o.\) = 14 is the adjoint representation. 

Remark: In case 2 with sl' = 2, as presented above, we 
assumed that G had rank 2. In fact that was not an essential 
assumption. If the rank of G is 3 or more the calculation 
would be exactly the same; however, the G2 type could not 
occur. We would be lead to a C I' identical to that for A2 or B2 
above. 

Case 3 (sl' =3): This occurs only when 1T - P, = 2r/ + r1 , 

i =1= j. Again we assume that i = 1 and j = 2, without loss of 
generality. There are three paths fromp, to 1T, (112), (121), 
and (211), which we have set down in lexicographical or 
numerical order, assuming that 1 precedes 2, 2 precedes 3, 
etc. Thus the clumsy symbol C t12.121 can now be abbreviated 
to C I •2. We have also dropped the superscriptp, since for a 
given irreducible 1T = (p/), the path by itself determines p,. 
The C/. j , l..;;i,j..;;3, can be calculated as before. We give de
tails for C I •2 in order to point out explicitly that the C matri
ces can be calculated by recursion on k: 

CI.2XfT = EzEIEIFIFzFIXfT 

= (E2E IH IFzFI + EzFIFIEIFzFI)XfT 

= (1T - r l - r2) • hlE2EIFzFlxfT 

+ 1T' hlE2E 1FIFzXfT 

(A8) 

(A9) 

= (PI - 2 - a12)CI2.2IXfT + PICI2.12XfT' (A1O) 

where C12.21 and C12.12 are the coefficients that were calcu
lated in case 2. 

Equations (A8)-(A1O) illustrate the basic method of 
evaluating CA.B' One starts by moving the innermost E/ 
through the F's by means of the commutation relation 
[E/,}j] = H t8ij' Thus in (A8), for which k = 3, we moved 
El to the right, leading to (A9), which involves a sum of 
terms for which k = 2. We substitute, collect terms, and ob
tain 

(All) 

Thus there is a simple algorithm that easily can be pro
grammed for a computer to chum out expressions for the 
C/. j in terms of the integers (Pj) defining the top weight and 
the Cartan matrix (aij)' which specifies the group under 
consideration. 

WithAl = (112),A 2 = (121), andA 3 = (211) and set
ting a21 = - a, a12 = - b, we find that C/. j is 

[

2P2 (PI + b)(PI + b - 1) 

2PIP2(PI + b - 1) 

2PIP2(PI - 1) 

2PIP2(PI + b - 1) 

PI[2PIP2 + bPI - (2 - b)(P2 + a)] 

2Pl(Pl-l)(P2+ a ) 

(AI2) 

Of the two numbers a andb, at least one of them is lor, ifrllr2' they are both zero. By a suitable ordering of the simple roots we 
can arrange that b = 1, a =1=0, or a = b = O. 

If a = b = 0, the above matrix becomes 

2p,p,(p, - 1) [: I :] (AI3) 

of rank 1 if and only ifpIP2(PI -1)=1=0. 
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With b = 1, (AI2) becomes 

[

2PI P2(PI + 1) 

2pi P2 

2PI P2(PI - 1) 

2pi P2 

PI[2pIP2 - P2 + a(PI - 1)] 

2PI (PI - 1) (P2 + a) 

2PIP2(PI - 1) 1 
2PI(PI - 1)(P2 + a) . 

2pI(PI - l)(p2 + 2a) 

(A14) 

j 
When PI = 0, both (AI2) and (AI4) vanish so mJ.L = 0, It follows from (B2) that for A2 
whereas if PI = 1 the third row and third column vanish and 

[ CI,I ~I'2] = P2 [~ ~], 
C2,I 2,2 

(AlS) 

of rank 1 or 0 according as P2:;of 0 or P2 = O. 

APPENDIX B: ORTHONORMAL BASES 

To illustrate the ideas of this paper we use the IS-dimen
sional representation 11" = (PI,P2) = (2,1) of A2 or SU(3). 
This representation should not be confused with the inequi
valent representations (1,2) and (4,0), which, according to 
(AS), also have dimension 15. 

Using the Cartan matrix of A2 in (A4) we find that 

h I = jr I + !r 2' h 2 = jr I + jr 2' ( B 1 ) 

and that 

r
l 
= 2h 1_ h 2, r2 = - hi + 2h 2. (B2) 

Formulas (B2) illustrate the fact that in the {h;} basis all 
weights have integral coefficients. 

For 11" = (2,1), the only dominant weights (i.e., those 
with Pj >0) that occur in the representation are (2,1) = 11", 

(0,2) = 11" - r l , and (1,0) = 11" - r l - r2• 

For An the Weyl group is isomorphic toSn + I' the sym
metric group on n + 1 objects. Just as S3 is generated by two 
transpositions (12) and (23) whose product 
(1 2)(23) = (1 23) has order 3, so W forA 2 is generated by 
two reflections RI and R2 such that (R 1R2)3 = /. In the ex
tended CD diagram 

3 

2 

the nodes 1 and 2 denote the reflections R 1 and R2 while the 
node 3 corresponds to R3 = RIR2R3 = R2R IR2, which is 
also a reflection such that (RIR3)3 = (R2R3)3 = I. The 
mapping from W into S3 defined by Rc-+(12), Rr+(23) 
sends Rr -+( 13),R IR2-( 123), andR 2R I-( 132), where, in 
a common notation, (123) denotes the cycle of period 3 
which replaces 1 by 2, 2 by 3, and 3 by 1. To simplify our 
notation, set Wo = I, WI = R I, W2 = R2, W3 = R3, 
W4 = R IR2' and Ws = R2R I' Of course, R I and R2 denote the 
previously defined reflections along r l and r2, respectively. 

Since r; is perpendicular to h j ifj:;ofi, R;hj:;ofh j only for 
j = i and, with no summation on i, 
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Wo: h I_h I, h 2_h 2, 

WI: h 1_ - hi + h 2, h 2_h 2, 

W2: h I_h 1, h 2_h I _ h 2, 

W3: h 1_ - h 2, h 2_ - hi, 

W
4

: h 1_ - hi + h 2, h 2 __ hi, 

Ws: h 1_ - h 2, h Z_h I _ h 2. 

(B3) 

Since 11" = (2, 1) = 2h I + h 2 does not lie in a face of the 
Weyl chamber its stability group consists of the identity 
only. Therefore its orbit under W consists of six elements, 
which by (B3) are 

(2,1), (-2,3), (3,-1), 

( - 1, - 2), ( - 3,2), (1, - 3). (B4) 

On the other hand, 11" - r l = (0,2) is fixed by Wo and WI and 
hence its orbit has only three elements: 

(0,2), (2, - 2), ( - 2,0). (BS) 

Similarly, 11" - r l - rz = (1,0) is fixed by Wo and Wz and its 
orbit consists of 

(1,Q), ( - 1,1), (0, - 1). (B6) 

For fl = (1,0), it follows from (A4) that 

(B7) 

which has rank 2. Thus each of the weights (B6) has multi
plicity 2. Since 6 + 3 + 2X3 = 15, (B4)-(B6) account for 
the 15 dimensions of the (2,1) representation of A2 with 
m 21 = m02 = 1 and mlO = 2. 

It follows from (B7) that U I = FIFzX1T and Uz = F2F lx 1T 
are linearly independent and span VIO' From (B7) we imme
diately read off (u l lUI) = 3, (UZIU2) = 4, (ulluz) = 2. Thus 
U I and U2 are not orthogonal. For some purposes they may 
form the most convenient basis; however, it would be possi
ble in a continuous infinity of ways to obtain an equivalent 
orthonormal pair of vectors. 

For example, in the present case, U 2 and 2u I - U 2 are 

orthogonal. Defining 2v:o = U2 and 2/2 vio = 2u I - Uz it 
follows that {v;o} is an orthonormal basis of VIO' Then if 

V21 = X 1T and /2vo2 = F lx 1T , a complete orthonormal basis 
for the representation space V is 

(BS) 
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where 

weW and ilJE{WO'w4,WS}' (B9) 

It is perhaps worth noting that the representation theory 
of S k puts limitations on possible values of mI-" Denote the n
vector (k i) by Is and, as on p. 36 of the author's treatment l6 

of the representations of S k' denote by [Is; 1] the representa
tion of Sk induced from the identity representation ofIISki . 
This representation of dimension $1-' is easily reduced into its 
irreducible constituents by means of the Littlewood-Ri
chardson rule. Thus since, for example, 

so 

aabb+ 
aaXbb 1S4 = 

aab + aa 
b bb 

[2,2;t] = [4] + [3,1] + [22] 

with dimensions 

6 = 1 + 3 + 2. 

(BlO) 

In the representation of A2 discussed in this appendix, 
f.L = (0, - 1) = (2,1) - 2rl - 2r2 has ml-' = 2 and sl-' = 6. 
A possible path from 1T to f.L is (1212) . We therefore expect 
the six FAxtr to span the representation [2,2; 1] of S4' so C I-' 
should be equivalent to a diagonal block matrix with blocks 
of degree 1, 3, and 2. Since ml-' = 2, we can conclude that the 
first two blocks are identically zero. 

When one of the irreducibles of [Is; 1] is actually present 
possibly Young's method of defining an orthogonal irreduci
ble representation of Sk can be invoked to help us find an 
orthogonal basis for VI-" 

The Young diagrams of the irreducible representations 
of Sk that arise can never have more than n rows. Possibly 
they will play some role, at least for SU (n), in any attempt to 
correlate the notation proposed in the present paper with the 
GZpattems. 

APPENDIX C: MATRICES FOR THE GENERATORS OF 
THE LIE ALGEBRA 

In this appendix in order to illustrate the power of our 
notation we give the matrix for EI in the representation 
(2,1) discussed in Appendix B. Our techniques for obtaining 
the matrix elements are still somewhat ad hoc so they will 
only be briefly indicated since we expect to improve them 
and give a full presentation in subsequent papers. 

A simple LA is generated by 2n elements ei and/; such 
thateio /; = hiEJr'with eo t..;;J<n, corresponding to a set of 
simple roots. Under a representation r such that r (e i ) 

= Eo etc., [EoFi] = Hi' It is sometimes helpful to use the 
following notations: (i) la = e _ a = ea, when the root 
a> 0; and (ii) if, for example a = 2rl + 3r2, we could de
note ea by e23, el by eJO, and e2 by eol . Since eloe2 has weight 
r l + r2 it is possible to define ell by ell = eloe2' which would 
map into r(e ll ) = Ell = r(e l oe2) = [r(el ),r(e2 )] 

= [EI ,E2 ]· 

In a unitary representation, Fi = E T, so in order to com
pletely specify r we need know only the matrices for Ei' 
l<i<n. Thus a unitary representation of A2 is completely 
determined by El and E2 • 
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The Weyl group W plays a key role in the approach of 
the present paper. This is a finite group acting on ,Jt> ob
tained by restriction to the tangent plane of T at the identity 
of the group of inner automorphisms of G that leave the 
maximal toroid T invariant. Thus any we W is covered by a 
WeG such that wTw- 1 = T. Since T is Abelian, for any ele
ment teT, wt will have the same action on T and Jf"" as w. In 
fact, {wt IteT} is precisely the set of elements of G which 
"cover" w. The generators ei and/; of L are eigenvectors for 
the action of Ton L so that wt sends ea to wea w- I multiplied 
by a phase factor. This may be the source of the famous 
"phase problem" in quantum mechanics. 

For a reflection RieWa group element Ri will have the 
A 

~operty R ~eT. The n degrees oflreedom in the choice oft in 
R;t can be used to ensure l7 that R : is the identity element of 
G. We shall always assume that this has been done. 

A 

If the representation r maps w onto W we shall define 
w(H) to mean 

A A 

r(w(h») = WHW- I. (el) 

So ifxl-'eVI-' 
A A'" A A 

HWxl-' = WW-IHWxl-' = Ww-I(H)xl-' 

= (w-I(h) .f.L)WXI-' = (h· Wf.L) WXI-" (e2) 

Thus 
A 

WXl-'eVww (e3) 

Once a particular cover for w has been chosen, an action by 
the Weyl group on G and on the representation space V is 

A 

defined so we can dispense with the notations wand W. Thus 
A 

for xeVwe shall interpret wx as Wx. 
Applying all this to the representation (2,1) of A2 we 

can define the action of Won the generators of L and on the 
weight spaces VI-' of r by means of the following table in 
which a column gives the image of the first column under 
action by the indicated element of the Weyl group: 

Wo WI W2 W3 W4 Ws 

eJO 110 ell 101 eOI III 
eO! ell 101 110 101 eJO 

ell eOI eJO III 110 101 (C4) 

21 23 31 12 32 13 
02 02 22 20 20 22 
10 11 10 01 11 01 

The meaning of the last three rows is conveyed by the exam
ple W3 V21 = V 12' 

For the carrier space Vofthe (2,1) representation of A 2 

we take a basis consisting of 15 vectors Vi' obtained from the 
unit top vector X tr = X 21 as follows. We are using the pre
viously defined notation Wi for the elements of W. 

The first six, in the orbit of V21 , are 

Vi = WiX21 ' so Vo = X21 ' 0<i<5. 

The next three, in the orbit of V02, are defined by 

,fiv6 = FlvO' V7 = W2V6, Vg = W3V6' 

The final six in the orbit of VJO are defined by 

(e5) 

(e6) 

J3V9 = UI = F IF2vO' VJO = WIV9' VII = W3V9' (e7) 
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2V\2 = U2 = F2F lvo, V13 = WIVI2' VI4 = W3V\2' (C8) 

These Vj are all of unit length and the only failure of ortho
gonality is between the three pairs V9 - V\2' VIO - v 13' and 
VII - V14· 

In this basis, with EjE{ ± 1, ± i} two phase factors, the 
action of EI is defined as follows: 

Elvo = 0, Eivi = ElJi,V6, EIV2 = 0, 

E lv3 = E2VS, E lv4 = E2~VIO' Elvs = 0, 

E lv6 = Ji,vo, E lv7 = 0, Elvg = Ji,V I4, 

E lv9 = E2~V2' Elv lO = E12v9, 

Elv II = - v'IEIE2V7, E lv\2 = E2V2, 

E lv 13 = EI(~V9 - VI2)' E lv I4 = - Ji,E IE2V7· 

(C9) 

Since WI V02 = V02 is one dimensional and is spanned by 
V6 it follows that WIV6 = EIV6 with EI = ± 1 or ± i. Using 
(C4) and the multiplication table for S3' we easily conclude 

(ClO) 

We also note that F2VOEF3I' which is spanned by V2. There
fore F2VO = aV2' But 

(F2voJF2VO) = (voIE2F2vO) 

= (vol (H2 + F2E 2)vO) = (volvo) = 1. 

Thus lal 2 = 1. Set a = E2 and we have 

(Cll) 

with IE21 = 1. In fact we shall see belowthatE~ = 1. The only 
indetermination in (C9) arises from the two Ej. So there are 
left sixteen alternative choices for phase factors for EI , pre
sumably associated with distinct but equivalent representa
tions. We effectively narrowed the choice of phase factors 
when we decided on the particular action of Won L defined 
by the table (C4). 

We now exhibit some typical calculations to illustrate 
how the formulas (C9) were obtained. We shall make con
stant use of the table (C4) giving the action of Won ea for 
a > 0, and the corresponding table that can be deduced im
mediately from (C4) for /a' a> O. For example, 
EIW4 = W4FW since EIW4 = W4W4-IEIW4 = w4ws(EI ) 

= w4F II • Here we used the fact that WSW4 = Wo and that by 
(C4), ws(el ) =/11 =/10 h· 

The zeros in (C9) for Elv j when ie{0,2,5,7}result from 
the fact that for these i, Elv j has a weight that does not occur 
in the irreducible representation (2,1). 

Take another example. By (C6), Ji,v6 = Flvo' Now 
EIFlvo = (HI + FIEI)vo = (hi '1T)Vo = 2vo. Thus 

E lv6 = Ji,vo. (C12) 

Further, 

..[2El vg = Elw:Ji'lvo = W:Ji'~IVO 

(C13) 

In order to exhibit the action of E I , or indeed of any gener
ator, on WVIO for arbitrary w, it is helpful-probably essen-

1942 J. Math. Phys., Vol. 27, No.8, August 1986 

tial-to first determine the action of W2 on VIO' Recall that 
VIO is spanned by U I and U2' As follows from (C4), W2 gener
ates the stability group of V IO' Since E2F2VO = H2VO = VO, by 
(Cll) we have 

W2U I = w~IF2VO = FIIE2W2VO = E2FttE~2VO 
= E2(FIF2 - F~I)vo = E2(U t - u 2)· 

Therefore 

W 2U t = E2(U I - u2 )· 

Similarly, we can show that 

(C14) 

(CIS) 

If we use (C 14) and (C 15) to apply W2 twice we find that 

W~UI = ~UI' W~U2 = ~U2' 
Since w~ must be the identity, it follows, as previously noted, 
that 

E2 = ± lor ± i. (C16) 

As a final example consider E I V 11' We first note that 
E l vIIEV22 and is therefore a multiple of the unit vector V7• 

Noting (ClO) and (C14), consider 

(El w3U l lv7 ) 

= (w3F2Ullw2V6) = (F2u l lwsv6) 

= EI(UIIE2W2V6) = (l/Ji,)EI(W2UtIF~lvo) 

= (lJi,)EtE2(U t - u21u2) = (l/Ji,)E IE2(2 - 4) 

= -Ji,EtE2· 

Thus, since w3u t = ~VII' 

Etv II = - v'IEIE2V7. (C17) 

In the above discussion it was essential to know the ac
tion of the stability group {WO,W I} on V02 and {WO,W2} on 
V IO' In general, if ml-' > 1, l:1-" the stability group of VI-" will 
be nontrivial. Preparatory to finding the matrix of any gener
ator it will be necessary to explicitly describe the action of l:1-' 
on VI-" 
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Multiplicity-free Wigner coefficients for semisimple Lie groups. I. 
The U(n) pattern calculus 

M. D. Gould 
School of Chemistry, University of Western Australia, Nedlands, Western Australia 6009 

(Received 14 November 1984; accepted for publication 16 April 1986) 

This is the first paper in a series of two dedicated to a new algebraic determination of the 
multiplicity-free reduced Wigner coefficients for the Lie groups U (n) and 0 (n). The approach 
employed enables a direct (nonrecursive) derivation of reduced Wigner coefficients. The absolute 
value squared of the reduced Wigner coefficients is expressed as a rational polynomial function 
(numerator polynomial divided by denominator polynomial) whose Weyl group symmetries are 
seen to fall out naturally in our approach from the transformation properties of polynomial 
functions determined by Casimir invariants. A unified treatment of the composition laws of 
reduced Wigner coefficients and the evaluation of their associated denominator polynomials is 
presented, which applies to both U(n) and O(n). An explicit formula for the numerator 
polynomials ofU(n) is also derived. The numerator polynomials for the orthogonal groups will 
be given in the second paper of the series. 

I. INTRODUCTION 

In the literature two approaches to a general study of the 
classical groups have emerged. First there is the algebraic 
infinitesimal approach, which exploits only the generators 
and their commutation relations. This approach has its ori
gin in the pioneering researches of Casimir,1 Casimir and 
Van der Waerden,2 and Racah.3 Second, there is the integral 
approach as expounded in the classic works of Wey1.4 The 
methods ofWeyl have proved a powerful tool in group theo
retical applications to physics and have been applied, in con
junction with the Jordan-Schwinger boson calculus, by sev
eral authors.6 

From the point of view of physical applications the prin
cipal problems to be solved are the complete determination 
of the states of an irreducible representation and the explicit 
determination ofWigner (or Clebsch-Gordan) coefficients. 
A major step in this direction was made in 1950 by Gel'fand 
and Tsetlin,7 who constructed, with a full set of labels, a 
complete set of basis vectors for the irreducible representa
tions of the unitary and orthogonal groups. The matrix ele
ments of the group generators were also given initially by 
Gel'fand and Tsetlin 7 and later by Baird and Biedenharn,8 

who made an important contribution by providing a detailed 
proof, based on Weyl's well-known branching law,4 of the 
Gel'fand-Tsetlin results. The results of Ref. 8 are also of 
interest because they reveal the structure of the matrix ele
ments (i.e., a product of a reduced matrix element and a 
Wigner coefficient). The fundamental Wigner coefficients 
(and reduced Wigner coefficients) for the Lie group U (n ) 
were thus given for the first time. This work has recently 
been extended to the orthogonal group9 using different 
methods (see also Refs. 10 and 11). The more general prob
lem of evaluating all multiplicity-free Wigner coefficients 
has been solved in the case ofU(n) by Biedenharn and co
workers. 12-14 Although much work has been done on 0 (n) 
by several authors,15.16 the complete program followed by 
Biedenharn et al. 12

-
14 for U(n) has never been carried out 

for O(n). 

This paper is the first in a series of two in which we 
present a new derivation of the multiplicity-free Wigner co
efficients for both the unitary and orthogonal groups. This 
work grew out of a previous series of papers9- 11 in which it 
was demonstrated that the fundamental U (n): U (n - 1) 

[resp. O(n): O(n - 1)] reduced Wigner coefficients 
(RWC's) may be obtained from the eigenvalues of certain 
U (n - 1) [resp. O(n - 1)] Casimir invariants. In this se
ries of papers we extend these results to give an algebraic 
determination of the multiplicity-free U(n): U(n - 1) and 
O(n): O(n - 1) RWC's. The (multiplicity-free) squared 
RWC's are determined in our work as eigenvalues of certain 
Casimir invariants and hence must determine (rational) po
lynomial functions in the representation labels of the group 
U(n) [resp. O(n)] and its subgroup U(n - 1) [resp. 
O(n - 1)]. The Weyl group symmetries of these RWC's are 
evident from the outset in our approach from the simple 
transformation properties of polynomial functions. 

Although our approach is intimately related to that of 
Biedenharn et a/. 12- 14 on U (n) there are some essential dif
ferences. The pattern calculus of these latter authors, which 
is inherently integral in nature, affords a recursive determin
ation of the (multiplicity-free) RWC's whereby a general 
(multiplicity-free) R W C may be composed from certain ele
mentary RWC's. This building up method of constructing 
R WC's by manipulating and multiplying elementary 
RWC's (hence the term pattern calculus) has the advantage 
that it may be extended, at least in principle, to the general 
case of evaluating all RWC's for the unitary groups (indeed 
the pattern calculus was designed with this application in 
mind). In general this latter problem involves a multiplicity 
problem [in both the U (n) and U (n - 1) groups], which 
are well known to be difficult to handle, and has been made 
the subject of a comprehensive series of articles by Bieden
ham, Louck, and collaborators. 17 

By contrast the algebraic methods of this paper allow a 
direct (Le., nonrecursive) determination of the (multipli
city-free) RWC's. Moreover our approach applies to more 
general groups and in particular enables a treatment of the 
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orthogonal group in exact analogy with the unitary group. 
However, we do not consider here the problem of phases, but 
these have been obtained in the case of U (n) by Biedenharn 
et al. 12 and a beginning of a phase calculus for 0 (n) has been 
given in Ref. 9, where suitable phases for the fundamental 
(i.e., vector) RWC's for O(n) were given. Also we do not 
consider the tensor product multiplicity problem at all in 
this series of papers and our approach seems unlikely to yield 
any information in this direction (for a new, projection
based, approach to the tensor operator problem see Ref. 18). 
Nevertheless our approach does extend to the problem of 
evaluating squared-multiplicity-averaged U(n): U(n - 1) 
[resp. O(n): O(n - 1)] RWC's, which are given as the sum 
(over tensor product multiplicities) of the squares of the 
RWC's. Moreover our approach extends to more general 
(noncanonical) subgroup imbeddings G~ Go to yield multi
plicity-averaged G: Go RWC's which are multiplicity aver
aged with respect to the multiplicity labels of the (noncanon
ical) subgroup Go. In particular our methods enable an 
extension to the symplectic group to yield multiplicity-aver
aged sp(2n): sp(2n - 2) Xsp(2) RWC's. We remark that 
our approach to evaluating (multiplicity-averaged) G: Go 
RWC's is directly related to the problem of evaluating multi
plicity-averaged eigenvalues for certain Go·invariants con
structed in the universal enveloping algebra of G. Thus our 
methods enable, in principle, a systematic determination of 
the multiplicity-averaged eigenvalues of missing labeling in
variants for the G~ Go state labeling problem. The above
mentioned problems are currently under investigation. It is 
felt that such considerations are likely to have physical sig
nificance, particularly for statistical treatments of systems 
admitting hierarchies of symmetries (cf. Ref. 19). 

In this paper we restrict ourselves primarily to the uni
tary groups and leave it to the second paper of the series20 to 
determine the multiplicity-free RWC's of the orthogonal 
group. Since our approach is algebraic and based on eigen
values of Casimir invariants the emphasis in our work is on 
(rational) polynomial functions rather than the Wigner op
erators of Refs. 12-14 and 17: we shall obtain our squared 
RWC's as a rational polynomial function (numerator poly
nomial divided by denominator polynomial). We shall pre
sent a direct algebraic determination of the (phase-free) 
U(n):U(n -1) RWC'sofRefs. 12, which includes all mul
tiplicity-free RWC's except for certain RWC's for the sym
metric tensor representations, which have already been ob
tained in Refs. 14 and 21 using the pattern calculus. 
Nevertheless it can be shown that our methods may also be 
extended to this latter class of RWC's and will be dealt with 
in a subsequent pUblication. 

From the point of view of physical applications we re
mark that the unitary group has been applied in elementary 
particle physics22

,23 and has proved to be an invaluable tool 
for handling many-body problems in nuclear and molecular 
physics.22

-
29 More recently the unitary group has proved 

indispensable in the unitary calculus approach to many elec
tron problems2

4-29 enabling large-scale configuration inter
action calculations to be performed on molecules26

•
29 that 

would be intractable using other methods. There is currently 
a need, in this latter application, to obtain a matrix element 
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calculus for determining matrix elements of products of one, 
two, three, and four generators appropriate to the calcula
tion of one-, two-, three-, and four-body operators, respec
tively. Clearly the pattern calculus for U(n) would be of 
invaluable assistance in treating this problem. With regard 
to the orthogonal group, there is evidence to suggest22 the 
use of a pattern calculus based on O( n), rather than U (n), 
particularly for treating short-range interactions in nuclear 
and atomic physics (i.e., interactions primarily described by 
an ordinary pairing force). 

The paper is set up as follows. In Sec. II we establish our 
notation and basic conventions and in particular we consider 
the transformation properties (under the Weyl group) of 
polynomial functions that will be later applied in determin
ing the symmetries ofR WC's. (We remark that our notation 
is developed with more general subgroup imbeddings in 
mind.) In Sec. III we show how a large class of RWC's for 
U (n) and 0 (n) may be obtained by considering eigenvalues 
of certain Casimir invariants. In Sec. IV we apply these re
sults to determine the Weyl group symmetries and composi
tion lawsofRWC'sforO(n) and U(n). In Sec. V we present 
a unified approach to the evaluation of the denominator 
polynomials that applies to both U (n) and 0 (n ). In Sec. VI 
we restrict ourselves to U(n) and some of its basic proper
ties. In Sec. VII we determine the U(n) numerator polyno
mials and hence the (multiplicity-free) RWC's for U (n). In 
Sec. VIII we consider some interesting examples and how 
they may be applied to determine the eigenvalues of certain 
U (n - 1 )-Casimir invariants in the universal enveloping al
gebra ofU(n). Finally, in Sec. IX, we consider the pattern 
calculus laws ofBiedenham et al. 12 cast into our framework, 
keeping in mind extensions to more general groups. 

II. PRELIMINARIES 

Following Gel'fand the Tsetlin 7 a basis for the finite
dimensional irreducible representations of a (compact) 
semisimple Lie group G may be constructed by considering a 
suitable chain of subgroups 

G=Gn~Gn_l~ .. ·~GJ! (1) 

whose Casimir invariants yield a set of commuting (Hermi
tian) operators whose eigenvalUes may serve to label the 
basis states. For the so-called canonical8

,30 subgroup chains 
[i.e., Gj = U(i), i = 1, ... ,n, or G1 = O(i + 1), i = l, ... ,n] 
this method (cf. Weyl's branching law4

) in fact yields a com
plete labeling scheme for the basis states. For general sub
group chains, however, this method oflabeling is incomplete 
and it is necessary to supplement the Casimir invariants of 
the subgroup chain one is considering with additional label
ing operators. 

The advantage of working with a basis for the irreduci
ble representations of G = G n' which is symmetry adapted 
to the subgroup chain (1), is that the (multiplicity-free) 
Wigner coefficients of the group factor into a Wigner coeffi
cient of the subgroup G n _ I times a G n _ 1 -invariant part 
called the Gn : Gn -1 reduced Wigner coefficient (RWC). 
Thus every (multiplicity-free) Wigner coefficient for the 
group G may be expressed as a product of RWC's for the 
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subgroup chain (I) and the problem of evaluating Wigner 
coefficients is reduced to that of evaluating the RWC's, 
which are the main concern of this paper. We are thus natu
rally led to investigate subalgebra imbeddings Lo CL, where 
L is a semisimple Lie algebra and Lo a semisimple subalge
bra. 

Following Humphreys,31 let L be a complex semisimple 
Lie algebra of rank /, let U be the universal enveloping alge
bra of L, and let Z be the center of U. Select a Cartan subalge
braH of L, with dual spaceH *, and let <I> CH * denote the set 
of roots of L relative to H. Let <I> + C <I> denote the system of 
positive roots, t:. ~ <I> + the system of simple roots, and take 0 
to be half the sum of the positive roots. Let ( , ) denote the 
inner product induced on H * by the Killing form and for 
AEll *, aE<I>, set 

(A,a) = 2(A,a)/(a,a) . 

Finally let A + CH * be the set of dominant integral linear 
functions onH (i.e., those A Ell * such that (A,a)EZ+ for all 
aEt:.) and let W denote the Weyl group. 

For any vEH *, let tv denote the translation map on H * 
defined by 

tv (A) = A + v, for all AEll * . 
The translated Weyl group W is defined as the conjugate 
t _;; Wt;; of W in the group of invertible affine transforma
tions of H *. Thus every element of W is of the form 

o-=t_;;ut;; UEW. 

Therefore Wacts on H * according to 

o-(A) = U(A + 0) - 0, AEll*. 

Now let R denote the ring of polynomial functions on 
H *. It is often conveniene2.33 to identify R with the universal 
enveloping algebra U(H) of the Cartan subalgebra H. The 
Weyl group Wacts on R, where, ifUEWand IER, AEll*, 
then 

Similarly the translated Weyl group Wacts on R according 
to 

(o-/)(A) = IW-I(A») = I(U-I(A + 0) - 0). (2) 

It is a well-known result, due to Harish Chandra,31.32 
that the center Z of U is generated as an algebra by / algebrai
cally independent invariants z I'''',z/. In polynomial algebra 
notation we write 

(3) 

We define an infinitesimal character X as an algebra homo
morphism X: Z---+C: it is uniquely determined by the 
numbersx(z;) (i = 1, ... ,1), which may be arbitrary complex 
numbers. If l1'+ is a maximal weight vector of weight AEll *, 
then l1'+ determines an algebra homomorphism 

X..t: Z---+C, 

where X..t (z) is the eigenvalue of zEZ on l1'+ . If V(A) is a 
finite-dimensional irreducible U-module with highest 
weight AEA + and zEZ, Schur's lemma implies that z takes a 
constant value on V(A). Since V(A) has a highest weight 
vector (which is unique, up to scalar multiples) of weight A 
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this eigenvalue is clearly given by X..t (z). We say that V(A) 
admits the infinitesimal character X..t . 

The infinitesimal characters X..t playa fundamental role 
in character analysis since it is a theorem of Harish Chan
dra31.32 that every infinitesimal character X over Z is of the 
form X = X..t for some A Ell *. The following result on infini
tesimal characters is due to Harish Chandra. 

Theorem (1):X..t = XJ.l if and only if A andJ.L are W conju
gate; i.e., 

A = u(J.L + 0) - 0, for some UEW. 

From the remarks above we may associate every ele
ment zEZ with a polynomial function I z ER defined by 

Iz(A) = X..t (z), AEll*. 

In view ofEq. (2) and theorem (I) we see that the polyno
mial function I z is fixed by all elements of W (cf. Ref. 33): 

viz. 

(0-I z )(A) = I z (A), AEll *, i7E W . 
It is a theorem of Harish Chandra that the mapping 

z---+ I z , zEZ, 

gives the algebra isomorphism of Z onto the ring R of W
invariant polynomial functions on H * (called the Harish 
Chandra isomorphism). 

Consider, for example, the universal Casimir element 
C L of L defined by 

(4) 

where {xr } denotes a basis for L with corresponding dual 
basis {xr} with respect to the Killing form on L. The eigen
value of C L on a maximal weight state of weight AEll * is 
given by the well-known formula 

(5) 

Thus CL may be identified with the W-invariant polynomial 
function I L (A) = (A,A + 20) under Harish Chandra's iso
morphism. 

Now let Lo be a complex semisimple Lie subalgebra of L 
of rank /0 ( </). With regard to the Lie algebra Lo we follow 
the notation above except that we add a subscript 0 to every
thing to indicate we are considering the semisimple subalge
bra Lo rather than L. The notation we adopt is obvious in the 
present context. Thus we denote the universal enveloping 
algebra of Lo and its center by Uo and Zo, respectively: we 
assume, without loss of generality, that Uo C U. Similarly we 
denote the Cartan subalgebra of Lo by Ho and the corre
sponding root system by <1>0' etc. We denote the set of domi
nant integral weights of Lo by At C H ~ and the Weyl group 
(resp. translated Weylgroup) by Wo (resp. Wo). In analogy 
with Eq. (3) we may write 

Zo = C [ z; , ... ,zlo] , (6) 

where z; , ... ,zlo are algebraically independent. 
We similarly define the ring of polynomial functions Ro 

on the Cartan subalgebra dual H ~ and infinitesimal char
acters X..to' AoEll ~, on the center Zo of Uo. Throughout this 
paper we shall always denote weights of L by Greek letters 
AEll * and weights of Lo by subscripted Greek lettersAoEll ~. 
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Finally we denote a finite-dimensional irreducible U- (resp. 
Uo-) module with highest weight AEA + (resp. AoEAo+ ) by 
V(A) [resp. V(Ao)] and we let 1TA (resp. 1TAo ) denote the 
representation afforded by V(A) [resp. V(Ao)]' 

We shall be interested, in the following, with the ring f!li 
of polynomial functions on H • X H ~. We denote elements of 
H· XH~ by (A lAo), whereAER ·,AoER~. Now let fEf!li be 
any polynomial function on H· X H ~. Then we may define 
the action of the Weyl groups Wand Wo on f according to 

Uf(A lAo) = f(U- 1(A) lAo). (FEW, 
(7) 

Equation (7) defines the action of the group W X Wo on f!li. 
Similarly the action of the translated group W X Wo on the 
polynomial function f Ef!li is given by 

uf(A lAo) = fW- 1(A)IAo), iTEW, 

Uof(A lAo) = f(A IUo-
1(Ao»), uoEWo. 

(8) 

An important algebra for us in the following is (the inte
gral domain) 

fr = ZZo = Z;Z , (9) 

which clearly centralizes Uo in U: i.e., 

[uo,c] = 0, for all UoEUo, CEfr. 

In view of Eqs. (3) and (6) we may write 

fr = C[ Z l'''',z[ ; z; , ... ,zI.] . 

We shall be concerned in this paper with canonical im
beddingsL::>Lo, whereL is the Lie algebra ofU(n + 1) [or 
o (n + 1)] and Lo is the Lie algebra of U (n) [resp. 0 (n ) ] . 
Hence, unless otherwise stated, throughout the remainder of 
this paper we assume that L ::>Lo is one of the above-men
tioned canonical imbeddings. Under these assumptions one 
may deduce that the algebra fr ofEq. (9) is the centralizer 
of Uo in U; viz. 

fr = {CEU I [x,c] = 0, for all xELo} . 

This result implies that in the reduction of a finite-dimen
sional irreducible U-module into irreducible modules over 
Uo all Uo- modules occur with at most unit multiplicity. (We 
note that if the imbedding L::> Lo is noncanonical then in 
general the centralizer of Lo in U properly contains the alge
bra fr.) 

We define an infinitesimal character X (A lAo) on fr, 

(A IAo)ER· XH~, uniquely according to 

X(A lAo) (z) = XA (z), zEZ, 

X (A lAo) (zo) = XAo (Zo) , zoEZo' 

which we extend to an algebra homomorphism to all of fr. 

We clearly have X (A lAo) = X (111110) if and only if X A = X II and 
XAo = Xllo ' We thus obtain the following (obvious) general
ization of Theorem (1). 

Theorem (2): X (A lAo) = X.1l1ll1o)}f and only if (A lAo) and 
(plpo) are conjugate under W X Wo; i.e., 

A = u(p + D) - D, for some (FEW, 

Ao = uo(Po + Do) - Do, for some uoEWo. 

In view of the above remarks we may associate with 
every centralizer element cEfr the W X Wo-invariant poly-
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nomial function on H • X H ~ defined by 

fc(A lAo) = X(AIAo) (c), for all (A IAo)ER·xH~. 

It is easily deduced, in view of Harish Chandra's isomor
phism, that the mapping c---+ f c determines an algebra iso
morphism of fr onto the ring ilt of W X Wo-invariant poly
nomial functions on H • X H ~, which we also call the Harish 
Chandra isomorphism. 

We call a weight (A IAo)EA + X Ao+ lexical if the irredu
cible Uo-module V(Ao) occurs in the irreducible U-module 
V(A). We denote the set of lexical weights by 
.5t' C A + X Ao+ . For AEA + we let [A] C Ao+ denote the set of 
weights 

[A ] = {AoEAo+ I (A IAo)E.5t'} . 

With this convention we may write the decomposition of a 
finite dimensional irreducible U-module V(A) with highest 
weight AEA + into irreducible Uo-modules according to 

V(A) = EB V(A lAo) , 
Aoe[A J 

( 10) 

where V(A lAo) denotes an irreducible Uo-module with high
est weight AoEAo+ which is contained in the irreducible U
module V(A). We remark that the set of lexical weights .Y, 
and hence the decomposition law (10), is easily deduced for 
the canonical imbeddings we are considering from the well
known Gel'fand-Weyl betweenness conditions.7

-
9 

We note that the centralizer elements cEfr take a con
stant value on the space V(A lAo) occurring in the decompo
sition (10), this eigenvalue being given bYX(AIAo) (c). We say 
that V(A lAo) admits the infinitesimal character X(AIAo)' 

Following Refs. 34 and 35 there is a natural method for 
constructing elements of fr. We let A A denote the algebra 

AA = [End V(A)] ® U, 

and consider the map 

aA : U-.A A , 

defined for xEL according to 

aA (x) = 1TA (x) ® 1 + 1 ®x , 

which we extend to an algebra homomorphism to all of U. 
Thus, for example, the image of the universal Casimir ele
ment C L of L under the mapping a A is given by [see Eq. (4) ] 

aA (CL ) = 1TA(CL ) ® 1 + 1 ®CL + 22: 1TA(X') ®x,. (11) 
, 

In the following we find it convenient to consider the 
operator 

bA = - HaA (CL ) -1TA (CL ) ® 1-1 ®Cd, (12a) 

which, in view of Eq. (11), may be alternatively written 

(12b) 

We may thus regard bA as a D[A] XD[A] matrix 
(D[A] = dim V(A») with entries from L. More generally we 
may regard the matrix powers b T as constituting 
D[A] XD[A] matrices with entries from U (cf. Ref. 33). 

We now consider the trace map 

TA : AA-'U , 
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defined by 

(13) 

where PiEEnd V(A), UiEU. It follows from Ref. 34 [see 
Theorem (2) J that the operators 

Im(A)=1',db7] (14) 

are Casimir invariants of L; i.e., 1m (A)EZ. In passing it is 
interesting to note that in the case where 11';. is the fundamen
tal contragredient vector representation, the invariants of 
Eq. (14) give the well-known Gel'fand invariants of the or
thogonal and unitary groups. 

We note that, with regard to the Lie algebra Lo, we may 
consider the Lo-analog of the mapping a;.. Thus we let V(Ao) 
denote a finite-dimensional irreducible Uo-module with 
highest weight AoEAo+ and setA;.o = [End V(Ao) J ® Uo. In 
analogy with Eqs. (11)-(14) we may then consider the 
maps a;.o: Uo-A;.o and 1';'0: A;..,-Uo. We similarly intro
duce the operator 

a;.o= -Ha;.JcL )-11';.JCLo )®I-I®CLJ, 
where C Lo denotes the universal Casimir element of Lo, 
which may be regarded as a D[AoJ XD[AoJ matrix 
(D[AoJ = dim V(Ao») with entries from Lo. We then obtain 
the Casimir invariants 

1m (Ao) = 1';'0 [a7
0 

]EZo · 

More generally if (A IAo)E2' is a lexical weight then we 
may consider the compound D[A J XD[AoJ matrices 

(15) 

whose entries belong to U. Taking the partial trace with re
spect to the space V(Ao) we obtain the centralizer elements 

1m," (A lAo) = 1';.Jb 7 a~JE,q . (16) 

In view of Theorem (2) we see that the invariants of Eq. 
(16) are to determine W X Wo-invariant polynomial func
tions onH*XHt. 

To be more explicit, let {v('o}1=1 [d=dim V(Ao)J con
stitute the usual Gel'fand-Tsetlin basis for the space V(Ao)' 
We denote the corresponding basis for the subspace V(A lAo) 
of V(A) [cf. Eq. (10) J by {viA IAol}1 = 1 . Then the invariants 
ofEq. (16) may be written 

d 

Im,n(A lAo) = L [b7]da~Jji' 
i,j= 1 

where 

[b7);j = (viA'Aollb7IvjA'Aol)EU, 

[at] ij = <v('°lat lujo)EUo . 

We remark, in view of the properties of trace, that the invar
iantsofEq. (16) are independent of the (orthonormal) basis 
chosen for V(Ao). 

III. REDUCED WIGNER COEFFICIENTS 

Let us consider the reduction of the tensor product mod
ule V = V(A) ® V(Jl), where V(A) and V(Jl) denote finite
dimensional irreducible U-modules with highest weights A 
andJl, respectively. There are two natural decompositions of 
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V into irreducible Uo-submodules. We may first decompose 
V into irreducible U-modules to give the Clebsch-Gordan 
(CG) reduction 

mp 

V(A) ® V(Jl) = $ $ V( P)a , (17) 
pe[A .. I'] a= 1 

where [A ® Jl J denotes the set of distinct highest weights 
occurring in the decomposition of V(A) ® V(Jl) and a is a 
multiplicity label used to distinguish the equivalent U-mo
dules V( p) (m p in all) occurring in the decomposition 
( 17). Next we may decompose each space V( p) into irredu
cible Uo-submodules [cf. Eq. (10)] to give the following 
decomposition into irreducible Uo-submodules: 

V(A) ® V(Jl) = $ $ $ V( Plvo)a . (18) 
pe[A "I'] a = 1 VuE[ p] 

On the other hand, we may decompose each space V(A) 
and V(Jl) into irreducible Uo-submodules to give 

V(A) ® V(Jl) = $ V(A lAo) ® V(JlIJlo) . 
AoE[A] 

l'uE[I'] 

Now we may write the CG decomposition of the tensor pro
duct module V(Ao) ® V(Jlo) according to 

mv" 

where {3 is a multiplicity label. Thus we obtain the following 
reduction of the space V(A) ® V(Jl) into irreducible Uo-sub
modules (the notation being obvious from the context): 

mv" 

V(A) ® V(Jl) = 6) 6) 6) V(Ao®Jlolvo)p· (19) 
AoE[A] VuE[;'o"l'u] P = 1 

l'oE[I'] 

Throughout we assume that the decompositions (18) 
and (19) are orthogonal. It is our aim here to demonstrate 
that the overlap coefficients between the two decomposi
tions (18) and (19) give the required L: Lo RWC's. 

Let us denote the orthogonal projection onto the submo
dule V(plvo)a ofEq. (18) by Pa [plvoJ. Similarly we de
note the orthogonal projection onto the submodule 
V(Ao ®Jlolvo)p ofEq. (19) by Pp [Ao ®JlolvoJ. We write the 
basis states for the irreducible Uo-module V( vo) in the form 
I ~tl ), where (s) denotes a suitable set oflabels used to distin
guish the basis states which we assume are orthonormal. We 
denote the basis states of the space V(Ao ®Jlolvo)p by 

AO®Jlo) 
vo,/3 

(5) 
and the basis states for the space V( plvo)a by 

:i) 

(20) 

(21) 

We remark that the states (20) [resp. (21) J constitute an 
O.N.B. for the irreducible module V(A) ® V(Jl) of the alge
bra L $ L, which is symmetry adapted to the chain 
L 6)L:JLo $Lo:JLo (resp. L 6)L:JL:JLo)' 

The overlap coefficients for the states (20) and (21) 
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may be written 

(
p,a AO®PO) (p,a 
V~ vo.13 = /j vo.vo /jW),<Sl 

(S") (S') vo.13 
(22) 

where 

(p,a II A P) 
vo.13 Ao' Po 

is a constant, independent of the labels (S') for the subalge
bra L o, which we call the L: Lo reduced Wigner coefficient 
(RWC), The proof of Eq. (22) is closely connected to 
Schur's lemma. To clarify the situation we note that both of 
the projection operators Pp [Ao®polv0 1 and Pa [plv01 in
tertwine (Le., commute with) the action of Lo (since they 
are projections onto irreducible Uo-submodules). It is thus 
clear, in view of Schur's lemma, that we may write 

Pp [..1,0 ®polv01Pa [plv01Pp [..1,0 ®Polv01 

=yPp[Ao®Polv01, (23) 

Pa [plv01Pp [..1,0 ®Polv01Pa [plv01 = yPa [plv01 , 

for some scalar y. In the notation ofEq. (22) it is easily seen 
that the constant y is given by 

Thus Eq. (23) may be regarded as an operator generaliza
tion ofEq. (22). 

To see how this ties up with the evaluation of Wigner 
coefficients for L we note that we may choose a basis for the 

I 

A 

irreducible representations V(A) and V(p), which is sym
metry adapted to the imbedding L:J Lo. Since we are assum
ing a canonical imbedding we may write the (orthonormal) 
basis states in the Gel'fand-Tsetlin form 

:0)' :0)' 
(S') (1'J} 

where AoE[A1 (resp·poE[p]) and where (S') [resp. (1/) 1 
denotes a set oflabels to distinguish the basis states of V(Ao) 
[resp. V(po) 1· 

Now we have, for our Wigner coefficients, 

('a A A) Vo ..1,0 Po 
(S") (S') (1/) 

r A ;, ), =2: Vo Pp [Ao®Polv01 ..1,0 

p (S") (S') (1/) 

where 

A ~) ..1,0 Po 
(S') (1/) 

is shorthand notation for the tensor product state 

:o)® :0)' 
(S') (1/) 

Introducing a complete set of states for the space 
V(Ao®Polvo)p we may thus write 

A ('a Vo ..1,0 ~) ('a Po = 2: Vo 
A'®~') (,®~, 

vo.13 vo.13 ..1,0 ~) Po 
(S") (S') (1/) P,<'l') (S") (1/') (1/') (S') (1/) 

tP A, ® ~,) (oP A, ~,) = 2: Vo vo.13 
PM) (S' ') (1/') (1/') (S') (1/) 

tP A Po) CP A, ~,) 
=2: 

(1/) , 
(24) 

p vo.13 ..1,0 P (S") (S') 

where the last equality follows from Eq. (22). Thus we have shown that a Wigner coefficient for L reduces to a sum (over Lo
multiplicity) of terms each of which factor into a RWC, which is Lo-invariant, times a Wigner coefficient for Lo. In the special 
case where V( vo) occurs exactly once in V(Ao) ® V(po) (i.e., no Lo-multiplicity), Eq. (24) reduces to a single product 

(
p,a A P) jP,a A P \ (vo ..1,0 po) (25) 

(;~)~) ~o) =\vo Vo ; pl (S") (S') (1/)' 

where the Lo Wigner coefficient on the right-hand side (rhs) 
is multiplicity-free. 

It is important to note that the RWC of Eq. (22) will 
depend on both the L and Lo multiplicity labels a and p. In 
such a case the RWC's will depend on the specific (multi
plicity) labeling scheme chosen and hence cannot be evalu-
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ated using the properties of the Lie algebras Land Lo alone. 
Nevertheless there is a class ofRWC's (herein referred to as 
optimal) that may be evaluated simply as a rational polyno
mial function in the representation labels of Land L o. 

It is well known18
,31 that the irreducible U-modules oc

curring in the tensor product space V(A.) ® V(p) have high-
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est weights of the form f-l + a, where a is a weight in V(A). 
Moreover the multiplicity m (f-l + a: A ® f-l) of V(f-l + a) in 
V(A) ® V(f-l) is less than or equal to the multiplicity m A (a) 
of the weight a in V(A). An analogous statement holds for 
the CG reduction of the tensor product V(Ao) ® V(f-lo) of 
two irreducible Uo-modules. In particular if the weight a 
(resp. a o) is Weyl group conjugate to the maximal weight A 
(resp . ..1,0) then the irreducible module V(f-l + a) [resp. 
V(f-lo + a o)] occurs with at most unit multiplicity. In this 
case there is no L (resp. Lo) tensor product multiplicity 
problem to be considered. This leads us to consider the spe
cial RWC's of the form 

/,,+1>. A ~\ 
\uo + ao ..1,0 ,...J 

where a (resp. a o) is Weyl group conjugate to the highest 
weight A (resp . ..1,0)' For simplicity we call the special 
RWC's of the above form optimal. These are the RWC's for 
which the pattern calculus rules of Biedenharn and Louck12 

apply. It is our aim in this paper to present a direct (algebra
ic) method for the evaluation of the optimal RWC's that 
applies to the canonical imbeddings U (n + I)::J U (n) and 
O(n + 1)::JO(n). 

We henceforth denote the set of distinct weights in V(A) 
[resp. V(Ao)] by SeA) [resp. S(Ao)] and we let Sym(A) 
[resp. Sym(Ao)] denote the set of weights Weyl group con
jugate to A (resp . ..1,0) . We now let bAbe the matrix of Eq. 
(12). Acting on the irreducible U-module V(f-l) the matrix 
b A may be viewed as an operator on the tensor product space 
V(A) ® V(f-l): 

bA = -H1TA®IL(Cd -1TA(CL )®I-I®1TIL (CL )]· 

It follows that the matrix b A satisfies the following polyno
mial identity on the space V(f-l) (cf. Ref. 33) 

II (bA -!3A,V(f-l») =0, 
vES(A) 

where !3A,v denotes the linear polynomial function on H * 
defined by 

!3A,V(f-l) = -![XIL+v(CL ) -b(CL ) -XIL(CL )] 

=!(A,.,1. +2D)-!(v,v+2(f-l+ D», f-lEll*, 

(26) 

where we have used Eq. (5). 
We note that the translated Weyl group Wacts on the 

polynomial functions !3A,v according to 

U!3A,V(f-l) =!3A,V[U- 1(f-l)] =!3A,U(V) (f-l), f-lEll*, 

i.e., 

U!3A,v =!3A,U(V» aEW. (27) 

Thus W permutes the polynomial functions !3A,v, vES(A). 
Following Ref. 32 we find it convenient to regard the roots 
!3A,v in a representation-independent way as operators that 
belong to an algebraic extension of the center Z of U whose 
eigenvalues on an irreducible U-module with highest weight 
f-lEA + are given by Eq. (26). 

In an analogous way we deduce that the matrix aAo [see 
remarks preceding Eq. (15)] satisfies the following polyno-
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mial identity acting on the irreducible Uo-module V(f-lo): 

II (aAo - aA,,,vo (f-lo») = 0, 
VoES(Ao) 

where a Ao•Vo denotes the linear polynomial function on H'tj 
defined by 

aAo,vo (f-lo) = !(Ao,.,1.o + 2150 ) - !(vo,vo + 2(f-lo + Do»· 

(28) 

In analogy with Eq. (27) we see that the translated Weyl 
group Wo acts on the polynomial functions aAo'v

o 
according 

to 

(29) 

We now introduce the operators 

T [~] = II (bA - !3A,V)' aESym(A), 
vES(A) 

We also find it convenient to consider the compound opera
tors 

(30) 

which may be viewed as aD[A] XD[Ao] matrix with entries 
given by 

in a basis for V(A) symmetry adapted to the imbedding 
L ::J Lo [cf. Eq. (21)]. The operators (30) may be expressed 
as a linear combination of the compound matrices 

of Eq. (15). Taking the Ao-trace of this latter operator we 
obtain the invariants I m •n (A 1..1,0) of Eq. (16). These invar
iants take a constant value on the irreducible Uo-modules 
V(f-llf-lo) k V(f-l) , f-loE [f-l], denoted by 

X(ILIILo) [Im,n (A 1..1,0)] , 

which determines a W X Wo-invariant polynomial function 
onH*XH'tj. 

Taking the Ao-trace ofEq. (30) we obtain the Uo-invar
iants 

which determines a polynomial function on H * X H 'tj de
fined by 

7(~ ~:)(f-llf-lo) X(ILIILo) [7(~ ~:)], 
(f-lIf-lo)Ell * XH'tj . (31) 

Using the action of the translated Weyl group on the polyno-
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mial functions fJ;., v and a ;'0' Vo toge!her ,!ith the fact that the 
invariants of Eq. (16) determine W X Wo-invariant polyno
mial functions, we deduce that the action of the translated 
Weyl group on the polynomial functions (31) is given by 

AO\ 
f:t.j' ueW, 

(32) 

We similarly have the polynomial functions on 
H·XH~ defined by 

s-(1 1~(1l11l0) =s-(1)(Il)s-(1~(1l0), 
(1lIIlo}en·xH~ , (33) 

where S-(!) and s-et) denote the polynomial functions on 
H· and H ~ defined by 

s-(1) = II (fJ;..A -fJ;.,v)' 
..:S(;') 

#11 

s-(10
) = II (a;. .. l1o -a;. .. vo ), 

o v.,eS(;'o) 

#110 

respectively. In view of Eqs. (27) and (29) we deduce that 
the translated Weyl group W X Wo acts on the polynomial 
functions S-(! t) according to 

r(1 
Jj 1 (P 

r(1 
AO) P) f:t. (1l11l0) = D[] L Ilo f:t.o 

Ilo 
Ilo ("I) (7]) (7]) 

1 C A [A 
=-- L Ilo Ao T f:t. 

D [Ilo] ("1),(5) (7]) (S-) 

= D [~o] r;..e,./ T [1 1:]) , 

_ (A 
uS- f:t. 

_ (A 
uaS f:t. 

AO\ 

f:t.j' ueW, 
(34) 

Now suppose f:t.ESym(A), f:t.oESym(Ao)' We may then 
consider the functions on A + X Ao+ defined by 

(35) 

which determines the squared L: Lo RWC·s. Note that if 
(1lIIlo) is lexical then the rhs ofEq. (35) vanishes unless the 
weight (Il + f:t.lllo + f:t.o) is lexical. We now show that the 
functions p (! !:) are related to the polynomial functions of 
Eqs. (31) and (33) by the relation 

D ~[:to] s-(1 1~p(1 1~ = r(1 1~ (36) 

which holds on A + XAo+ (where, as usual, D[llo] denotes 
the well-known Weyldimensionfunction30

). Equation (36) 
defines the function pc! t} as a rational polynomial func
tion on H· X H ~ (or at least a Zariski-dense subset of 
H· XH ~) and hence enables an extension of the definition 
of optimal RWC's to nondominant weights 
(1lIIlo) en • X H ~. Such considerations are likely to be ofim
portance in discussing noncompact real forms of Land Lo. 

ToproveEq. (36) we note that the eigenvalue of the Uo-
invariant r(! t) on the Uo-module V(llllloH;;;; V(Il), 
lloE [Il ], is given by 

Ao] 
A P) 

f:t.o 
Ao Ilo 
(S-) (7]) 

(37) 

wherer;.o."o denotes the partial trace with respect to the subspace V(A lAo} ® V(lllllo} ofV(A) ® V(Il}. We now note thatthe 
operator T[! t] is zero on the spaces V( plvo) ofEq. (18) unlessp = Il + f:t. and Vo = Ilo + f:t.o in which case T[! t] takes 
the constant value S-(! t} (Illllo)' If we let P[1l + f:t.lllo + f:t.o] denote the orthogonal projection onto the subspace 
V(1l + f:t.lllo + f:t.o} of V(A) ® V(Il} (where we have dropped the multiplicity label a in view of the fact that f:t. is W-conjugate 
to the highest weight A) we may write, in view ofEq. (37), 

where P[Ao ® Iloillo + f:t.o] denotes the orthogonal projector onto the subspace V(Ao ® Iloillo + f:t.o) ofEq. (19) noting that in 
this case there is no multiplicity label fJ (since f:t.o is Wo-conjugate to the highest weight Ao)' 

Thus using Eq. (23) we obtain 
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which is Eq. (36) as required. 
Equation (36) demonstrates that we may evaluate the 

optimal RWC's ofEq. (35) once the spectrum of the opera
tors 1"(1 1~) is determined. After canceling out common fac
tors between the polynomial functions 1" (1 1~) and S (1 1~), 
Eq. (36) then affords a useful expression for the squared 
RWC's ofEq. (35) as a rational polynomial function (nu
merator polynomial divided by denominator polynomial) in 
the representation labels of Land Lo. 

For ease of notation we shall henceforth refer to the 
rational polynomial functions p(1 1~) as reduced Wigner 
functions (RWF's). The remainder of this paper is devoted 
to the explicit evaluation and general properties ofR WF's. It 
shall be implicitly assumed, unless otherwise stated, that all 
RWF'sp(1 1~) are optimal: i.e, AESym(A), AoESym(Ao)' 

IV. SYMMETRIES AND COMPOSITION OF RWF'S 

Before going on to the explicit evaluation of the optimal 
R WF's we consider here certain symmetry properties of the 
RWF's, which may be obtained from general considerations. 

We begin by noting that Eq. (36) implies certain Weyl 
group symmetries for the RWF's of Eq. (35). Using the 
symmetry relations (32) and (34) together with Eq. (36) 
we see that the translated Weyl group W X Wo acts on the 
RWF's ofEq. (35) according to 

..1.0 \ (A 
Aj =p u(A) 

..1.0 \ 
Aj' lTEW, 

..1.0) = (A 
A P A o 

(38) 

where we have used the transformation law33
•
34 

In the case of the canonical imbedding U (n + 1):::> U (n) the 
symmetry relations of Eq. (38) reduce to the generalized 
Weyl group symmetries on reduced Wigner operators ob
tained previously by Biedenharn and Louck. 12 The impor
tant thing from our point of view is that the relations (38) 
fall out naturally in our approach from the simple transfor
mation properties of polynomial functions. 

Equation (38) demonstrates that it suffices to evaluate 
the single optimal RWF 

pC ~:), (39) 

the rest following from Weyl group symmetry: 
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( 
A ..1.0) 

P U(A) Uo(Ao) (JtIJto) 

_ _ (A ..1.0) 
= uUoPU ..1.0 (JtIJto) 

= pC ~~(U-I (Jt) luo- 1 (Jto») . (40) 

We call the special RWF's ofEq. (39) semimaximal. In the 
case of the canonical imbedding U (n + 1):::> U (n) the ra
tional polynomial function (39) is equivalent to the semi
maximal reduced Wigner operator of Biedenharn and 
Louck l2 (see in particular Sec. VII). In the language of Ref. 
12 this corresponds to the matrix elements of the most gen
eral boson monomial. 

It should be emphasized that in any application it is 
desirable to find the optimum way of expressing a RWC. 
Although it turns out that we may obtain an explicit expres
sion for the optimal RWC's directly it may be desirable, 
from the point of view of actual calculations, to express a 
RWC as a product of certain elementary RWC's. This leads 
us to investigate the composition of two RWF's in the hope 
that a general pattern calculus will emerge for manipulating 
and multiplying R WF's. 

Following Biedenharn and Louck l2 we define the com
position of two optimal R WF's according to 

[p(~ ~~o P(:, :~)] (JtIJto) 

= p(~ ~~ (Jt + A/IJto + A~ ) P(:, :~) (Jt IJto) . 

(41) 

It is easily demonstrated that the operation of composition, 
as defined above, is not generally commutative. We say that 
two optimal RWF's 

(
A ..1.0 \ d (V 

P A Aj an P A' (42) 

commute if and only if 

vo) (V 
A~ =P A' 

Following Ref. 12 we say that the two R WF's of Eq. 
( 42) are tied (or have the same tie structure) if there exists 
Weyl group elements lTEW, uoEWo, such that 

u(A) = A, u(v) = A' , 

uo(Ao) = Ao, uo( vol = A~ . 
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In such a case we write 

yo) ao . 
A trivial consequence of this definition is that we always 
have 

( 
I/. 1/.0 ) (V 

P 0-(1/.) 0-0(1/.0) -p o-(V) 

(I/. 11/.0)' (VIVO)E"'zp . 

The significance of R WP's of the same tie structure is 
that they always commute. To see this it suffices to consider 
the composition of two semimaximal RWP's p(~ ~:) and 
p(~ ~:). We have, for (1lIIlo)EA + XAo+ [cf. Eq. (35)] 

pC ~jo p(: :j(lllllo) 

(I/. 1/.0) (V vOl 
= P\A. 1/.

0 
(Il + Vlllo + yo) p v vol (1lIIlo) 

/ Il+V+1/. I/. Il+V) 

= \uo+vo+l/.o 1/.0 Ilo+v 

X (43) 
(

Il + V v Illl) 2 

0+ Vo Vo 

Now let v<;'IAo) denote the unique (normalized) maxi
mal weight state of Lo of weight 1/.0' which is contained in the 
irreducible U-module V(I/.). Such a state is commonly re
ferred to as semimaximal. We now consider the Wigner co
efficient 

(v't + villo + vol 1 v<';:lvo) ® v't IJlo» • 

Applying Eq. (25) we have immediately 

(44) 

where zf'.+ , etc. refers to the unique (normalized) maximal 
weight state of the irreducible Uo-module V(llo)' Clearly vv+. 
® zf'.+ is a normalized maximal weight state of weight 

Ilo + Vo. whence we see that the maximal Lo-Wigner coeffi-
cient on the rhs of Eq. (44) has absolute value unity. Thus 
we may write for our semimaximal RWP's 

(I/. 1/.0\ 
P\A. l/.ol(lllllo) 

= 1 (v't + A IJlo + Ao) 1 v<;' lAo) ® v't lllo» 12 . (45) 

This equation implies immediately the symmetry relation 

pG ~j(lllllo) =pt :~(I/.II/.o). (46) 

In passing it is interesting to note the following special 
case ofEq. (45): 

pG ~j(OIO) = 1 (V~IAo)lv~IAo)®v'210» 12= I, (47) 

where v'2IO) denotes the unique (normalized) basis vector 
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for the trivial one-dimensional representation of L. Equation 
( 47) will later be applied in determining the normalization 
constants of our RWP's. 

Substituting Eq. (45) into Eq. (43) we obtain 

pC ~jo p(: :j(lllllo) 

= 1 (v(t + villo + vol 1 v<';:lvo) ® v't lllo» 

X (v't + v + A IJlo + Vo + Ao) 1 v~ lAo) ® v't + villo + Vo» 12 . 

In view of the maximal nature of all the shifts concerned it is 
then easily deduced that 

(I/. 1/.0\ (v vOl 
P\A. 1/.01 0 p v vol (1lIIlo) 

= 1 (v~ + v + JlIAo + Vo + Ilo) 1 v~ lAo) ® v<';:IVo) ® v't IJlo» 12 . 
(48) 

By rearranging the terms in the triple tensor product state 

the following symmetry rule is seen to hold: 

pG ~~o p(: ::)(lllllo) 

(
V VOl (I/. 1/.0\ =p v volo P\A. l/.ol(lllllo)' 

This equation is to hold for all (1lIIlo) EA + X Ao+ and hence, 
from the properties of polynomial functions (cf. Ref. 35, 
Appendix D), we may write 

(49a) 

which must hold on all of H • X H ~ (or at least the Zariski 
dense subset on which the R WP's are well defined). Apply
ing Weyl group symmetry to Eq. (49a), we obtain immedi
ately the result 

( 
I/. 1/.0 ) (V vo) 

P 0'(1/.) 0'0(1/.0) 0 p 0'( v) 0'0 ( yo) 

(
V vo) (Ii. =p O'(V) O'o(Vo) 0 p 0-(1/.) 

(49b) 

(o-XO'OEW X Wo), which proves our assertion that all opti
mal R WP's of the same tie structure commute. Evidently 
one may establish the stronger result that two optimal 
RWP's commute if and only if they have the same tie struc
ture. This result has been proved for the canonical imbed
ding U(n + 1) ~U(n) by Biedenharn and Louck. 12 

We remark that in general the composition oftwo opti
mal RWP's need not yield a RWP (even ifthe RWP's com
mute). In fact it is not hard to demonstrate the relation [cf. 
Eq. (48)] 

pC ~jo p(: :j(lllllo) 

A v (I/.+v l/.o+VO\ 
= c Ao Vo P\A. + v 1/.0 + vol(lllllo) , 

where the constant ct ~o is given by 
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(

+v A 
CA v _ 

A" Vo - 0 + Vo ,10 

=pC ~j(vlvo). 
The above equation is to hold for all (,uI,uo)EA + X Ao+ and 
hence we may write (via Zariski continuity) 

pC ~jo p(: ::) 
-CA v (A+v Ao+VO) 
- Ao Vo P\,.t + v ,10 + vol' (50) 

This result, which forms the basis of the approach of Ref. 12, 
demonstrates that if the squared RWC ct ~o is unity, then 
the composition of two optimal R WF's of the same tie struc
ture yields another R WF of the same tie structure. This ob
servation is very useful for developing a pattern calculus to 
decompose a R WF into a product of elementary RWF's (up 
to a scalar). We draw particular attention here to maximal 
type R WF's for the orthogonal and unitary groups for which 
these pattern calculus laws hold. 

We note that if zI+ is a maximal weight vector of L then 
it is also a maximal weight vector for Lo and is thus an eigen
state of the Gel'fand invariants of Land Lo. We denote the 
irreducible Uo-module, to which the maximal weight vector 
belongs, by V(A 1,1), where (A 1,1) denotes the lexical weight 
whose Lo-component ,10 = A takes maximal allowed values. 
We call the weight (A 1,1) maximally connected and we call 
the associated RWF 

a RWF of maximal type. If zI+ ,v~ (A, 'YEA +) denote two 
maximal weight states of L then we clearly have (modulo a 
phase) 

zI+ ®vv+ = zI++v, 

from which we deduce, in view of Eq. (50), the following 
combination law for maximal type R WF's: 

i A ,1)0 (v v) = (A + v A + v) . 
\,.t A P v v P\,.t + v A + v (51) 

Application of Weyl group symmetry then shows that the 
composition of two maximal type R WF's of the same tie 
structure yields another maximal type RWF of the same tie 
structure. 

In the case ofU(n + 1) :JU(n) it turns out12 thatthere 
is a relatively large class of RWF's (herein referred to as 
extremal) for which the composition of two RWF's of the 
same extremal tie structure yields another extremal R WF of 
the same tie structure. The class of extremal R WF's includes 
the maximal R WF's as a special case. 

V. THE DENOMINATOR POLYNOMIAL 

It is our eventual aim to express the rational polynomial 
functionsp(i i:) ofEqs. (35) and (36) in the form 
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(52) 

where 7l(i i:) [resp. 8(i i:)] is a polynomial function on 
H· X H ~ called the numerator (resp. denominator) polyno
mial and C A,Ao is a numerical constant depending only on the 
labels A and Ao. In determining the numerator and denomi
nator polynomials of Eq. (52) it suffices to evaluate the po
lynomial functions 

(53) 

as defined by Eq. (31). We proceed by deducing the zeros of 
the polynomial function (53) and applying Weyl group 
symmetry. It turns out that the number of linear factors ob
tained by this method equals precisely the degree of the po
lynomial function (53). Unfortunately, however, in evaluat
ing the numerator polynomials of Eq. (52) it is evidently 
necessary to treat the different canonical imbeddings 
U(n + 1) :JU(n), O(2h + 1) :JO(2h), O(2h) :JO(2h 
- 1) separately. Nevertheless it is possible to present a uni-

fied treatment of the denominator polynomials of Eq. (52), 
which is the main concern ofthis section of the paper. 

Following Ref. 3 we find it convenient to introduce the 
following subsets of S(A) and S(Ao): 

SA (A) = (peS(A) Ip - a = ka for some kEZ; aEct>}, 

aE Sym(A) , 

SA (A) = SeA) -SA (A) , 

SAo (,10) = (PoeS(Ao) Ipo - a o = kao 

for some kEZ; aoEct>o}, 

aoESym(Ao) , (54) 

SAo (Ao) = S(Ao) -SAo (,10) . 

We now note [see Ref. 35, Theorem (3) (ii)] that if 
(,u + al,uo + ao)EA + XAo+ then T [i] [cf. Eq. (30)] 
vanishes on V(A) ® V( ,u) if and only if 

Similarly T [~] vanishes on V(Ao) ® V( ,uo) if and only if 

aAooAo ( ,uo) = aAo.vo (,uo) , for some VOeSAo (,10) . 

(55b) 

Thus we deduce that if either condition (S Sa) or (S Sb) holds 
then T [i i:] [cf. Eq. (30)] vanishes on 
V(A 1,10) ® V( ,ul,uo) and hence r(i i:) (,ul,uo) = O. Thus 
we deduce divisibility of the trace polynomial (53) by the set 
of factors 

II (PA,A - PA,v) II (aAooAo - a;.".vo) • 

.-eS .. <A) voeS"o<Ao) 

We may thus write 
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~o '\ = d..t,Ao JI (P..t,1:;. - P..t,v) 
j veS,,(..t) 

X IT (a.<o.~ - a.<o.vo)'1/ (~ 
voeS"o(..to) 

(56) 

where d..t.Ao is a numerical constant (depending only on the 

labels A andAo) and '1/(1 :t) is a (monic) polynomial func
tion, herein referred to as the numerator polynomial. 

Now, in view ofEq. (12), b..t (resp. a..to) is a matrix with 
entries from L (resp. Lo). Accordingly we see that the trace 
polynomial (53) is to determine a polynomial function of 
degree 

(n..t - I) + (n..to - I) , 

where n..t (resp. n..t ) is the number of distinct weights in 
o 

V(A) [resp. V(Ao)]: i.e., 

n..t = IS(A) I, n..to = IS(Ao) I . 

By comparison with Eq. (56) we see that the numerator 
polynomial '1/(1 :t) is to have degree 

ISI:;.(A)I-I + ISl:;.o(Ao)I-1 =r..t +r..to ' 

where [cf. Ref. 35, Lemma (1)] the integers r..t and r..to are 
uniquely determined by 

r..t=ISI:;.(A)I-I= L (A,a), aESym(A), 
aE<I>+ (57) 

r..to = ISl:;.o (Ao) I - 1 = L (Ao,ao), aoE Sym(Ao) . 
aae<l>o+ 

Substituting Eq. (56) into Eq. (36) we obtain the result 

(
A Ao) _ d D [Po] '1/(11:) (58) 

P a a o - ..t . ..to D [Po + ao] r(1 :t) , 
where r(1 1:) denotes the polynomial function 

where 

and 

r (~o) = IT (a..to.l:;.o - a..to.vo) . 
o VOES"O(..tO) 

;"1:;.0 

In view of the results of Ref. 35 [see in particularAppen
dix B and the remarks preceding Eq. (4.28) ] we have imme
diately the result 

1955 

r (~) (p) = C..t II 
a>O 

(I:;..a) >0 

(A.a) 

II [(p+8,a)+k-l] 
k=1 

- (A.a) 

II [k - 1 - <JL + 8,a)] , 
k=1 

aE Sym(A) , 
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where 

C..t = (- ~)rA IT (A,a)!(a,a)(..t·a) . 
2 a>O 

(59) 

We similarly obtain 

r (~:)(Po) 
(I:;.o.ao) 
IT [ <JLo + 80,ao) + k - I] 

k=1 

(I:;.",ao) 
IT [k - 1 - <JLo + 80,ao)] , 

k=1 

where 

C..to = (- ~)rAo IT (Ao,ao)!(ao,ao) (..t",ao) . (60) 
2 ao>O 

Substituting Eqs. (59) and (60) into Eq. (58) we may 
write [cf. Eq. (52)] 

(61) 

where the polynomial function 8(1 1:) (herein referred to 
as the denominator polynomial) is given by 

8 (~~:) (plpo) = 81 (~)( p)82 (~~( Po) , (62a) 

where 

and 

81 (~)( p) = IT 
a>O 

(I:;..a) >0 

(I:;..a) 
II [<JL + 8,a) + k - 1] 

k=1 

-(A.a) 

IT [k-l- <JL +8,a)] 
k=1 

(62b) 

(I:;.",ao) 
IT [<JLo + 80,ao) + k] 

k=1 

- (I:;.",ao) 
IT [k - <JLo + 80,ao)] , 

k=1 

(62c) 

where we 'have used the Weyl dimension formula 

D [ Po] = II (Po + 80,ao) . 
ao>O (80 ,ao) 

We note that the numerical constant C..t . ..to of Eq. (61) 
(which depends only on the labels A andAo) is related to the 
numerical constant d..t . ..to ofEq. (58) by 

d..t . ..to = C..tC..toC..t . ..to ' 

with C..t and CAo as in Eqs. (59) and (60), respectively. 
In the case of the canonical imbedding 
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U(n + 1) ::::>U(n) the denominator polynomial ofEq. (62) 
agrees with the denominator polynomial obtained previous
ly by Biedenharn and Louck. 12 

We remark that we have defined our denominator poly
nomials so that they satisfy the symmetry rule 

_ (A Ao,\ (A Ao) 
uo f1 f1j =0 u(f1) f10 ' OEW, 

(63) 

_ (A Ao) (A Ao) 
uoo f1 f10 =0 f1 uo( f1o) , uoeWo · 

We see, therefore. in view ofEq. (38), that the numerator 
polynomials ofEq. (61) are to satisfy the symmetry condi
tion 

_ (A Ao) (A Ao '\ 
U7J f1 f10 = 11 u(f1) f1j' OEW, 

_ (A Ao,\ (A Ao) 
Uo11 f1 f1J = 11 f1 u o( f1o) , uoeWo · 

(64) 

We conclude by remarking that it has been implicitly 
assumed that there are no common factors between the nu
merator and denominator polynomials of Eq. (61) so that 
we have the correct numerator and denominator polynomi
als as required. Although this fact is not immediately ob
vious it shall be rigorously demonstrated in the following. 
Unfortunately, as remarked earlier, in order to determine 
the explicit form for the numerator polynomials it is evident
ly necessary to treat the different canonical subgroup imbed
dings separately. Accordingly we shall devote the remainder 
of this paper to the canonical imbedding U (n + 1) ::::> U (n ) 
and leave it to the second paper of the series to consider the 
canonical imbedding 0 (n + 1) ::::> 0 (n). 

VI. NOTATION AND FUNDAMENTALS FOR U(n) 

In this section we assume that L is the Lie algebra of 
U (n + 1) and Lo is the Lie algebra of U (n). We recallS. to 

that the (n + 1)2 generators aij (i,j = 1, ... ,n + 1) of the Lie 
group U (n + 1) satisfy the commutation relations 

and are moreover required to satisfy the Hermiticity condi
tion 

on finite-dimensional (i.e., unitary) representations of the 
group. We choose as a Cartan subalgebra H for L the space 
spanned by the n + 1 commuting Hermitian operators au 
(i = 1, ... ,n + 1). The weights AeH· may be identified with 
the (n + I)-tuples A = (A I,A,2, ... ,A,n + 1 ), where the compo
nents A i are given by Ai = A (a u ). We choose as our system 
of positive roots $+, the weights Ei - Ej (h;;i <Ir;;;,n + 1), 
where Er denotes the fundamental weight with 1 in the rth 
position and zeros elsewhere. Thus 0, the half-sum of the 
positive roots, is given by 

1 1 n + I 

0=- L (Ei - Ej ) = - L (n + 2 - 2i)Ei . 
2 i<j 2 i= I 

In this case the inner product on H· induced by the 
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Killing form is given by 
n+1 

(A,Il) = L Arllr, A,JleH·. 
r= 1 

Also all rootsae$+ satisfy (a,a) = 2, whence we may write 

(A,a) = (A,a), for all AeH·, ae$. 

The Weyl group W is, of course, the symmetric group Sn + I 

on n + 1 objects. Thus if OEW is a permutation of the 
numbers 1, ... ,n + 1 then the action of u on a weight AeH· 
may be written, in our picture, as 

(uA)r =A"-'(r) . (65) 

We remark that Eq. (65) arises because we regard the Weyl 
group elements u as permuting the fundamental weights Er 
(cf. Ref. 31): 

UEr = E,,(r) . 

Now the componentsofa weight A are given by Ar = (A,Er ). 
Thus we must have 

(uA)r = (U(A),Er ) = (A,U-I(Er ») =A"-'(r) , 

where we have used the fact that the inner product on H· is 
invariant under W. 

The finite-dimensional irreducible representations of 
the Lie group U (n + 1) are characterized by their highest 
weights A = (AI,A,2, ... ,A,n + I) whose components are re
quired to satisfy the conditions 

Ai - Aje.Z, i,j = 1, .... n + 1 , 
A1>A2>···>An >An + 1 • 

We have, in particular, the elementary dominant weights 
Ar (r = 1, ... ,n + 1) defined by 

(66) 

An alternative characterization of the finite-dimension
al irreducible representations is given by the eigenvalues of 
the U (n + 1) Gel'fand invariants 

n+1 n+1 

II = L au, 12 = L aijaji , 
i= I i.j= 1 

n+1 

13 = L aijajkaki , etc. 
i.j.k= 1 

The operators Ir (r = 1, ... ,n + 1) form a full set of invar
iants for the Lie algebra L that generate the center Z of the 
enveloping algebra U. Thus we may write 

Z = (;[11,12, .. ·,ln + I] . 
We note, in particular, that the eigenvalues of the first- and 
second-order invariants on the irreducible U-module V(A) 
with highest weight A are given by 

n+ I 

X..t (II ) = L Ai , 
1=1 

n+1 

X..t (12) = (A,A, + 20) = L Ai(Ai + n + 2 - 2i) . 
i=1 

The eigenvalues of the higher-order invariants Ir (r > 2) are 
given in Ref. 36. 

The generators aij of the Lie group U (n + 1) fit natural-
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ly into a (n + 1) X (n + 1) matrix9-11 

b = [aij] , 

whose (i,j) entry is the generator aij: the matrix b is a special 
case ofthe more general matrices b;. ofEq. (12), where 17";., 

in this case, corresponds to the fundamental contragredient 
vector representation. Polynomials in the U (n + 1) matrix 
b then may be defined recursively according to 

n+ 1 n+ 1 

[bm+l]ij = L [bmLkakj = L a;dbm]kj' 
k= 1 k= 1 

It can be shown 11,33.37 that the matrix b satisfies a polyno
mial identity over the center Z of U, which may be written in 
factorized form as 

n + 1 

II (b - f3r) = 0, (67) 
r= 1 

where the f3r are invariants of the group whose eigenvalues 
on a finite-dimensional irreducible module with highest 
weight A are given by 

13 r = A r + n + 1 - r . (68) 

The characteristic rootsf3r are clearly a particular case of the 
more general roots ofEq. (26). The rootsf3r determine lin
ear polynomial functions on H *: f3r (A) = Ar + n + 1 - r. 
The action of the translated Weyl group Won the rootsf3r is 
thus given by [cf. Eq. (27)] 

uf3r =f3u (r)' CTEW. (69) 

Thus the translated Weyl group acts on the characteristic 
roots f3r by permuting them among themselves. 

The characteristic roots f3r will be employed repeatedly 
in our work: they playa role equivalent to the partial hooks 
employed in the work of Biedenharn and Louck. 12 Since the 
translated Weyl group permutes thef3r one may identify the 
center Z of U with the ring of symmetric polynomials in the 
f3r (cf. Harish Chandra's theorem): 

Z = C{f3l,/32, ... ,/3n + I} , 
where C{X I ,x2, ... ,xn + I} denotes the symmetric polynomial 
algebra in n + 1 indeterminates x1,···,xn + I' 

With regard to the subgroup U (n) and its Lie algebra Lo 
we follow the same notation as above except we add a sub
script 0 to everything. Thus ho, the half-sum of the positive 
roots, is given by 

1 n • 
ho = - L (n + 1 - 2Z)Eo; . 

2 ;=1 

The U(n) matrix a = [aij] (i,j = 1, ... ,n) satisfies an nth
order polynomial identity analogous to Eq. (67): 

n 

II (a - a r ) = 0 . 
r= I 

The characteristic roots in this case take a constant value on 
a finite-dimensional irreducible Uo-module with highest 
weight ,.1.0 = (Ao1, ... ,Aon ), given by 

ar = AOr + n - r. (70) 

We may also define the fundamental Gel'fand invariants 
lorn = tr(am

) ofU (n) that generate the center Zo of the uni
versal enveloping algebra Uo of Lo. In this case the center Zo 
may be identified with the ring of symmetric polynomials in 
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the characteristic roots a r : 

Zo = C {al, ... ,an }. 

Since the imbedding L ~Lo is canonical, the centralizer 
of Lo in U given by 

!f = Z ® Zo = Zo ® Z (enveloping algebra product) . 

We may clearly identify !f with the algebra 

!f = C {/31"",/3 n + 1 : al,···,an }, 

where C{xl, ... ,xn+ 1 :Y1, ... ,yn} denotes the algebra of all 
polynomials in indeterminates X1,.··,xn + 1 ,yl, ... ,yn' which 
are symmetric in the x k and also the Yr' 

For example it can be shown 10, 11 that the (n + l,n + 1) 

entries of the matrix powers b m are invariants ofU(n): 

(71) 

Thus we may express the above centralizer elements as a 
polynomial in the U(n + 1) and U(n) invariants 
lk (k= 1, ... ,n + 1) and 10r(r= 1, ... ,n), respectively. Al
ternatively we may express the invariants of Eq. (71) as a 
symmetric polynomial in the characteristic roots 13k' a r' ac
cording to 10, 11 

n+1 
[bm]n+"n+' = L f3'!:Ck , 

k=1 

where 
n+ 1 n 

Ck = II (13k -f3p ) -I II (13k - ar - 1) . (72) 
p= 1 r= 1 

*k 
It should be noted that the U (n + 1) characteristic roots 13k 
are invariants of U (n + 1) and hence also of U (n) as dis
tinct from the U (n) characteristic rootsar, which are invar
iants ofU(n) but not ofU(n + 1). 

If V(A) denotes a finite-dimensional irreducible U
module with highest weight A, then it is well known8 that 
V(A) decomposes into a direct sum of irreducible Uo-mo
dules according to [cf. Eq. (10)] 

V(A) = ® V(A 1,.1.0) , (73) 
;'oEI..t J 

where the U(n) highest weights occurring are to be domi
nant and satisfy the betweenness conditions 

,.1.1>,.1.01 >A2>A02>"'>AOn >An + 1 • (74) 

Thus, for this case, we call the weight (A 1,.1.0) lexical if and 
only if A and ,.1.0 are dominant and satisfy the betweenness 
conditions of Eq. (74). 

By repeated application of the above result we see that 
the group U(n + 1) admits the canonical chain of sub
groups 

(75) 

whose representation labels serve to completely label the ba
sis states of the irreducible representations. This is the state 
labeling scheme proposed by Gel'fand and Tsetlin.7 The par
titions for each of the groups occurring in the chain (75) are 
most conveniently arranged into a Gel'fand-Tsetlin (GT) 
pattern, which is described in detail in the work of Baird and 
Biedenharn.8 We see, therefore, that the lexical weights 
(A lAo) occurring in the decomposition (73) are to form the 
top two rows of the GT patterns and may be written in the 
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more suggestive form 

VII. OPTIMAL RWC's FOR U(n) 

It is our aim here to determine all optimal R W C's for the 
canonical imbedding U (n + 1) :::> U (n). We adopt the nota
tion and conventions of the previous sections. We shall ex
press the numerator polynomial 

(
A Ao\ 

11 a aj' aE Sym(A), aoE Sym(Ao) , (76) 

ofEq. (61) as a polynomial in the characteristic roots /3 k and 
a r • We note that the numerator polynomial ofEq. (76) is to 
determine a polynomial function of degree r;. + r;. [see re-

o 
marks preceding Eq. (57)], where the integers r;. and r;.o in 
this case are given by 

n+l 

r;. = L (A,a) = 2(A,8) = L (n + 2 - 2k)A k , 

a>O k~l 

n (77) 

rAo = L (Ao,ao) = 2(Ao,80) = L (n + 1 - 2r)Aor . 
ao>O r= 1 

Suppose now that (1lIIlo)eY is a lexical weight. It fol
lows in view of Eq. (35) and the betweenness conditions of 
Eq. (74) thatthe numerator polynomial ofEq. (76) vanish
es if the weight ( Il + aillo + a o) is nonlexical: since in such 
a case the RWC 

( Il + aliA Il ) 
Ilo + ao Ao ' Ilo 

vanishes. Thus we deduce a vanishing contribution when
ever the following situations occur: 

(i) (Ilo + aO)r > (Il + a)r, some r = 1, ... ,n, 

(ii) (Il + a)r+ 1> (Ilo + aO)r' some r = 1, ... ,n . 
(78) 

In case (i) above we have 

Ilor + a Or = Ilr + a r + k, for some ke'l+ . 

To determine the possible range of k values we note that 

k = 1l0r -Ilr + a Or - a r <aor - a r , 

where the last inequality follows because the weight (1l11l0) 
is lexical. Thus we can only get a vanishing contribution if 
a Or - a r > 0, in which case we deduce that the possible 
range of k-values is given by 1 <k<aor - a r. In such a case 
we deduce that the numerator polynomial ofEq. (76) is to 
be divisible by factors 

[(}Lo + aO)r - (Il + a)r - k] 

= (a, - /3 r + ao, - ar - k + 1) , 

k = 1, ... ,aor - a r 

or equivalently by factors 

(ar -/3r + m), m = 1, ... ,ao, -ar . 

Thus we deduce divisibility of the numerator polynomial 
(76) by the set off actors 
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AO,.-Ar 

IT (a r - /3r + m), a Or > a r . 
m~l 

Applying a similar argument to the conjugate numera
tor polynomial 

11 Cta) 
we deduce divisibility of this latter polynomial by factors 

0'0(.06.0 ),.- 0'(.60), 

IT (a r -/3r+ m ), O"o(ao)r>O"(a)r 
m~l 

[noting, in view of Eq. (65), that O"(a) r = a<T~ '(r) ]. But in 
view of the Weyl group symmetries ofEq. (64) we may write 

(
A Ao) __ 1 __ 1 (A Ao) 

11 = 0" 0"0 11 . 
a a o 0" ( a ) 0"0 ( a o ) 

This would then imply [cf. Eqs. (8) and (69)] that the nu
merator polynomial (76) is divisible by the further set of 
factors 

au(Ao),. - u(A)r 

U-1UO- 1 IT (a, - /3r + m) 
m~ 1 

(7o(Ao), - (7(A), 

IT (a (70- '(r) - /3(7~ '(r) + m) , 
m=l 

= 

O"o(ao), >O"(a)r . 

Taking into account arbitrary permutations ueW, O"oeWo, 
we thus deduce divisibility of the numerator polynomial by 
the set of factors 

n + 1 n AOr~ I:l.k 

IT IT IT (a r - /3k + m) . 
k~lr~l m~l 

.0. 0 ,.> d k 

(79) 

In case (ii) ofEq. (78) we deduce a vanishing contribu
tion whenever a r+ 1 > a Or and 

(Il + a)r+ 1 = (Ilo + aO)r + k, ke'l+. 

The range of possible k-values in this case is given by 
l<k<ar+ 1 -aor · Thus we deduce divisibility of the nu
merator polynomial (76) by the set off actors 

(Il + a)r+ 1 - (Ilo + aO)r - m 

=/3,+ 1 - a r + a,+ 1 -aor - m, 

m = 1, ... ,ar + 1 -aor , 

or equivalently, the factors 

/3r+ 1 - a r + m - 1, m = 1, ... ,ar+ 1 -aor . 

Thus we deduce divisibility of the numerator polynomial 
(76) by the set offactors 

Ar+ 1 - Ao,. 

IT (/3,+ 1 - a r + m - 1), a, + 1 > a Or . 
m=l 

Applying Weyl group symmetry as before and considering 
all possible permutations of the U(n + 1) roots /3k and 
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U (n) roots a r we deduce divisibility of the numerator po
lynomial by the additional set of factors 

n + 1 n /:;., - 40, 
II II II (/3k -ar +m -I). 
k=lr=1 m=1 

/:;.,>40, 

(80) 

It is our aim now to demonstrate that the numerator 
polynomial of Eq. (76) is given by the products (79) and 
(80): i.e., 

n + 1 n l:i.k - ~o,. 

X II II II (/3k - a r + m - I) , 
k=lr=1 m=1 

4k>40r 

(81) 

We note that Eq. (81) determines a monic polynomial func
tion that satisfies the Weyl group symmetries of Eq. (64) as 
required. It remains to demonstrate that the total number of 
factors on the rhs of Eq. (81) is equal to the degree of the 
polynomial function (76): it is given by the integer rA + rAo 
with rA and rAo as in Eq. (77). 

In view ofWeyl group symmetry it suffices to consider 
the semimaximal case: i.e., A = A, Ao = Ao in Eq. (81). In 
such a case we see that the total number off actors on the rhs 
of (81) is given by 

n+l n n+l n 

N= L L (AOr -Ak ) + L L (A k -Aor ) 
k=lr=1 k=lr=1 

A.o,.>A.Jc Ak>AOr 

n n+l 

= L (n + 1 - 2r)Aor + L (n + 2 - 2k)Ak 
r= 1 k= I 

= rAo + rA , 

as required, where we have applied the betweenness condi
tions (74). Thus we have proved our assertion that the nu
merator polynomials ofEq. (76) are given by Eq. (81). It is 
easily checked that our results agree with those obtained 
previously by Biedenham and Louck. 12 

We remark that the numerator polynomial of Eq. (81) 
is a product of linear factors that involve the representation 
labels of both groups U (n + 1) and U (n) as distinct from 
the denominator polynomial of Eq. (62). which is a product 
of linear factors each of which involve only the representa
tionlabels ofU(n + I) or those of the group U(n). We may 
express the denominator polynomial of Eq. (62) in terms of 
the characteristic roots /3k and a, by noting that if aE<I>, 
aoE<I>o, then 

(Il + ~.a) = f3j - f3j , a = €j - €j , 

(Ilo+~o,ao) =aj -aj , aO=€Oj -€Oj' 

Substituting this into Eq. (62) we obtain the following ex
pressions for our denominator polynomials: 
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~ (~ ~j = ~I (~) ~2 (~j , 
AESym(A), AoESym(Ao), (82a) 

where 

(
A) n + 1 /:;., - /:;., 

~I A = II II (13, -13k + m - 1), 
r.k= 1 m = 1 

(82b) 

~2 (~) = rit ~ij~O' (ar - ak + m) . (82c) 

.6.0 ,.>40 k 

Thus our optimal RWF's for the imbedding U(n + I) 
::)U(n) are given by the rational polynomial functions 

(
A Ao \ _ C 1](11: )(lllllo) 

P A AJ (1lIIlo) - A.Ao ~(11:)(lllllo) , (83) 

where the numerator and denominator polynomials are giv
en by Eqs. (81) and (82), respectively, where it is under
stood that the characteristic roots 13k and a r are given by 
[cf. Eqs. (68) and (70n 

13k = Il k + n + 1 - k, a, = Ilor + n - r . ( 84 ) 

We have in particular for the semimaximal case [i.e., A = A, 
Ao = Ao in Eq. (83)] the results 

(A Ao \ n + 1 AO, - A, 

1] U AJ = ,11 Jl (a r -13k +m) 

n A, - A.o, 
X II II (/3k - a, + m - 1), (85a) 

k<r m= 1 

where 

(85b) 

(85c) 

It remains now to determine the numerical constant 
CA,A.o of Eq. (83), which depends only on the labels A,Ao 
(and is independent ofthe shifts A,Ao). To this end we note 
that Eq. (47) implies the result 

1 = (A Aj (010) =c 1](11:) I 
P u A A.Ao l1 AA ' 

u (u: ) (1'11'0) = (010) 

whence we obtain, for the numerical constant CA,A.o' 

~(11:) I 
CA,A.o = --:;:;:;;- . 

1] (;';"0) (1'11'0) = (010) 

(86a) 

Substituting Ilk = Ilo, = 0 into Eqs. (84) and (85), we ob
tain the result 

n+1 (Ar -Ak +k-r-I)! 
C;.;,. = n --------

'0 r<k (Aor-Ak+k-r-I)! 

nn (AOr -AOk +k-r)! 
X , 

r<k (Ar -AOk + k - r)! 
(86b) 

which agrees with Ref. 12 as required. 
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VIII. SOME EXAMPLES 

We consider here some examples of our previous formu
las. We shall also point out the connection between the prob
lem of evaluating RWC's and the equivalent (algebraic) 
problem of evaluating the eigenvalues of certain U (n )-Casi
mir invariants. 

(i) Suppose ..1,= EI is the highest weight for the funda
mental vector representation of U (n + 1) and ..1,0 = 0 [cor
responding to the trivial representation of U (n ) ]. The opti
mal RWF's p(:~ g) (k = 1, ... ,n + 1) , denoted Ck in Ref. 
10, in this case are given by the formula 

(

E 0) _ n + I n 

p Ekl 0 =Ck=II«(Jk-(Jp)-III«(Jk-ar), 
p#k r~1 

which agrees with Ref. 10, Eq. (13). 
(ii) Suppose ..1,= - En + I is the highest weight for the 

contragredient vector representation and ..1,0 = O. The opti-

mal RWF's p ( =-:k + 1 g ), denoted C k in Ref. 10, in this case 
reduce to [cf. Eq. (72)] 

P ( - ~nE: I ~) = Ck 

n + 1 n 

= II «(Jk - (Jp) -I II «(Jk - a r - 1) . 
p#k r= I 

It is interesting to see the connection between the above 
RWF's and the eigenvalues of the centralizer elements ofEq. 
( 71 ). This connection, in fact, extends to the general case: 
the eigenvalues of the centralizer elements1m ,n (A 1..1,0) ofEq. 
(16) are determined by the L: Lo RWF's (and vice versa). 

(iii) Suppose A = EI and ..1,0 = EOI [corresponding to the 
highest weights of the fundamental vector representation of 
U(n + 1) and U(n), respectively]. We then have the 
RWF'sp(E t EOt) herein denotedp-(n + I n) for simplicity In 

Ek EOr ' k r • 

this case we obtain immediately the result 

xiI ( (Jk -al ) 
I#r a r - a l + 1 

In the notation of Ref. 10 this formula may be alternatively 
written [cf. Ref. 10, Eq. (20)] 

_ (n + 1 n) -p k r =CkM r«(Jk- a r-1)-I«(Jk- a r)-I, 

where 
n n + 1 

Mr = (_1)n II (a r -al + 1)-1 II «(Jp -ar -1). 
I#r p~ I 

This last equation determines the squared U (n) -reduced 
matrix elements of the U(n) vector operator 

1/1; = a;n+ I (i = l,oo.,n) . 

(iv) Suppose A = - En + I , ..1,0 = - EOn' Then we have 
the RWF's p( -En + 1 - EOn) herein denoted pen + I n) which 

- Ek - EOr ' k r' 

are given by [cf. Ref. 10, Eq' (19)] 
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where 
n n+l 

Mr =(-l)nII (ar -al -1)-1 II «(Jp-ar )· 
Ii'r p~ I 

(v) Consider the following U(n )-invariants: 
n 

1m,l = 'To(b mal) = L (b m)ij (al)jiE!i' , 
i,j= I 

which are a special case of the more general invariants ofEq. 
( 16). These invariants take a constant value on the irreduci
ble U(n)-module V(,ul,uo) ~ V(,u), this eigenvalue being 
given by the formula 

X<lllllo) [Im,d 
n+1 n 

= L L (J';a~ 
k= 1 r= 1 

n (a -a-I) (n + 1 X II r p p k p#r a r - a p 
;) (,u l,uo) , 

(87a) 

with p (k + 1 ~) as in example (iv). Using the formula of ex
ample (iv) we may alternatively write 

X <lllllo) (I m,1 ] 

= ( _ 1)n nil i (J';a~ YII (~p - ar) 
k=1 r=1 p#k \Pk -(Jp 

xiI ((Jk - a q - 1). 
qi'r a r - a q 

(87b) 

The above result follows by considering the U(n + 1) 
and U (n) projection operators (cf. Refs. 11 and 36) 

It follows from the U (n + 1) and U (n) characteristic iden
tities that we have the following resolutions II: 

n + 1 n 

b m= L (J';P[k], al = L a~Po[r]. 
k=1 r=1 

Thus we have 
n+ 1 n 

bma l = L L (J';a~P[k]Po[r], 
k= 1 r= 1 

whence, taking the U(n)-trace, we obtain 
n + 1 n 

1m., = L L (J';a~'To(P [k ]Po[r]) 
k= 1 r= 1 

where the polynomial functions 'T and S are given by Eqs. 
(31) and (33), respectively. In view ofEq. (36), Eq. (87) is 
easily seen to follow. 

(vi) Consider now the case A = Ak [see Eq. (66)], 
which is the highest weight for the k th-rank antisymmetric 
tensor representation ofU(n + 1). The allowed U(n) high
est weights occurring are ..1,0 = AOk (1 <.k < n + 1) and 
..1,0 = AOk _ l' We consider first the case ..1,0 = AOk 

(k<n + 1). We obtain immediately from Eqs. (83)-(85), 
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the following result for the semimaximal R WF 

P (Ak AOk) 
Ak Aok 

- ft l IT ( Pi -aj 
) "fIl (ai 

-Pj + I)} 
- i=1 ·=k+1 a i -aj + 1 j=k+1 Pi -Pj • 

Applying Weyl group symmetry we obtain the general result 

= IT IT " J 
k { n (P -a[ ) 

i=1 j=k+1 a[,-a~+1 

(88) 

where 0- = (r1, ... ,r" + I) [resp. 0-0 = (l1, ... ,/" )] are the per
mutations such that 1:1 = o-(Ak ) [resp. 1:10 = o-O(Aok )]. 

We consider now the case ,10 = AOk _ I for which we 
obtain, for the semimaximal R WF 

xYi "if ( a j -Pj +l ). 
i=lj=k+1 a i -aj _ l +l 

More generally we obtain 

k-I ,,+1 (a l - p +1) XIT IT ,'J , 
i=lj=k+1 al.-al +1 

I ']-1 

(89) 

where 0- = (r1, ... ,r" + I) [resp. 0-0 = (/1, ... ,/" )] are the per
mutations such that 1:1 = o-(Ak ) [resp. 1:10 = o-O(AOk _ I )]. 

TheRWF'sofEqs. (88) and (89) are called elementary 
by Biedenharn and Louck.12 Since the weights for the ele
mentary representations V(Ak ) are all Weyl group conju
gate to the highest weight Ak , Eqs. (88) and (89) enable all 
RWC's, and hence all Wigner coefficients, to be calculated 
for the antisymmetric tensor representations. Such Wigner 
coefficients are useful since all U (n) Wigner coefficients 
may be obtained, at least in principle, from the elementary 
Wigner coefficients. From the point of view of applications, 
it may be demonstratedZ7 that formulas (88) and (89) en
able the direct evaluation of all U (2n ) .I. U (n ) X U (2) sub
duction coefficients for doing spin-dependent calculations in 
many-electron problems (cf. Harter and PattersonZ8

). 

IX. EXTREMAL RWC's FOR U(n) 

The operation of composition of two R WF's was de
fined, quite generally, in Sec. IV. However, as noted in Sec. 
IV, the composition of two RWF's is not necessarily a RWF 
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even if the composed RWF's are commuting (i.e., of the 
same tie structure). However, it was pointed out by Bieden
ham and Louck l2 that there is a class of RWF's for the uni
tary groups, herein called extremal, such that the composi
tion of two extremal R WF's of the same extremal tie 
structure yields another extremal RWF of the same tie struc
ture. This fact forms the basis for the pattern calculus of Ref. 
12 enabling a recursive evaluation of all optimal RWC's for 
U (n ). It is our aim here to present a detailed derivation of 
these interesting results keeping in mind extensions to more 
general imbeddings. 

We begin by defining a lexical weight (A 1,10) to be extre
mal if the U (n + 1) weight A I defined by 

A: = Aoi , i = l, ... ,n , 

(9Oa) 

is Weyl group conjugate to the maximal weight A. Note that 
the weight A ' is simply the weight of the semimaximal state 

V (AIAO ) _ ~ ) 
+ - /1.0 • 

[Max] 

(90b) 

In order that the weight A I ofEq. (90a) be W-conjugate to 
the highest weight A, it is easily seen that we must have 

Another way of phrasing this is to say that the weight 
(A 1,10) is extremal ifthe U (n) weight ,10 is extremally con
nected to A. This may be visualized by writing out two rows 
of dots, the top row having (n + 1) dots and the bottom row 
having n dots as shown below: 

\ \ 1 .. .1 1 
(91) 

We then draw a line from the rth dot of the bottom row to dot 
r (resp. r + 1) of the top row according to whether A 0, = A, 
(resp. ,1,+ 1 ). It is easily seenlZ that the diagram may be 
drawn so that no two lines intersect, leading to a diagram of 
the type shown in Eq. (91): these diagrams are referred to as 
extremal tie patterns in Ref. 12. Thus associated with every 
extremal weight (,11,10) is an extremal tie pattern (91). 

We say thattwo extremal weights (,11,10) and (vivo) are 
linked if they give rise to the same extremal tie pattern. We 
say that an optimal RWF 

(92) 

is extremal if the lexical weight (A 1,10) is extremal. We say 
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that an extremal R WF P (1: ~ ~ ) is extremally tied to (or has 

the same extremal tie structure as) the RWF (92) if they are 
tied (in the sense of Sec. IV) and the weights (A lAo) and 
(A ' IA 0) are extremal and linked. 

The significance of extremal RWF's is that the composi
tion of two extremal RWF's of the same extremal tie struc
ture yields another RWF of the same extremal tie structure. 
To clarify the situation let II denote the unique (normal
ized) maximal weight state ofthe U(n + 1) module V(A). 

For qe W we let v! denote the unique (normalized) weight 
state of V(A) of weight O'(A )eS(A). If II, If' are two 
U(n + 1) maximal weight states we may write (modulo a 
phase) 

1I®1f'=1I+1S. 

More generally, for qeWarbitrary, we may write (up to a 
phase) 

v!®~=v!+IS. (93) 

This follows by noting that the weight O'(A + p) is W-conju
gate to the highest weight A + P and hence occurs with unit 
multiplicity in V(A) ® V(p). 

Now we call a permutation qeW an extremal Weyl 
group element if the numbers 0'-1(1), 0'-'(2), ... ,0'-'(n) 

are in ascending order (i.e., 0'- 1 preserves lexicality of the 
first n components). The significance of extremal Weyl 
group elements 0' lies in the fact that if AEA +, then the U (n ) 

weight Ao, defined by 

Ao, = (O'A), = Au-o(,) , r = 1, ... ,n , (94) 

is extremally connected tOA: i.e., the weight (A lAo) is extre
mal. Thus if 0' is an extremal Weyl group element it follows, 
from uniqueness of the weight O'(A) in V(A), that the state 
v! corresponds to the semimaximal state vC:: 1-'0) ofEq. (90b) 
[with Ao as in Eq. (94)]. 

Thus in the special case that 0' is an extremal W ey I group 
element, Eq. (93) yields the result 

provided (A lAo) and (vivo) are extremal weights that are 
linked [i.e., give rise to the same tie pattern (91 ) ]. In such a 
case it follows immediately, in view of Eq. (48), that the 
following composition law holds: 

p ~ ~~ 0p (: :~ (plpo) 

= 1 (vC:: + v + ISlA.. + Vo + ISo) 1 vC:: + vl-'o + vol ® v<t llSo) > 12 

(A+V Ao+Vo) 
= p \..t + v Ao + vol (plpo) . 

Since this is to hold for all (pIPo}EA + XAo+ we thus have 
the result 

G A~ (v v~ G + v Ao + Vj P 1 0p = P 1 • (95a) 
II. v V + V 11.0 + v 

Applying Weyl group symmetry we obtain the result 

(
A Ao) (v vo ) 

P O'(A) O'o(Ao} 0p 0'( v) 0'0 ( vo) 

=p (
A + v Ao + Vo ) 

O'(A + v) O'o(Ao + vo) , 
(95b) 
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thus proving our assertion that two extremal R WF's of the 
same tie structure yields, under composition, another R WF 
of the same extremal tie structure. 

Clearly all maximal RWF's are extremal and of the 
same tie structure. We note also that all elementary RWF's 
[ see example (vi) of Sec. VIII] are extremal. Moreover the 

elementary R WF's p (1: ~: = : ) are extremal and of the same 
tie structure (k = 1, ... ,n + 1). The remaining elementary 

RWF'sp(1: ~:) (k = 1, ... ,n) are, of course, maximal and 
hence extremal of the same tie structure. 

Now let (A IA) be a maximally connected lexical weight: 
i.e., the U (n) representation labels Ao take their maximum 
allowed values A 0, = A, (r = l, ... ,n). We clearly have the 
following expansion for the maximal lexical weight (A IA): 

n 

(AlA) = An + I (An + ,IAon) + L (A, - A,+ I )(A, lAo,)' 
,= 1 

We note that all the lexical weights occurring in the above 
decomposition are maximal and hence extremal and tied. 
Thus by repeated application ofEq. (95) [see also Eq. (51) ] 
we obtain the following expansion for the maximal R WF's: 

p~ A)= iIp(A, Ao,)"'-"'+', (96) 
A ,=1 A, Ao, 

where we have used the result that the RWF's p (1::: 1~:) 
are trivially unity. We note also that the ordering of the fac
tors in the product (96) (shorthand notation for composi
tion) is irrelevant since all R WF's involved are commuting. 
Note that Eq. (96) implies that for the maximal caseAo = A 
the constant C ","0 of Eq. (83) is unity, as one may verify 
directly from Eq. (86). 

We draw special attention to the maximal RWF's be
cause Eq. (96) has a suitable extension to the orthogonal 
groups. 

We call a lexical weight (A lAo) minimally connected if 
the U (n) representation labels Ao take their minimum possi
ble values: A 0, = A, + I (r = 1, ... ,n ). We denote a general 
minimally connected lexical weight by the symbol (All). 
Clearly all minimally connected weights are extremal and of 
the same tie structure. We note that all elementary lexical 
weights (A, lAo, _ 1 ) are minimally connected. We have the 
following expansion for the minimally connected weights: 

(All) = An + 1 (An + 1 lAo,.) 
,. 

+ L (A,-A,+,)(A,IAo,_,), 
,= 1 

Thus, by repeated application of Eq. (95), we obtain the 
result 

~ I) _,. (A, AO,_I)"'-"'+' 
p --IIp A ,=1 A, Ao,_, 

(97) 

We remark that since all RWF's in the product ofEq. (97) 
are semimaximal they are all commuting and hence indepen
dent of ordering. 

We now note that the elementary lexical weights 
(AkIAok )' (AkIAok _ l ) (k= 1, ... ,n), (An+,IAo,.) forma 
basis for H*XH't with corresponding dual basis 
( - £k + 1 IEok ), (Ek I - EOk) (k = 1, ... ,n), (E,. + 11°), respec
tively. Thus an arbitrary lexical weight (A lAo) may be ex
panded 
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" + L [(A lAoH -Er+tlEor)](ArIAor} 
r- t 

" + L [(A IAoHErl- Eor >] (AriAor- t) 
r= t 

" =A,,+ t (A" + t lAo,,) + L (Aor -Ar+ t )(ArIAor) 
r= t 

" + L (Ar - Aor) (Ar IAor- t ) , (98a) 
r= t 

which expresses (A lAo) as a sum of a maximally and mini
mally connected weight: 

(A lAo) = (A 'IA') + (A "IX") , 

where 

" A' = L (Aor - Ar+ t )Ar , 
r= t 

" A" =A,,+ t A,,+ t + L (Ar -Aor)Ar · 
r= t 

It then follows from Eq. (50), that we may write 

A'A" (A Ao' (A' A') (A" X") 
CA'x"PU AJ=PU' A'oPU" X" , 

where the constant Ci :i: is given by 

CA'A" = (A' A') (A "IX") 
A'X" PU' A' . 

(98b) 

(99a) 

It is straightforwardly demonstrated that this constant is 
related to the constant CA.Ao ofEq. (86) by 

A'A" 
CAhC A'X" = 1, 

whence Eq. (99a) yields the result (cf. Ref. 12) 

(A Ao' (A' A') (A" X") 
Pu AJ=CA..toPU' A' oPU" X" , (99b) 

A' A' A" 1'''. 6 where p(A' A') and p(A" X") are gIVen by Eqs. (9 ) and 
(97), respectively. 

We note that the two RWF's on the rhs of Eq. (99) 
commute because they are semimaximal and hence of the 
same tie structure (but not the same extremal tie structure). 
Application of Weyl group symmetry to Eq. (99) demon
strates that all optimal R WF's are expressible as a product of 
elementary RWF's (times a scalar CAh ). 

In conclusion we remark that Eqs. (96)-(99) have a 
suitable extension to the orthogonal groups. 
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Multiplicity-free Wigner coefficients for semisimple Lie groups. II. 
A pattern calculus for O(n) 

M. D. Gould 
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In this paper a direct, algebraic derivation of a large class of (multiplicity-free) reduced Wigner 
coefficients is presented for the orthogonal groups. In particular all elementary reduced Wigner 
coefficients, including those for the fundamental spinor and tensor representations, are obtained. 
The results are presented in a form directly analogous to the corresponding results obtained for 
the unitary groups. 

I. INTRODUCTION 

This is the second paper in a series of two in which we 
consider the direct evaluation of multiplicity-free reduced 
Wigner coefficients (RWC's) for the orthogonal and unitary 
groups. In the first paper of the series! (herein referred to as 
I) it was demonstrated how the (multiplicity-free) RWC's 
for the canonical imbeddings U(n + 1) :::>U(n) [resp. 
O(n + I) :::>O(n)] may be obtained algebraically from the 
eigenvalues of certain U(n) [resp. O(n)] Casimir invar
iants. In this approach the Weyl group symmetries of the 
RWC's are evident from the outset, in view of the simple 
transformation properties of polynomial functions, and the 
method yields a direct (i.e., nonrecursive) derivation of the 
RWC's. 

The U(n + I): U(n) [resp. O(n + I): O(n)] squared 
RWC's are obtained, in our approach, as a rationalpolyno
mial function (numerator polynomial divided by denomina
tor polynomial) in the representation labels of the groups 
U (n + 1) and U (n) [resp. O(n + I) and O(n)]. A unified 
approach to the denominator polynomials was presented in 
I, where the denominator polynomials were obtained for 
both the unitary and orthogonal groups. The corresponding 
numerator polynomials for the unitary groups were also de
rived (algebraically), and our results yield the pattern calcu
lus rules of Biedenharn, and co-workers. 2 It is our aim here 
to extend these results to obtain the numerator polynomials 
for the orthogonal groups. The results of this paper then 
enable a direct evaluation of a large class of multiplicity-free 
RWC's for the orthogonal groups. (The class ofR WC's con
sidered in this paper is analogous to the class of R WC's con
sidered in the pattern calculus of Ref. 2 for the unitary 
groups.) 

Some interesting special cases of our general formulas 
are also considered. In particular all vector RWC's for the 
orthogonal groups are given and our results are shown to 
agree with those of Ref. 3. All RWC's corresponding to the 
elementary tensor and spinor representations are also given. 
In particular our results enable a complete evaluation of all 
Wigner coefficients for the fundamental spinor (and vector) 
representations. The class of RWC's we consider in exam
ples corresponds to all elementary RWC's ofO(n), which 
are the orthogonal group analog of the elementary Wigner 
operators of Ref. 2 [which form the fundamental building 
blocks in the U (n) pattern calculus]. During the course of 

our investigation it shall be demonstrated that the O(n) 
RWC formulas, developed in this paper, are extendable to a 
wider class of RWC's. 

The algebraic methods of this paper and their relation
ship to the pattern calculus of Ref. 2 has been discussed in I 
(see also Ref. 3). Although our approach affords a direct 
evaluation of the (multiplicity-free) RWC's, the pattern cal
culus techniques of Ref. 2 are useful, particularly for compu
tational applications. To this end we consider in this paper 
the beginnings of a pattern calculus for 0 (n). It is demon
strated that the RWC's ofO(n) may be expressed as a com
mutingproduct (or composition) of elementary RWC's (up 
to a constant) in direct analogy with the unitary groups. It is 
hoped that these results, on manipulating and mUltiplying 
RWC's, may lead to the evaluation of a larger class of 
RWC's for the orthogonal groups in direct analogy with the 
U ( n) case. We remark, in this connection, that the pattern 
calculus rules developed in Ref. 2 for U (n) have been ap
plied successfully4,5 to evaluate all R WC's for the symmetric 
tensor representations (only some of these latter RWC's be
ing included in the original pattern calculus of Ref. 2). 

From the point of view of future research we note that a 
phase calculus, for obtaining suitable phases for the O(n) 
RWC's, needs to be developed. The beginning of such a cal
culus of phases is given in Ref. 3, where suitable phases were 
obtained for the fundamental (i.e., vector) Wigner coeffi
cients of 0 (n ), Also, it would be desirable to extend the 
techniques of this paper to evaluate a larger class of RWC's 
for the orthogonal and unitary groups. In particular our 
methods are applicable, in principle, to the problem of evalu
ating all multiplicity-averaged RWC's (see I) for the or
thogonal and unitary groups (which include, as a special 
case, all multiplicity-free RWC's). Also, as mentioned in I, 
our methods are applicable to other (noncanonical) sub
group imbeddings G:::>Go enabling an evaluation of multi
plicity-averaged G: Go RWC's. In particular our methods 
enable an extension to the symplectic groups to yield multi
plicity-averaged Sp(2n): Sp(2n - 2) XSp(2) RWC's. 
Further work along these lines is now in progress. 

The paper is set up as follows. Our notation and basic 
conventions are established in Sec. II. In Secs. III and IV all 
optimal O(n + 1): O(n) RWC'sareevaluated. In Sec. V we 
consider some interesting special cases of our general results 
and in particular give all elementary O(n + 1): O(n) 
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RWC's. We conclude in Sec. VI with the beginnings of a 
pattern calculus for O(n). 

Throughout this paper, unless otherwise stated, we 
adopt the notation and conventions of I. For other work on 
the orthogonal groups we refer to the literature cited in Refs. 
1 and 3. 

II. PRELIMINARIES 

Following the notation ofI, throughout this paper we let 
L (resp. Lo) denote the Lie algebra of O(n + 1) [resp. 
O(n)]. The !n(n + 1) generators aij (i,j = 1, ... ,n + 1) of 
the Lie group O(n + 1) satisfy the relations6 

aij = - ajj , [aij,ak/ ] 

= {)kjaj/ - {)j/akj - {)kjaj / + {)j/akj 

and are moreover required to satisfy the Hermiticity condi
tion 

aij =ajj = -aij (l) 

on finite-dimensional (i.e., unitary) representations of the 
group. We choose as a Cartan subalgebra H for 0 (n + 1) 
the space spanned by the operators 

h,= -ia2,_I,2,' r=I, ... ,h=[(n+l)/2]. (2) 

We have included the imaginary phase - i in Eq. (2) be
cause Eq. (1) implies the Cartan subalgebra elements 
a 2, _ 1,2, are to be represented by anti-Hermitian matrices, so 
we consider the Hermitian operators ofEq. (2), which have 
real eigenvalues leading to real weight components in anal
ogy with the unitary groups. The weights A.eH * may thus be 
identified with the h-tuples A. = (A.1''''')'h)' where 
A., =).(h,). 

We remark that the O(n + 1) generators aij [which 
correspond to the choice of the O(n + 1) metric gij = {)ij] 

are not in Cartan form. Nevertheless it is easily demonstrat
ed6

,7 that we may take, as a set of positive roots forO(n + 1), 
the weights 

E j ± Ej (l<.i<j<.h), n + 1 = 2h, 

Ej ± Ej (l<'i<j<.h), Ej (l<'i<.h), n + 1 = 2h + I, 
where Ej denotes the fundamental weight with 1 in the ith 
position and zeros elsewhere. Thus {), the half-sum of the 
positive roots, is given by 

I h 
{)=- I (n+I-2r)E, (3) 

2 ,= 1 

(which holds for both cases n + I odd or even). In this case 
the inner product on H * induced by the Killing form is given 
by 

h 

(A.,p.) = I A.,p" A.,peH *. 
r= 1 

Thus we may write, for all roots aecl>+, 

(A.,a) = (A.,a), a = E; ± Ej (i <j), 
(A.,E;)=2(A.,E;)=2A.j> a=Ej> n+I=2h+I. (4) 

In the case of O(n + I = 2h + I) the Weyl group acts 
as the group of all permutations and sign changes of the set 
{E1, ... ,Eh} so Wis isomorphic to thesemidirect productofSh 

(the symmetric group on h objects) and Z~ : 

1965 J. Math. Phys., Vol. 27, No.8, August 1986 

W~ShCXZ~, n+I=2h+1. (5a) 

The Weyl group in the case ofO(n + 1 = 2h) is the group of 
permutations and sign changes involving only even numbers 
of signs of the set {E1, ... ,Eh}. So in this case we have 

W~ShCxZ~-I, n+l=2h. (5b) 

To clarify the action ofthe Weyl group on our weights 
we note that Eq. (5) indicates that each Weyl group element 
(TE W may be uniquely expressed in the form 

(7 = e1T, (6) 

where eeZ~ (or Z~ - I) and 7TESh is a permutation (note that 
the elements e ofZ~ are all reflections: e2 = I). The action of 
an element 7TESh on a weight A.eH * is given by [cf. I, Eq. 
(65)] 

(1TA.), = A. 1T-,<,). (7a) 

The action of an element eeZ~ (or Z~ - I) is given by 

(eA.), = sgn(e,)A." (7b) 

where sgn(e,) = ± I is given by 

_ { 1, if eE, = E" 
sgn(e,) - _ I 'f __ 

,leE, - E, . 

Thus the action of the Weyl group element (6) on a weight A. 
is determined by 

(7c) 

The finite-dimensional irreducible representations of 
the Lie group O(n + I) are uniquely characterized by their 
highest weights A. = (A.1"",).h) whose components are re
quired to satisfy the conditions7,8 

A. 1;;;.A.2;;;. .. ·;;;.A.h ;;;.0, n = 2h + I, 
A. 1;;;.A. 2 ;;;. .. ·;;;.A.h _ 1 ;;;.1A.h I, n = 2h, 

(8a) 

A.; - A.jeZ, A.; + A.jeZ. (8b) 

We note that Eq. (8b) implies the components A., are all 
either integers (corresponding to tensor representations) or 
all half-odd integers (corresponding to spinor representa
tions). We have in particular the fundamental dominant 
weights 

k 

Ak = I E" I <.k<.h - 2, h > 2, 
,= 1 

together with the additional dominant weights 

Ah _ I' As = ~Ah' n + I = 2h + I, 

(9a) 

(9b) 
A/ = !Ah, As- = !Ah_ 1 - !Eh, n + I = 2h, 

which constitute a basis for H *. We remark that the elemen
tary weights As ,As± correspond to the highest weights of the 
fundamental spinor representations. 

The corresponding dual basis to (9) is given by 

a;=E;-E;+I' i=I, ... ,h-2, 

together with 

(lOa) 

ah_I=Eh_I-Eh' ah=Eh, n+I=2h+l, 

(lOb) 
ah_I=Eh_I+Eh, ah=Eh_1-Eh, n+I=2h, 
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which consitute a system of simple roots for L. An arbitrary 
dominant weight A may thus be expressed as a positive z
linear combination of the dominant weights (9) according 
t07 [cf. Eq. (4)] 

11-2 

A = L (A,ar) Ar + (A,all _ I ) All _ I + (A,all) As 
r= I 

II-I 

= L (Ar-Ar+I)Ar+UIIAs' n+1=2h+1, 
r= I 

(1Ia) 
11-2 

A = L (A,ar) + (A,all -I }A/ + (A,ah ) As-
r= I 

11-2 

= L (Ar - Ar+ I )Ar + (A h _ I + All )A/ 
r= I 

+ (A h _ I - All ) As- , n + 1 = 2h. (11b) 

An alternative characterization of the finite-dimension
al irreducible representations is given by the eigenvalues of 
the O(n + 1) Gel'fand invariants 

,,+1 ,,+1 

12 = L aijaji> 13 = L aijajkaki> etc. 
;.j= I ;.j.k= I 

The operators Ir (r = 2, ... ,n + 1) form a full set of invar
iants for L, but it may be shown9 that only the even invar
iants 12r (r = l, ... ,h) are algebraically independent. Thus 
the center Z of the universal enveloping algebra U of L may 
be written, in polynomial algebra notation, as 

Z = C[ 12'/4, ••• ,/2h ]. 

We note, in particular, that the eigenvalue of the second
order invariant 12 on the irreducible U-module with highest 
weight AEA + is given by9 

II 

X,t (/2) = 2(A,A. + 2<5) = 2 L Ar(Ar + n + 1 - 2r). 
r= I 

Thus we must have 12 = 2CL , where CL is the universal Ca
simir element of L. The eigenvalues of the higher-order in
variants Ir (r > 2) are given in Refs. 9 and 10. 

Following our treatment of the unitary groups we note 
thatthe generators aij of the Lie group O(n + 1) fit natural
ly into a (n + 1) X (n + 1) matrix 

b = [aij]' 

The matrix b is a special case of the more general matrices b ,t 
of 1 [Eq. (12)], where 1T',t, in this case, corresponds to the 
fundamental contragredient vector representation. Polyno
mials in the matrix b may then be defined recursively accord
ing to 

,,+1 ,,+1 
[bm+l]ij = L a;dbmhj = L [bmLkak)" 

k=1 k=1 
It can be shown6

•
9 that the matrix b satisfies a (n + 1) -order 

polynomial identity over the center Z of U, which may be 
written in its factorized form as 

,,+1 
II (b-Pd =0, (12) 
k=1 

where the characteristic rootsPk are invariants of the group 
whose eigenvalues on a finite-dimensional irreducible mod
ule with highest weight A are given by 
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Pr = P" + 2 _ r = Ar + n - r, 

(13a) 
P,,+2-r =Pr =r-1-Ar, r= l, ... ,h, 

together with 

PII+I=PII+I=h, forn+1=2h+1. 

Note that we have the following relation between the charac
teristic roots: 

P"+2_r+Pr=n-1, r=1, ... ,h. (13b) 

As in our treatment of the unitary groups the character
istic roots of Eq. (13) playa fundamental role in our work 
and may be regarded as the orthogonal group analog of the 
partial hooks employed in the work of Biedenham and 
Louck.2 The action of a translated Weyl group element 
Oe W, with q as in Eq. (6), on the characteristic roots P k is 
given by 

_ P _ {P1r(k)' 
q k - -

P1r(k) , 

sgn(ek ) = I, 
k = I, ... ,h, (14) 

sgn(ek ) = -1, 

17Pk = ( 17Pk)' 

with 
17 PII + I = PH \> for odd n + 1 = 2h + 1. 

Thus the translated Weyl group W permutes the characteris
tic roots Pk (k = I, ... ,n + 1). Keeping in mind the special 
relations between the characteristic roots, implied by Eq. 
( 13), we may identify the center Z of U with the algebra of 
symmetric polynomials in the Pk (cf. Harish Chandra's 
theorem): 

Z = C{ PI'"'' P" + I}' 
whereC{xl,· .. ,x" + I } denotes the algebra of symmetric poly
nomials in n + 1 indeterminates xI,· .. ,x" + I' 

With regard to the subgroup 0 (n) and its Lie algebra Lo 
we follow Ref. 1 and adopt the same notation as above except 
we add a SUbscript 0 to everything. Thus ~o, the half-sum of 
the positive roots, is given by [cf. Eq. (3)] 

1 ho • {h, n = 2h, 
~o = - L (n - 2Z)Eo;, ho = h _ 1 = 2h _ 1 

2 ;=1 , n . 
(15) 

The O(n) matrix a = [aij] (i,j = 1, ... ,n) satisfies an nth
order polynomial identity analogous to Eq. (12): 

" II (a - a r ) = O. 
r= I 

The characteristic roots in this case take a constant value on 
a finite-dimensional irreducible Uo-module with highest 
weight Ao = (Aol,' .. ,A.oho ), given by 

a r = a" + I _ r = Aor + n - 1 - r, 

a" + I-r = ar = r - 1 -Aor , r= l, ... ,ho, 

with 

all = all = h - 1, for odd n = 2h - 1. 

(16) 

The translated Weyl group Wo acts on the characteristic 
roots a r by permuting them among themselves in analogy 
with Eq. (14). 

We may also define the fundamental Gel'fand invar-
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iants 100, = tda2,] (r = 1, ... ,ho) of O(n), which generate 
the center Zo of the universal enveloping algebra Uo of Lo. In 
this case, keeping in mind the relations implied by Eq. (16), 
the center Zo may be identified with the ring of symmetric 
polynomials in the characteristic roots a, : 

Zo = C{al,···,a,}. 

Since the imbedding L:J Lo is canonical, the centralizer of Lo 
in U is given by (cf. I, Sec. II) 

!I = Z ® Zo = Zo ® Z (enveloping algebra product). 

We may clearly identify !I with the algebra [keeping in 
mind the conditions implied by Eqs. (13) and (16) ] 

!I = C{PI""'P,,+ I: al,··.,a,,} 
where C{xl,. .. ,x" + I: Y\I"'J',,} denotes the algebra of all 
polynomials in indeterminates X\I"',x" + I J'I""J'", which 
are symmetric in the Xk and also in the y,. 

In analogy with I, Eqs. (71) and (72), it can beshown3.6 
that the (n + l,n + 1) entries of the matrix powers b m are 
invariants ofO(n): 

[b m]n+ I,n+ I e!I. (17) 

Thus we may express these centralizer elements as a polyno
mial in the O(n + 1) and O(n) Gel'fand invariants Ik and 
10" Alternatively we may express the invariants ofEq. (17) 
as a symmetric polynomial in the characteristic roots Pk ,a, 
according t03

•
6 

where 

,,+1 " 
Ck = IT (Pk-Pp)-I II (Pk- a,-1'/,) (18) 

p~\ ,= I 
and where 

1'/, = {
I, 

1 - 8"h' 

n = '].h, 

n=2h-1. 

If V(A) denotes a finite-dimensional irreducible U
module with highest weight AeA +, then it is well known8 

that V(A) decomposes into a direct SW1l. of irreducible Uo-
submodules according to [cf. I, Eqs. (10) and (73) ] 

V(A) = ED V(A lAo), 
;t"el,t J 

(19) 

where the O(n) highest weights are to be dominant [cf. Eq. 
( 8)] and satisfy the betweenness conditions8 

AI>Aol>A2> .. ·>Ah>AOh > -Ah, n = 2h, 

AI>Aol>A2>"'>Ah _ I >hOh _ I > IAh I, n = 2h - 1. (20) 

Thus, for this case, we call a weight (A lAo) lexical if and only 
if A and Ao are dominant and satisfy the betweenness condi
tions ofEq. (20). We note that the components of the weight 
(A lAo) are all either simultaneously integers (corresponding 
to tensor representations) or half-odd integers (correspond
ing to spinor representations) . 

By repeated application of the above results we see that 
the group O(n + 1) admits the canonical chain of sub
groups 

O(n + 1) :JO(n) :J···0(3) :J0(2), (21) 
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whose representation labels serve to completely label the ba
sis states of the irreducible representations. This is the state 
labeling scheme proposed by Gel'fand and Tsetlin. II The 
partitions for each of the groups in the chain (21) is most 
conveniently arranged into a Gel'fand-Tsetlin (GT) pat
tern, which is described in detail in Ref. 8. We see therefore 
that the lexical weiJhts (A lAo) occurring in the decomposi
tion (19) are to constitute the top two rows of the O(n + 1) 
GT patterns. 

It is our aim in this paper to determine all optimal re
duced Wigner coefficients (RWC's) (see I, Sec. III for defi
nitions) for the canonical imbedding O(n + 1) :JO(n). We 
recall, from I, Sec. V, that the squared optimal O(n + 1): 
O(n) RWC's are determined by 

p(~ ~(/SLuo) = I eo:' ~401l~0 
~eSym(A), 4oeSym(AO), (22) 

wherep(i Z,) is the rational polynomial function given by 

( A A
o
' 

(
A Ao'_ 1'/ ~ ~J 

p ~ ~ - C,t,).., (A Ao" 
8 ~ ~J 

~eSym(A), 40 eSym(Ao) , (23) 

where C,t,).., is a numerical constant (depending only on la
bels A and Ao) and 1'/(i Z,) [resp. 8(i Z,)] is a polynomial 
function in the representation labels ofO(n + 1) and O(n), 
herein referred to as the numerator (resp. denominator) p0-

lynomial. We recall from I that in Eqs. (22) and (23) we 
have adopted the convention that Sym(A) [resp. Sym(Ao)] 
denotes the set of weights Weyl group conjugate to the 
weightA (resp. Ao). 

The denominator polynomials ofEq. (23) are given ex
plicitly by I, Eq. (62), and it remains to determine the nu
merator polynomials 

( A A
o
' 1'/ ~ ~J' ~eSym(A), 4oeSym(AO), (24) 

which, according to I, Eq. (64), are to satisfy the symmetry 
rules 

iT1'/(~ ~=1'/C:~) j, CTeW, 

(25) 

iTo1'/(~ ~ = 1'/(~ CTo:~oJ, CToeWo· 

We recall from I, Eqs. (34) and (38), that the denominator 
polynomials [and hence the squared RWC's of Eq. (22)] 
are to satisfy the same symmetry rules. 

It is our aim in this paper to determine the numerator 
polynomials ofEq. (24) as a polynomial in the characteristic 
rootsPk and a,. This then enables a complete determination 
of the optimal RWC's for the imbedding O(n + 1) :JO(n) 
throuJh Eq. (23). Unfortunately, however, it is evidently 
necessary to treat the cases n even and n odd separately. 
Accordingly, in the following section we restrict ourselves to 
theimbecidingO('].h + 1) :J0(2h) (i.e., n even) and leave it 
to Sec. IV to consider the case n = 2h - 1 (i.e., n odd). 
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III. OPTIMAL Rwe's FOR O(2h + 1):::> O(2h) 

It is our aim here to determine all optimal RWC's for the 
canonical imbedding O(2h + 1) :::>O(2h): i.e .• we are con
sidering the case where n = 2h is even. Throughout we adopt 
the notation and conventions of I (see in particular I. Secs. 
III and V). 

We recall from I. Sec. V that the numerator polynomial 
ofEq. (24) is to determine a polynomial in the characteristic 
roots/3k.a, of degree rA + rAo [see remarks preceding I. Eq. 
(57) ]. where the integers r A and r Ao in this case are given by 
[cf. Eq. (4)] 

h h 

rA = L (A.a) = 2(,1,6) + L Ai = L (n + 2 - 2k)Ak, 
a>O i=1 k=1 

(26) 
h 

rAo = L (Ao,ao) = 2(,10,60) = L (n - 2r)Aor> 
ao>O r= 1 

where we have used Eqs. (3) and (15). 
Suppose now that ( f.J If.Jo)E.2'' is a lexical weight. It fol

lows in view ofEq. (22) and the betweenness conditions of 
Eq. (20) thatthe numerator polynomial ofEq. (24) vanish
es if the weight ( f.J + a!,uo + a o) is nonlexical: since in such 
a case the RWC 

vanishes. Thus we deduce a vanishing contribution when
ever the following situations occur: 

(i) (f.Jo + a o), > (f.J + a)" 

(ii) (f.J + a),+ 1 > (f.Jo + a o)" 

(iii) - (f.J + a)h > (f.Jo + aoh· 

In case (i) above we have 

r= 1 .... ,h, 

(f.Jo + a o), = (f.J + a), + m, for some meZ+. 

(27) 

To determine the possible range of m-values we note that 
lexicality of the weight ( f.J If.Jo) implies that m must lie in the 
range 

l<m<ao, - a,. 
Thus we can only get a vanishing contribution if ao, > a" in 
which case we deduce divisibility of the numerator polyno
mial (24) by factors 

f.Jo, + a o, - f.J, - a, - m 

= a, - /3, + ao, - a, - m + 1, 

m = 1, ... ,ao, - a" 
or equivalently by factors 

a, - /3, + m, m = 1, ... ,ao, - a,. 
Thus we deduce divisibility of the numerator polynomial 
(24) by the set of factors 

ao,- .6.,. 

II (a, - /3, + m), ao, > a,. 
m=1 

Applying a similar argument to the conjugate numera
tor polynomial 
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( 
A ,10) 

TJ O'(a) O'o(a
o
)' ueW, O'oEWo, 

we deduce divisibility of this latter polynomial by factors 
uo(tJ.o),. - (T (.6),. 

II (a, -/3, + m), O'o(ao), >0' (a),. 
m=1 

But in view of the Weyl group symmetries of Eq. (25) we 
may write 

(
A ,10) __ 1 __ 1 (A ,10) 

TJ a a o = 0' 0'0 TJ 0' (a) O'o(ao)' 

which would imply [cf. Eqs. (14)] that the numerator po
lynomial (24) is divisible by the further set of factors 

000 (60 ), - 00 (6), 

&-1&0- 1 II (a,-/3,+m) 
m= 1 

uo(.6.o),. - a (.6.),. 

= II (a ooo-,<,)-/3oo-,(,)+m). 
m=1 

O'o(ao), > 0' (a) " 

Taking into account arbitrary permutations 0' = 1T, 

0'0 = 1ToeSh [cf. Eq. (5)] we deduce divisibility of the nu
merator polynomial by the set of factors 

h ~o,- 6 k 

II II (a,-/3k+ m ). 
"k= 1 m = 1 

.dOr > ~k 

(28a) 

So far we have applied only permutational symmetries 
and we need to take into account the fact that the Weyl 
groups also contain sign changes of the weight components. 
In view of Eq. (14) we see that such reflections have the 
effect of interchanging the roots /3k~k' a,+-+a,: a reflec
tion eeZh

, which changes the sign of the k th component of a 
weight (k<h), effects the transformation 

e/3k =Pk. ePk =/3k 

[and a similar statement for sign changes of the 0 (n) weight 
components]. Thus, taking into account sign changes of the 
weight components, we deduce, from Eq. (28a), divisibility 
of the numerator polynomial (24) by the additional set of 
factors 

h 6 0,+ 6 k 

II II (a, - Pk + m). 
,.k= 1 m + 1 

.6.0 ,> - llk 

h - (~o,+ 6 k ) 

II II Ca,-/3k+ m ). 
,.k= 1 m= 1 

.6.0 ,.< - tJ. k 

h 6 k - 6 0 , 

II II Ca, -Pk +m), 
"k= 1 m= 1 

4 0,. < tJ. k 

(28b) 

(28c) 

(28d) 

where the roots /3 k, P k' a" a, are given by Eqs. (13) and 
(16). respectively. 

So far we have not applied conditions (ii) and (iii) of 
Eq. (27). However, it turns out that for the orthogonal 
groups these latter conditions are redundant. In fact (see the 
Appendix) condition (ii) ofEq. (27) (together with all per
mutational symmetries) yields precisely the set of factors 
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(28d) while condition (iii) (together with permutational 
symmetries) yields precisely the set of factors (28c). Thus 
there are no new factors to be obtained by further examina
tion ofEq. (27). 

It is our aim now to demonstrate that the numerator 
polynomial ofEq. (24) is given by the products ofEq. (28): 
i.e., 

h ~O'+~k 

X II 
"k= 1 

II (a,-Pk+m) 
m=1 

h - (~O'+~k) 

X II II (a, -13k + m) 
',k= 1 m=1 

~Or< - /:;.k 

h ~k - ~o, 

X II II (a, - Pk + m), (29) 
"k= 1 m= 1 

~Or<6.k 

We note that Eq. (29) determines a monic polynomial func
tion, which satisfies the Weyl group symmetries ofEq. (25) 
as required. It remains to demonstrate that the total number 
off actors on the right-hand side (rhs) ofEq. (29) is equal to 
the degree of the polynomial function (24): it is given by the 
integer r), + r;.., with r), and r;.., as in Eq. (26). 

In view of Weyl group symmetry it suffices to consider 
the semimaximal case: i.e., Il. = A, Il.o = Ao in Eq. (29). In 
such a case we see that the total number off actors on the rhs 
of (29) is given by 

h It 

N= L (Ao, -Ak ) + L (Ao, +Ak ) 
"k= 1 "k= 1 
Ao,>),k 

h 

+ "t;, 1 (Ak - Ao,) 

Ao,>),k 

h h 

= L (n - 2r)Ao, + L (n + 2 - 2k)Ak 
,=1 k=1 

as required, where we have applied the betweenness condi
tions ofEq. (20). Thus we have proved our assertion that the 
numerator polynomials are given by Eq. (29). 

Following our U (n) derivation we may express the de
nominator polynomials of I, Eq. (62), in terms of the char
acteristic roots 13k and a, by noting that if ae«P+, aoe«Po+ , 
then 

1969 

(I" +o,a) = 2( I" + o,a) =13, -/J" a = E" 

(I" + o,a) = (I" + o,a) 
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{
a, - ak' ao = EOr - EOk' 

= r#~ 
a, - ak, ao = Eo, + EOk' 

Substituting this into I, Eq. (62), we obtain the following 
expressions for our denominator polynomials: 

o(~ ~~ = O{~)02(~~' 
where 

It ~'+~k 

X U II ( 13, - Pk + m - 1) 
m=1 

It - (~'+~k) 

X U II ( Pr - Pk + m - 1) 
m=1 

(30a) 

and 

~'-~Ok 

II (a, -ak +m) 
m=1 

~'+~k 
II (a, -ak + m) 

m=1 

- (~'+~k) 

II (a, - ak + m). (30b) 
m=1 

Thus our optimal RWF's for the imbedding O(2h + 1) 
::JO(2h) are given by the rational polynomial functions 

(
A Aol 

(
A Ao 1 _ C 11 Il. Il.J ( 1"11"0) 

P Il. Il.J( 1"11"0) - ),'),0 (A Ao 1 ,(31) 

o Il. Il.J ( 1"11"0) 

where the numerator and denominator polynomials are giv
en by Eqs. (29) and (30), respectively, where it is under
stood that the characteristic roots 13 k and a, are given by [cf. 
Eqs. (13) and (16)] 

13k = I"k + n - k, a, = 1"0r + n - 1 - r, 

Pk = n - 1 - 13k = k - 1 - I"k' 

a, = n - 2 - a, = r - 1 - 1"0,' 

r,k = 1, ... ,h. (32) 

We have in particular for the semimaximal case [i.e., Il. = A, 
Il.o = Ao in Eq. (31)] the results 

".,{A Aol It Ao,-),k 

"U AJ = ,~l JI (a, - 13k + m) 

It ),k - Ao, 
X TT II (a, - Pk + m) 

tt, m= 1 
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8~ ~j =81~)82~j. (33a) 

where 

(33b) 

(33c) 

It remains now to determine the numerical constant 
C,t,A. ofEq. (31). To this end we note that I. Eq. (47). im
plies the result 

( 1'11'0) = (010) 

from which we obtain [cf. I. Eq. (86a)] 

C _ 8~ ~j 
,t,,t. - 11~ ~j 

(34a) 

Substituting J-Lk = J-Lo, = 0 into Eqs. (32) and (33). we 
thereby obtain [cf. I. Eq. (86)] 

" (A, - Ak + k - r - 1 )!(Ao, + AOk + n - r - k)! " (Ao, - AOk + k - r)!(A, + Ak + n - r - k)! 
~~=IT IT . 

,~\ (Ao, - Ak + k - r - 1 )!(A, + AOk + n - r - k)! ~\ (A, - AOk + k - r)!(Ao, + Ak + n - r - k)! 

IV. OPTIMAL RWe', FOR 0(2h)=>0(2h -1) 

It is our aim in this section to determine all optimal 
O(n + 1): O(n) RWC's for the case where n = 2h - 1 is 
odd. In this case we recall from I. Sec. V. that the numerator 
polynomial ofEq. (24) is to determine a polynomial in the 
characteristic roots {3 k .a, of degree r,t + r,t •• where the inte
gers r,t and rAo are now given by [see Eq. (4) and cf. Eq. 
(26) ] 

II 
r,t = L (A.a) = 2(A.8) = L (n + 1 - 2k)A.k' 

a>O k= I 

II-I 
rAo = L (Ao,ao) = 2(Ao.80 ) + LAo, 

a.>0 ,= I 
II-I 

= L (n + 1 - 2r)Ao, (35) 
,= I 

where we have used Eqs. (3) and (15), 
Following our previous derivation suppose that 

(J-LIJ-Lo)e..t'" is a lexical weight. We then deduce. as before. 
that the numerator polynomial of Eq. (24) vanishes if the 
weight (J-L + ~IJ-Lo +~) is nonlexical. Hence we deduce. 
from Eq. (20). a vanishing contribution whenever the fol
lowing situations occur: 

m (J-Lo+~),>(J-L+~),. 
r= 1 ..... h - 1. 

(ii) (J-L + ~),+ I > (J-Lo + ~)" (36) 

(iii) -(J-L+~)II>(J-LO+~O)"-I' 

In case (i) we necessarily have 

(J-Lo + ~o), = (J-L + ~), + m. for some min Z+. 

which. in view of the lexicality of the weight (J-L IJ-Lo). can 
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(34b) 

only occur if ~ > ~,. In such a case we deduce divisibility 
of the numerator polynomial (24) by the set of factors 

(J-Lo+~o), - (J-L+~),-m 

= a, - {3, + ~o, - ~, - m + 1. 

m = 1 ..... ~, - ~,. 

or equivalently by factors 

a, -{3, + m. m = 1 ..... ~, - ~,. 

Thus we deduce divisibility of the numerator polynomial 
(24) by the set off actors 

Ao.-"'. 
II (a, -{3, +m). ~,>~,. 

m=1 

Applying the Weyl group symmetries of Eq. (25) as 
before. we then deduce (by considering permutational sym
metries only) divisibility of the numerator polynomial (24) 
by the set of factors 

II - I " Ao.- "'k 
II II II (a,-{3k+ m ). 
,-I k=1 m=1 

AD,> A" 

(37a) 

If now we take into account that the Weyl groups of 
O(n + 1) andO(n) also contain sign changes of the weight 
components we then deduce. from the factors (37a). divisi
bility of the numerator polynomial (24) by the additional 
factors 

,,- I II "'0.+ "'k 
II II II (a,-Pk+ m ). 
,=1 k=1 m=1 
"'0.> - "'k 

(37b) 
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h - 1 h - (~, + Ll.k> 

II II II (a, -13k + m). 
,=1 k=1 m=1 

Ll.o,< - Ll.k 

h-I h Ll.k-~' 

II II II (a, -Pk +m). 
,=1 k=1 m=1 

Ll.o,< LI.. 

(37c) 

(37d) 

As before. it turns out that conditions (ii) and (iii) of 
Eq. (36) are redundant. In fact (cf. the Appendix) condi
tion (li) ofEq. (36) (together with all permutational sym
metries) yields precisely the set off actors (37d) whilecondi
tion (iii) (together with all permutational symmetries) 
yields precisely the set of factors (37c). So there are no new 
factors to be obtained by further examination ofEq. (36). 

It is our aim now to demonstrate that the numerator 
polynomial of Eq. (24) is given by the products of Eq. (37): 
i.e .• 

h - 1 h Ll.o, + LI.. 

X II II II (a, -Pk +m) 
r=1 k=1 m=1 
40,> - Ak 

h - 1 h - (~+ LI..> 

X II II II (a, -13k +m) 
,=1 k=1 m=1 
~,< -Ll.k 

h -I h LI..-~, 

X II II II (a, -Pk + m). (38) 
,=1 k=1 m=1 

~,<LI.. 

We note that Eq. (38) determines a monic polynomial func
tion. which satisfies the Weyl group symmetries ofEq. (25) 
as required. It remains to demonstrate that the total number 
offactors on the rhs ofEq. (38) is equal to the degree of the 
polynomial function (24): in this case it is given by the in
teger rA- + rA-o with rA- and rA-o as in Eq. (35). 

In view of Weyl group symmetry it suffices to consider 
the semimaximal case: i.e .• 4 = A. 40 = Ao in Eq. (38). In 
such a case we see that the total number of factors on the rhs 
of Eq. (38) is given by 

1971 

h-I h h-I h 

N= L L (Aor -Ak ) + L L (Ao, +Ak ) 
r=1 k=1 ,=1 k=1 

h-I h 

+ L L (Ak -Ao,) 
,= 1 k= 1 

A.o,<A-. 

h-I h 

= L (n + 1 - 2r)A.o, + L (n + 1 - 2k)Ak 
r=1 k=1 

J. Math. Phys., Vol. 27, No.8, August 1986 

as required. where we have applied the betweenness condi
tions of Eq. (20). This is enough to establish the result that 
the required numerator polynomials are given by Eq. (38). 

Following our previous derivation we may express the 
denominator polynomial on. Eq. (62). in terms of the char
acteristic roots 13 k and a, by noting if aeCP+. aoeCPo+ • then 

~' -13k' a=E, -Ek' 
(J.L +~.a) = (J.L +~,a) = 13- _ 

, - k. a - E, + Ek • 

(J.Lo + ~o.ao) = 2( J.Lo + ~o.ao) = a r - a,. a o = Eo,. 

(J.Lo + ~o.ao) = (J.Lo + ~o.ao) 

{
a, - a k• ao = Eo, - EOk. 

= a r -ak• ao = Eo, + EOk' 

Substituting this into I. Eq. (62). we obtain the following 
expressions for our denominator polynomials [cf. Eq. 
(30) ]: 

~(~ ~~ = ~1(~)~2(~~' 
where 

(
A) h LI.,- Ll.k 

~I 4J = J!I J1 (p, -13k +m -1) 

LI.,> LI.. 

LI., + LI.. 

II (13, -Pk + m - 1) 
m=1 

h - (LI., + LI..> 

X ,~ II (P, -13k +m -1). 
m=1 

(39a) 

h-I ~,+Ll.o. 

X !l II (a r - ak + m) 
m=1 

h-I - (~,+Ll.o.> 

X !l II (a, - a k + m). 
m=1 

(39b) 

Thus our optimal RWF's for the imbedding O(2h) 
::> 0 (2h - 1) are given by the rational polynomial functions 

( A A
o

' 

(
A Ao' _ C 11 4 401( J.L1J.Lo) 

p 4 401( J.L1J.Lo) - A-.A.o -.I A A
o
' • (40) 

V\4 401 ( J.L lJ.Lo) 

where the numerator and denominator polynomials are giv
en by Eqs. (39) and (40). respectively. it being understood 
that the characteristic roots 13k and a, are given by [cf. Eqs. 
(13) and (16)] 

/3k = J.Lk + n - k, a r = J.Lor + n - 1 - r. 

Pk = k - 1 - J.Lk. a, = r - 1 - J.LOr' 

r= 1 ..... h-l. k= 1 ..... h. (41) 

We have in particular for the semimaximal case [i.e .• 4 = A. 
40 =Ao in Eq. (40)] 
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h I Ak - AOr 

X II II (ar -13k +m) 
k<r m = I 

h I h Aor+ Ak 

XII II II (a r -13k+ m ), 
r=lk=lm=1 

6~ ~~ = 61~f2~~' 

(42a) h-I AOr+AOk 

X II II (a r ak + m). (42c) 
r<k m= I 

It remains now to determine the numerical constant 
CA."" ofEq. (40), which is given by [cf. Eq. (34a)] 

where 

(42b) 

( plpo) = (010) 

Substituting flk = flOr = 0 into Eqs. (41) and (42), we 
thereby obtain the result [cf. Eq. (34b)] 

CA"" = IT (Ar Ak + k - r - 1 )!(A, + Ak + n - r - k)! hif (Ao, - AOk + k - r)!(AOr + AOk + n - r - k)! 

, r<k (Ao,-Ak+k-r-l)!(Aor+Ak+n-r-k)! r<k (Ar-AOk+k-r)!(Ar+Aok+n-r-k)! . 
(43) 

V.EXAMPLES 

We consider here some interesting examples of our previous formulas where we have found it convenient, as before, to 
consider the cases n even and n odd separately. 

A. RWe's for O(2h + 1):J O(2h) 

(i) In the special case h = 1, all 0(2) Wigner coefficients are trivially unity, hence the 0(3): 0(2) RWC's correspond to 
the full 0(3) Wigner coefficients. In this case our optimal RWC's are given by 

( I m)(l'lm') = I (I' ± / II 
P ±I m m+m'm 

(44a) 

1/( ± ~ :)U'lm') 
=C/ m ' 

, 6( ± ~ :)(l'lm') 

(44b) 

(45) 

In this case our 0(3) and 0(2) roots are given by3 PI = I' + 1,131 -I', a l = m', al = - m'. Substituting this into 
Eqs. (44) and (45) above, noting that the constant C/,m of Eq. (34) in this case is given by 

C/,m = (2l)!/(l- m)!(l + m)!, 

we obtain immediately the results (cf. Ref. 12) 

(
I m)U' ') (21)!(2/')!(I + l' - m - m')!(1 + I' + m + m')! 

P 1 m 1m (1- m)!(l' - m')!(1 + m')!(I' + m')!(21 + 2/')! ' 

(46) 

( 
I m)U' m') = (I' + m')!(I' m')!(2/' + 1 - 2/)!(2/)! , 

P -I m I (l + m)!(l- m)!(l' + m' -/ + m)!(l' -/- m' - m)!(21' + I)! 
where it is understood that if any of the terms in factorials are negative then the quantity vanishes. Formula (46) enables an 
evaluation ofthe optimal 0(3) Wigner coefficients ofEq. (44a). 
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(ii) Suppose A = Al = EI is the highest weight for the fundamental vector representation of O(n + 1) and ..1.0 = 0 
[corresponding to the trivial representation of 0 (n) ]. We then obtain the fundamental RWF's p (!~ g) [resp. p (~Ek g )], 
denoted Ck (resp. Ck ) in Ref. 3. We find it useful in this case to define fundamental weights Ek, for k> h, according to 

(47) 

with Eh + I = 0 for n + 1 = 2h + 1 odd [which agrees with Eq. (47)]. Application of our previous formulas immediately 
implies the result 

P(~kl 0)=Ck =2(Pk-{3k)-I(Pk-{3k-1)-1 IT (Pk-{3p)-I(Pk-PP )-1 IT (Pk- ar- 1)(Pk- a r-1), 
~ 0 p=1 r=1 

k #h + 1, 

where we have adopted the notation [cf. Eq. (13)] 

{3n+2-k =Pk' k= 1, ... ,n + 1. 

Using the result 

Pk -13k - 1 = 2( Pk -{3h+ I)' k #h + 1, 

we may more usefully write 

(48) 

n+l n 

Ck =Cn+2_ k = IT (Pk-Pp)-I IT (Pk- a r-1), k#h+l. (49a) 
p,,<k r= I 

To obtain the RWF's Ck = p(E~ Ek g), we simply interchange 13k andPk in formula (49a) to give 

n+ 1 n 

Ck =Cn+2- k = IT ({3k-{3p)-1 IT ({3k- a r-1), k#h+1. (49b) 
p,,<k r=1 

Formulas (49) above, which in fact hold for all k = 1, ... ,n + 1, agree with Eq. (12) of Ref. 3 as required. We remark that Eq. 
( 49b) determines the eigenvalues of the 0 (n) -invariants of Eq. (17) in direct analogy with the U (n) case. 

It is interesting to note that it can be shown3.6 that Eq. (49) also holds for the case k = h + 1 and gives the R WF 

(50) 

This latter RWF is not included in our class of RWF's since it is not optimal (the zero weight is clearly not Weyl group 
conjugate to the highest weight E I)' This result therefore suggests that our results on 0 (n) might be extended to a larger class 
of RWF's. 

(iii) Consider now the case A = EI = AI,Ao = EOI = AOl [corresponding to the highest weightsofthefundamental vector 
representations of O(n + 1) and O(n)]. We then have the RWF's p(!~ :~:), where we define fundamental weights Ek 
(k = 1, ... ,n + 1) in accordance with Eq. (47) and similarly define fundamental weights EOr (r = 1, ... ,n): i.e., 

EOr = - EOn + I - r' 

Application of our previous formulas immediately yields the result 

p(EI EOI) = (ar -Pk + 1 )(ar -Pk + 2) IT (ar - {3p + 1 )(ar -Pp + 1) IT (al -Pk + 1 )(al -Pk + 1) 

Ek EOr (13k -{3d({3k -13k + 1) p=1 (13k -{3p)({3k -{3p) 1=1 (ar -al + l)(ar -al + 1) 
,,<k ,,<r 

h + 1 #k = 1, ... ,n + 1, r = 1, ... ,n. 

Using Eq. (48) and the relations 

{3h+ I - a r = a r -{3h+ 1+ 2, a r - a r = 2(ar -{3h+ I + 1), 

we may write 

p(EI EOI) = CkMr(Pk -ar)-I(Pk -ar _1)-I(Pk -ar _1)-I(Pk -ar - 2), 
Ek EOr 

with C k as in formula (49) and where Mr is given by 
n n+ I 

Mr = (_1)n IT (ar -al -l-DI.n+I_r)-1 IT (13p -ar ) 
1= I p= I 

n n+ 1 

=(_l)n II (ar-al+l+DI.n+l_r)-1 II ({3p-ar +l-Dp.h+ I )· 
1= I p=1 

(51) 

(52) 

This last equation determines the squared reduced matrix elements3.6 of the O(n) vector operator rPi = {ai.n + I} [where we 
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note that Eq. (15) of Ref. 3 erroneously has the formulas for Mr and M, interchanged]. 
Equation (52) above agrees with formula ( 19) of Ref. 3 as required. It is interesting to note3 that Eq. (52) also extends to 

the case k = h + 1 to yield the (nonoptimal) RWF's [cf. Eq. (50)] 

p(~ ::J = Ch+ IMr(f3h+ I - ar)-I( 13h+ I - a r - 1)-I( 13h+ I - a r - 1)-I( 13h+ I - a r - 2). 

This last example again illustrates that our pattern calculus for O(n) may be extended to include more general RWF·s. 
(iv) With regard to ourfundamentallexical weights [cf. Eq. (11)] (AsIAs±); (Ar lAo,). (A,IAor_ I) (r = 1 •...• h). we 

have. in accordance with our prescription. for the maximal cases 

p(AAs As:) = IT (a, -13k_+ 1) IT (ak -13, + 1). 
s As r<k 13r -13k r<k a, -ak + 1 

AOI)= IT (ak -13,_+ I)(ak -13r +2) IT (ar -13k + l)(a, -13k +2) 

AOI r<.k (13r - 13k)( 13r - 13k + 1) r<k (ar - ak + 2)(a, - ak + 1) 

II
h (a, -13k + l)(a, -13k + l)(ak -13, + l)(ak -13r + 1) 

X • 
r<.1 ( 13r - 13k)( 13r - 13k )(ar - ak + 1 )(ar - ak + 1) 
k>1 

(
AI Aul 1) { _ _ h -} 

1] AI A - = II n (a, -13k + l)(ar -13k +2) n (ar -13k + l)(ar -13k + 1) 
"'01-1 ,<1 tft t~1 

h 

xII (ak -13r + I)(ak -13r + 1). 
r<.1 
k>1 

13k) II (13k -13r)(13k -13, + 1)}. 
k<., 

~2(~OI-t) = II {IT (a r -ak + l)(ar -ak + 1) II (ak -ar + 2)(ak -ar + I)}. 
'1QI-t r</ k>/ k<, 

The corresponding constants CA.,A.
o 

of Eq. (34) are given by 

CA A - = 1. CA/,Ao/_ 1 = 2. so , 

We remark that for the maximal cases (Ao, =A,. r = l •...• h) it is easily deduced from Eq. (34) that the constants CA.,A.. are 
unity. 

In analogy with the unitary groups we call the above RWF's elementary. It can be shown that every O(n + 1): O(n) 
lexical weight can be uniquely expressed as a positive Z-linear combination of elementary lexical weights. Hence the elemen
tary R WF's above will playa role in the 0 (n) pattern calculus analogous to that played by the elementary RWF's in the U (n) 

pattern calculus. 

B. RWC's for O(2h)::>O(2h -1) 

(v) In the special case h = 2 we note that a general (multiplicity-free) 0(4) Wigner coefficient may be expressed 

(

'P-+tl A 

j I 
m" m 

Since all 0(3) Wigner coefficients may be obtained (cf. Ref. 12) it is thus clear that all (multiplicity-free) 0(4) Wigner 
coefficients can be obtained from the O( 4): O( 3) RWC·s. Our formula enables us to evaluate all O( 4): O( 3) optimal RWC's: 

p(~ ±~)(JLII') I~,:~II~ ; j,)r. tl= ±(At.A2).±(A2.At)· (53) 

For the semimaximal case we have 
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where, according to our prescription, 

C _ (21 + 1)1(..1. 1 -A2)!(A1 +A2)! 
A,1 - (I-A2)!(I +A2)!(A 1 - 1)!(A 1 + I + I)!' 
(A I) 1- A2 AI - I _ AI + I _ A2 + I _ 

7J\...t I = Jl (a 1 -/32 + m) J!1 (a1 -/31 + m) Jt (a 1 -/31 + m) J!1 (a 1 -/32 + m), 

(A) AI - A2 AI + A2 _ (I) 21 

~1\...t = J!1 (/31-/32 +m -1) Jl (/31-/32 +m -1), ~2 I = J!1 (a 1-a1 +m). 

In this case our 0 ( 4) and 0 (3) characteristic roots are given by3 

/31 =P,1 +2, /32 =P,2 + I, Pl= -P,I' P2=1-P,2, a 1=1'+I, a 1= -I'. 

Substituting into the above formulas we obtain the result 

IG:r.II~ ; ~)12 
= 

(21 + 1)!(2/' + 1)! (AI - A2)!(A1 + A2)!( P,1 - P,2)!( P,1 + P,2)! 

(2/' + 21 + 1)! (1-..1. 2)1(1 +A2)!(I' -P,2)!(I' +P,2)! 

(I' + 1- P,2 - A2)!(I' + I +P,2 +A2)!( P,1 +..1.1 -I-I')!( P,1 +..1.1 + I + I' + 1)! 

Applying Weyl group symmetry we may similarly evaluate 
all the optimal RWF's ofEq. (53). 

(vi) In analogy with example (ii) we consider the spe
cial case where ..1.= E"1' ..1.0 = O. Then we obtain, in view of 
our prescription, the RWF's 

p(:: ~)=Ck = ~ ilk (Pk _/3p)-I(Pk _Pp )-1 

h-I 

X II (Pk - a r - 1)( Pk - a r - 1), 
r= I 

k = I, ... ,h. 

In this case we may use the result 

Pk - /3k = 2(Pk - a h ) 

to give the more suggestive formula 

p(:: ~) = Ck = Cn + 2 - k 

(54a) 

which can be shown to hold for all k = I, ... ,n + I, where we 
adopt convention (47) for defining weights E"k 

(k = I, ... ,n + 1). In analogy with formula (49b) we have 
also the result 

p( _:: ~) = Ck = Cn + 2 - k 

n+1 

= II (/3k _/3p)-1 
p#k 
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n 

X II (/3k -ar -I +~r.h)' (54b) 
r= 1 

Formulas (54) agreewithEq. (12) of Ref. 3 as required, and 
determine the eigenvalues of the O(n)-invariants of Eq. 
(17). 

(vii) In analogy with example (iii) we consider now the 
case ..1.= E"1' ..1.0 = E"0l' In this case we obtain the following 
formula for our optimal RWF's: 

EOl) = (Pk - a r - 2) (Pk - a r - I) 

EOr (ar - a r - 2)(ar - a r - 1) 

X IT (/3p -~r - !)(!p - a r - 1) 

P# (/3k - /3p (/3k - /3p ) 

h-I (Pk -al-I)(Pk -ai-I) 
XII ' 1=1 (ar -al + I)(ar -al + 1) 

r = I, ... ,h - I, k = I, ... ,h. 
In this case we may use the results 

Pk - /3k = 2(Pk - ah)' a r - a r - I = 2(ar - a h ), 

r= I, ... ,h - I, 

to obtain the more suggestive formula 

P(:: ::~) = CkMr( Pk - a r - 1)-I( Pk - a r )-1 

X(Pk -ar _1)-I(Pk -ar -2), r#:k, 
(55) 

which holds for all k and r#:h, where Ck is given by formula 
(54) and Mr is given by3,6 
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n+ 1 _ 

Mr = (_1)n n (13k -ar) 
k=1 

n xn (ar -al -l-t5I,n+l_r +t5I,h)-I. (56) 
I#r 

This latter equation determines the squared-reduced matrix 
elements ofthe O(n) vector operator f/!i = ai,n + 1 ' 

Formula (55) agrees with Eq. (19) of Ref. 3 as re
quired. It is interesting to note the following formula ob
tained in Ref, 3 for the case r = h: 

(57) 

where Mh (the zero shift reduced matrix element squared) is 
still given by formula (56) (cf, Ref. 3). The R WF of Eq. 
(57) is nonoptimal [since the zero weight is clearly not con
jugate under the Weyl group to the O(n) highest weight Eo1 ] 

and hence formula (57) indicates an extension ofthe O(n) 
pattern calculus rules to certain nonoptimal R WF·s. 

(viii) With regard to our fundamental lexical weights 
[cf. Eq. (11)] (A.±IA.). (ArIAor). (ArIAor_l) 
(r = 1 ..... h - 1) we have, in analogy with example (iv), for 
the maximal cases 

h-l(ak -lJr+ l ) XU a r -ak + 1 ' 

Ao/) 1 (ar -13k + 2)(ar -13k + 1) 

AOI = U (ar - a k + 2) (ar - ak + 1) 

I (ak -13r+ 2)(ak-13r+ l ) 

X rl1 (13r - 13k)( 13r - 13k + 1) 

n
h (ar -13k + l)(ar -13k + 1) 

X -
r<1 ( 13r - 13k )( 13r - 13k) 
k>1 

hn-I (ak -13r + l)(ak -13r + 1) 
X , 

r<1 (ar - ak + 1) (ar - ak + 1) 
k>1 

while for the minimally tied cases [cf. I, Eq. (97)] we have 

(
AI AOI I) h -

1] - = n (ar -13k + l)(ar -13k + 1) 
AI Ao/-I rd 

h-I _ _ 

X 11 (ar -13k + l)(ar -13k + 1) 
M 
r>1 

xII (ar -13k +2)(ar -13k + 1). 
r<1 
k<1 

t5{~:) = ft (13r - 13k) ( 13r - 13k) 

k>1 

1976 J. Math. Phys., Vol. 27, No.8, August 1986 

I 

X n (13r - 13k)( 13r - 13k + 1), 
r<k 

t52(AO/_I) = Yrl (ar - ak + 1)(ar - a k + 1) 
A0/ _ 1 rd 

k>1 
/- 1 

X II (ar - a k + 2)(ar - a k + 1). 
r<k 

For the minimally tied cases we note that the constant C,t,,;,, 

of Eq. (43) reduces to 

CA"AoI_1 =!, 
while for the maximally tied cases (i.e., AOr = Ar, 
r = 1 ..... h - 1) the constant C';,';o of Eq. (43) is easily seen 
to give unity. 

Examples (viii) and (iv), together with the Weyl group 
symmetries ofEq. (25) [cf. I, Eqs. (34) and (38)] enables 
all elementary RWF's for the orthogonal groups to be evalu
ated in analogy with U(n). In particular, since all weights in 
the fundamental spinor representations are Weyl group con
jugate (via reflections only) to the highest weight, this en
ables all Wigner coefficients to be evaluated for the funda
mental spinor representations. 

VI. COMPOSITION OF RWF'S 

It was shown in I that the optimal R WF's of U (n) may 
be expressed as a product (or composition) of elementary 
R WF's (times a known constant C';,';o ). Such considerations 
are likely to be of importance, from the practical point of 
view, for obtaining the optimum way of expressing a RWC in 
actual calculations. Moreover such a calculus of RWF's has 
the advantage that it may be extended to calculate nonopti
mal R WF's by manipulating and multiplying elementary 
RWF's. To this end we conclude in this section with a begin
ning of a pattern calculus for O( n). 

Following the notation of! [see, in particular, Secs. IV 
and IX], let (A IA) denote a maximal lexical weight of 
O(n + I): O(n), i.e., the O(n) representation labels take 
their maximal allowed values 

{
h. n = 2h. 

Aor = Ar, r = 1, ... ,ho = h _ 1, n = 2h _ 1 . 

We clearly have the following expansion for the maximal 
lexical weight (A IA) [cf. Eq. (11)]: 

h-I 

(A IA) = L (Ar - Ar+ 1 )(Ar IAor) + U h (A. IAs+), 
r= 1 

n =2h, 

h-2 

= L (Ar - Ar+ 1 )(Ar IAor) 
r= 1 

+ (Ah + Ah _ I) (A,+ lAs) 

+ (Ah_ 1 -Ah )(As-IAs )' h = 2h - 1. 

We note that all the elementary lexical weights occurring in 
the above decomposition are maximal. Thus, by repeated 
application of I, Eq. (51), we obtain the following decompo
sition of a maximal R WF into elementary R WF's: 
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,,= 2h. 

=p(~:: ~:rh-I +Ahop(~:= ~:rh-I-Ah 

h - 2 (A Ao )A' - A, + I 

o JJ/ A: Ao: • n = 2h - 1. (58) 

As in thecaseofU(n} we note that all RWP's on the rhs are 
semimaximal and hence commuting so that the ordering is 
irrelevant. Equation (58) is clearly analogous to I. Eq. (94). 
obtained for the unitary groups. 

Now let (A IX) be a minimally connected lexical weight; 
i.e .• the O(n} representation labels take their minimal al
lowed values 

AOh=-Ah• AOr=Ar+ l • r=l •...• h-l. n=2h. 

AOh _ 1 =IAhl. Aor=Ar+ l • r=1 •...• h-2. 

n=2h-1. 

Clearly the fundamental lexical weights (Ar I Ao_ 1 ) 

(r = l •...• h - I) together with (A. I A.- ) [resp. (A.± IA.)] 
for n = 2h even (resp. n = 2h - 1 odd) are minimally con
nected. We note that. with the above definitions. the elemen
tary lexical weights (As± lAs). for n = 2h - 1 odd. are both 
minimally and maximally connected. 

We have the following expansion of a minimally con
nected lexical weight (A IX) into elementary minimal 
weights: 

(A IX) 
h-I 

= L (Ar-Ar+I)(ArIAor_I}+Uh(A.IAs-)' 
r=1 

n=2h. 

h-2 

= L (Ar-Ar+I)(ArIAor-l) 
r= 1 

+ (Ah + IAh I )(A/ lAs) 

+ (IAh I - Ah )(As-IAs)' n = 2h - 1. 

Thus by repeated application ofl. Eq. (50). we may expand 
a general minimally connected RWP into elementary 
RWP's according to 

pC i) 
= CAp (

As 

As 

A -)Uh h - 1 (A A ) s IT r '~r-I A-A+I o p , , 
As- r= 1 Ar AOr _ 1 

n =2h. 

(59) 

for so~e numerical constant C A depending only on the la
bels A,A. (and hence A). It is easily seen. by comparison with 
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examples (iv) and (viii) of Sec. V. that the constant CA of 
Eq. (59) is given by 

C A 
- 2aC - A~' (60a) 

where CA~ is given by Eqs. (34) and (43) and 

_ { -:t: (Ar - Ar+ I ). n = 2h. 

a - h-2 

L (Ar-A r+I ). n=2h-1. 
r= I 

(60b) 

Equation (59) is clearly analogous to I. Eq. (97). ob
tained for the unitary groups. However. unlike in the U(n) 
case. the constant CA ofEq. (59) is not generally unity. The 
proof of this result for U (n) follows because (see I. Sec. IX) 
the minimally connected U (n + 1): U (n) lexical weights 
correspond to semimaximal states whose weights are Weyl 
group conjugate to the highest weight. However. in the case 
of the orthogonal groups the maximal state is clearly a GT 
state but the remaining W-conjugate weight states are not 
GT states. Nevertheless Eq. (59) may be applied in analogy 
with I. Eq. (97). for the unitary groups. 

We now note that the fundamental lexical weights 

(Ar IAor) (r = 1 •...• h - 1). 

(ArIAor-l) (r= l •...• h-l). 

(As IA/ ). (As I As- ). n = 2h. 

(Ar IAor) (r = 1 •...• h - 2). 

(Ar IAor- I) (r = l •...• h - 1). 

(A/ lAs). (As-IA.). n = 2h - I. 

form a basis for H· X H ~ with corresponding dual basis 

(-Er+IIEor ) (r= 1 •...• h-1). 

(Erl-EOr) (r=l •...• h-1). 

(Eh IEoh ). (Eh 1- EOh )' n = 2h. 

( - Er+ IIEor) (r = I •...• h - 2). 

(Erl-EOr) (r= 1 •...• h-1). 

(EhIEoh _ I ). (-EhIEoh _ I ). n=2h-l. 

respectively. Thus we may expand an arbitrary O(n + 1): 
O(n) lexical weight (A lAo) into elementary lexical weights 
according to [cf. I. Eq. (98)] 

h-I 
(A lAo) = L (Ar - AOr) (Ar IAor- I ) 

r= I 

h-I 
+ L (AOr - Ar+ I )(Ar IAor) 

r= 1 

+ (Ah + AOh )(As IA/ ) 

+ (Ah - AOh )(As I As- ). 

n=2h. 

h-I 
= L (Ar -Aor)(ArIAor-d 

r= I 

h-2 

+ L {AOr -Ar+ I )(ArIAor) 
r= 1 
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+ (AOh _ \ - Ah ) (As-lAs)' 

n=2h-1. 

We may thus express an arbitrary lexical weight (A lAo) as a 
sum of maximally and minimally connected lexical weights 
according to [cf. I, Eq. (98)] 

(A lAo) = (A 'IA') + (A "IX "), (61a) 

where 
h-\ 

A' = L (Ao, - A,+ \ )A, + (Ah + AOh )As ' n = 2h, 
,= \ 
h-2 

= L (Ao, - A,+ \ )A, + (Ah + AOh _ \ )A/ 
,= \ 

and 
h-\ 

A" = L (A, - Ao, )A, + (Ah - AOh )As ' n = 2h, 
,= \ 
h-2 

= L (A, -Ao,)A" n = 2h - 1. (61c) 
,= \ 

Equations (61a)-(61c) above together with I, Eq. 
(50), immediately implies a decomposition 

A ' A" (A Ao'\ (A' A') (A" X") 
C A';:" P\.A, Ac! = P\.A,' A' 0 P\.A," X"' (62) 

where the constant on the lhs above is given by 

A' A" (A' A') A" IX " (A" X") (A ' IA ') 
C A';:" = P\.A,' A' ( ) = P\.A," X" ' 

which may be evaluated using Eqs. (33) and (42). 
Equation (62) is clearly analogous to I, Eq. (99), ob

tained for the unitary groups. The RWF's p(1: 1:) and 
p(1: r) may be decomposed according to Eqs. (58) and 
(59), respectively, whence Eq. (62), together with Weyl 
group symmetry, yields a decomposition of an arbitrary 
O(n + l):O(n) optimal RWF into a commuting product of 
elementary RWF's in direct analogy with the unitary 
groups. 
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APPENDIX 

It is our aim here to demonstrate that the factors divid
ing the numerator polynomial (24), deduced from condi
tions (ii) and (iii) of Eq. (27) (together with all permuta
tional symmetries), yield precisely the set of factors (28d) 
and (28c), respectively. Similarly conditions (ii) and (iii) of 
Eq. (36), yield the set off actors (37d) and (37c), respec
tively. 

To see this we deduce, from condition (ii) ofEq. (27), a 
vanishing contribution to the numerator polynomial (24) 
whenever the situation 

(fl + a),+ \ = (flo + ao), + m 

occurs for some meZ+ (since, in such a case, the corre
sponding RWC vanishes). Using the assumed lexicality of 
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the weight ( fl Iflo), we see that the possible range of m-val
ues is given by l<m<a,+ \ - ao,' Thus we can only get a 
vanishing contribution if a,+ \ > ao" in which case we de
duce divisibility of the numerator polynomial by the set of 
factors 

fl,+ \ + a,+ \ - flo, - ao, - m, m = 1, ... ,a,+ \ - ao" 
or, equivalently, factors 

fl,+\-flo,+m-I=p,+\-a,+m-I, 

m = I, ... ,a,+ \ - ao,' 

Thus we deduce divisibility of the numerator polynomial 
(24) by the set off actors 

A,+ I -<lo, 

II (P,+\ -a, +m -1), a,+\ >ao,' 
m=\ 

Taking into account all permutational symmetries on the 
roots P k and a" we deduce, from the above, divisibility of 
the numerator polynomial (24) by the set of factors 

h A,-Ao, 

II II (Pk-a,+m-I). (A1) 
,.k=\ m=\ 

tJ. k >.6.0" 

If we apply condition (iii) ofEq. (27) we similarly de
duce divisibility of the numerator polynomial (24) by fac
tors 

m - I - flh - flOh = m + n - 2 - Ph - ah' 

m = 1, ... , - (ah + a Oh )' 

i.e., we deduce divisibility of the numerator polynomial by 
the set of factors 

- (.:l.h + A Oh ) 

II (m+n-2-Ph- a h)' ah+aOh<O. 
m=l 

Applying all permutational symmetries to the roots Pk,a, 
we thus deduce divisibility of the numerator polynomial 
(24) by the additional set of factors 

h - (Ao,+ A,) 

II II (m+n-2-Pk- a ,). (A2) 
,.k= \ m=1 

We now note that Eqs. (13) and (16) imply the follow
ing relations between the O(n + 1) and O(n) roots: 

a, = n - 2 - a" Pk = n - 1 - Pk' 

Thus we have, for the factors ofEq. (A1), 

Pk -a, + m - I 

= (n - I -Pk) - (n - 2 - a,) + m - I 

=a,-Pk+ m . 

Thus Eq. (AI) may be alternatively written 
h tl.k - ~o,. 

II II (a,-Pk+ m ), 
,.k= \ m = \ 

l:J. k > tJ.o,. 

which are the factors ofEq. (28d) as required. 
Similarly, for the factors ofEq. (A2), we have 

m + n - 2 - Pk - a, 

= m + (n - 2 - a,) - Pk 

=a, -Pk +m, 
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which are the factors of Eq. (28c). In an analogous way it is 
easily deduced that conditions (li) and (iii) ofEq. (36) (to
gether with all permutational symmetries) yield the factors 
(37d) and (37c), respectively. 
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The supertableaux of the orthosymplectic groups OSP (2vI2p) and OSP (2v + 112p) are 
decomposed in sums of supertableaux of the superunitary group SU (vIP). 

I. INTRODUCTION 

The problem of the relation between orthosymplectic 
and superunitary supergroups, besides its mathematical in
terest, might be relevant for the study of supersymmetry and 
supergravity in physics. The oscillator method has been pro
posed for the construction of unitary irreducible representa
tions of noncompact supergroups I and applications to the 
orthosymplectic supergroups of the form OSP(m 14) have 
been investigated. 2-4 

The viewpoint chosen in this paper is different. First, we 
describe the relation between the superalgebra of 
OSP(2vI2p) and its maximal subsuperalgebra of U(vlp). 
Second, we translate the results in the language of supertab
leaux and we give the decomposition of the orthosymplectic 
supertableaux into sums of superunitary supertableaux for 
both cases of irreducible supertableaux and generalized 
atypical supertableaux. The extension of the results to the 
orthosymplectic supergroups OSP(2v + 112p) is straight
forward. 

The method is economical in the sense that we essential
ly use the properties of supersymmetry of the boxes of a 
supertableau avoiding tedious algebraic computations. The 
interpretation of the supertableaux in terms of representa
tions of the corresponding superalgebra is known for the 
superunitary case5

-
7 and the orthosymplectic one.8

-
10 The 

considerations made in this paper exclude the particular case 
of the supertableaux of OSP (212) already discussed in a pre
vious paper. 11 

II. ORTHOSYMPLECTIC LIE SUPERALGEBRA OF 
OSP(2vI2p) 

The Lie superalgebra of the orthosymplectic group 
OSP(2vI2p) has the rank v + k and it is simple. The nota
tionintroducedby Kac 12 isD(v,p) forv>2andC(p + 1) for 
v = 1. The sets ao and a l of even and odd roots are given by 

ao = {€ada + €f3df3;€iei + €jej ,2€ieJ, 

al = {€ada + €ieJ, 

witha < /3 = 1,2, ... ,v, i < j = 1,2, ... ,p, and € = ± 1. The di
mensions of the sets ao and a I are 

dim ao = 2v(v - 1) + 2p2, 

dim a l = avp. 

The even part Lo of the orthosymplectic superalgebra is 
the Lie algebra ofthe direct product Go = SO(2v) ® Sp(2p). 
Forv>2,Lo issemisimple,Lo = Dv + Cp • Forv = 1, Go has 
a U( 1) factor and Lo = Ao + Cp. 

The odd part L I of the orthosymplectic superalgebra is 
irreducible and it behaves like a (2v,2p) representation of 
Lo· 

The following notations are used for the infinitesimal 
generators. 

(i) For symplectic even generators, 

p, 
{
i = j, Cartan subalgebra, 

B 
I} i=/=j, root ei - ej , p(p - 1); 

root 2ei> 
{
i =j, 

Cij i =/=j, rootei +ej , i<j, 

p, 

!p(p - 1); 

D .. -, , 
{
i- j root - 2e i , p 

IJ i=/=j, root-ei -ej , i<j, !p(p-l). 

(ii) For orthogonal even generators, 

Cartan subalgebra, v, 

E€aa€pf3' root€a da+€f3df3, a</3, 2v(v-I). 

(iii) For odd generators, 

F€aaj' root €ada + ej , 2vp, 

G€aaj' root €ada - ej , 2vp. 

III. MAXIMAL SUBALGEBRA U(vlp) 

The maximal subsuperalgebra of the orthosymplectic 
group OSP(2vI2p) is the superalgebra of the superunitary 
group U ( vip) (see Ref. 4). Both superalgebras have the 
same Cartan subalgebra and therefore the same rank v + p. 

The superalgebra of U (vIP) is not simple. It contains a 
U ( 1) factor of generator QN commuting with all the other 
generators ofU (vip). The superalgebra of the special super
unitary group SU (vIP) does not contain QN and all its gen
erators are supertraceless. 

For v=/=p the superalgebra ofSU (vIP) is simple and it is 
noted A (v - l,p - l) by Kac. 12 For v = p the center of 
SU(plp) is not trivial and we must eliminate this center be
fore to get a simple superalgebra A (p - l,p - l). 

The even part 10 of the superalgebra ofU (vIP) is the Lie 
algebra of the direct product go = U (v) xU (p) with the in
clusions 

U(v) CSO(2v), U(p) CSp(2p). 

Both unitary groups U (v) and U (p) have a U (1) factor of 
respective generators Bo and Bs and the structure of 10 is 
simply 

10=Av_I EBAoEBAp_1 EBAo· 

Of course the U ( l) generator QN previously introduced is a 
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linear combination of Bo and Bs commuting with the 
U (vIP) generators. 

We first study the inclusion U(v) CSO(2v) and we 
choose the place ofU( 1) in the SO(2v) space by defining 

" Bo= LHa. 
I 

Using the commutation relations of Bo with the orthogonal 
generators we obtain a Jordan structure for the Lie algebra 
ofSO(2v): 

Bo = + 2, {E.,p}, !v(v - 1), 

Bo = 0, {Ha;E ±a=FP}' V, 
Bo= -2, {E_ a_ p }, !v(v-1). 

The generator of the U(v) subgroup is the subset 
Bo=O. 

We now consider the inclusion U(p) CSp(2p) and the 
natural choice for U (p) is the set of the p2 generators Bu' The 
U ( 1) generator B s is then defined by 

p 

Bs = LBjj. 
I 

Using the commutation relations of Bs with the sym
plectic generators we obtain again a Jordan structure for the 
Lie algebra of Sp (2p ) : 

Bs = + 2, {Cu}' !p(p + 1), 

B, =0, {Bu}, 

Bs = - 2, {Dij}' 

TABLE I. Quantum numbers ofthe generators ofOSP(2vI2p). 

Generators Bo Bs 

Ha 0 0 

E+ a+fI +2 0 

E±a~fI 0 0 
E_ a_fI -2 0 
By 0 0 
Cij 0 +2 
Dij 0 -2 
F+ a} +1 +1 
F_ a} -1 +1 
G+ a} +1 -1 
G_ a} -1 -1 

We have given, in Table I, the values of Bo and Bs for the 
orthosymplectic generators ofOSP(2vI2p). 

The location of U(vlP) in OSP(2vI2p) is defined by 
choosing the U ( 1) generator QN not in SU ( vIP): 

QN =Bo+Bs· 

We then get a Jordan structure for the orthosymplectic 
superalgebra and we now exhibit the SU (v) ® SU (p) 
® U ( 1 ) behavior of the various components, the U ( 1) gen
erator Q being normalized as usual: 

Q = (l/v)Bo + (l/p)Bs , 

Q=2/v, 

Q= l/v+ l/p, 
Q=2/p; 

(v,p), 

(v - 1,1) E9 (1,1), 

(1,p2 - 1) E9 (1,1), 

(v,p), 

Q= l/v-l/p, 
Q=O, 
Q=O, 

Q= -l/v+ l/p; 

Q= -2/p, 
Q= -l/v-l/p, 
Q= -2/v. 

The subsuperalgebra of U ( vIP) is the set of generators 
QN = 0 and, as expected, its dimension is (v + p) 2. The sub
set Q = 0 corresponds to the even part 10 and the two singlets 
( 1,1) are the generators Bo and B s. 

The components QN = ± 2 have the same dimension, 

!v(v- 1) + 2vp + !p(P + I), 

and they are associated to two contragradient irreducible 
representations ofSU(vlP), namely the covariant and con
travariant superantisymmetric tensors of order 2. 

It is then particularly attractive to use the supertableau 
language for the reduction of the adjoint representation of 
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I 
OSP(2vI2p) and the previous results are simply written 

a => E3 Q -+l $ 
N 

Ht --2 
N • 

(1) 

The component QN = 0 is fully reducible when v:/=p and 
nonfully reducible for v = p (see Ref. 13). 

IV. REDUCTION OF THE SUPERTABLEAUX OF 
OSP(2vI2p) 

Consider first the one-box supertableau ofOSP(2vl2p) 
of dimension 2v + 2p. The reduction of OSP(2vl2p) 
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:::::}U (vIP) is very simple and we get 

o =< o Q.+l 
N 

2v+2p= (v+p) + 

EJ 
Q ·-1 

N 

(v+p). 

(2) 

The reduction OSP(2vI2p):::::}U(vlP) of a legal ortho
symplectic supertableau Tis then obtained by using, step by 
step, the tensor product method. As an illustration consider 
the tensor product in OSP(2vI2p), 

(3) 

and its analog in U ( vIP), 

(4) 

After comparison with the results obtained for the ad
joint supertableau we get 

rn 
(5) 

When v-::/=p the tensor product (3) is fully reducible and 
the one-row supertableau ofOSP(2vl2p) with two boxes is 
irreducible. As a consequence of the relation (5) the irredu
cible representation of OSP (2v12p) associated to this super
tableau is decomposed in a direct sum of three irreducible 
representations of SU ( vIP). 

When v = p the singlet part of the supersymmetry sub
space in (3) cannot be isolated 13 and we have a two-general
ized atypical supertableau and a nonfully reducible repre
sentation ofOSP(2PI2p) (see Ref. 13). The decomposition 
( 5) is now replaced by 

CD (6) 

and the second term in the right-hand side is a two-general
ized atypical supertableau ofSU(plP)· 

The reduction OSP(2vI2p):::::}U(vlP) of a legal ortho
symplectic supertableau T is a decomposition of T in legal 
supertableaux of the superunitary group SU ( vIP). We write 
symbolically 

(7) 

Let us call as Nc (Nc ) the number of covariant (contra
variant) boxes of the supertableau t. As an immediate conse
quence of the tensor product method the value QN (t) for the 
supertableau t is given by 
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(8) 

The supersymmetry properties of the boxes of the super
tableaux t are obviously governed by those of the orthosym
plectic supertableau T. In particular the non-negative inte
gers Nc and Nc are restricted by 

O<.Nc + Nc <N, (9) 

and the allowed values of QN (t) are 

QN(t) = N,N - 2,N - 4, ... ,2 - N, - N. ( 10) 

The maximal value QN = N corresponds to t = T and 
the minimal value QN = - N to the contragradient super
tableau t = T. 

Let us emphasize that the supertableaux t entering in the 
right-hand side ofEq. (7) must not only respect the super
symmetry properties of the supertableaux Tbut also be legal 
supertraceless supertableaux of SU ( vIP) . 

Moreover the orthosymplectic supertableau T being 
self-contragradient the superunitary supertableaux t appear
ing in the decomposition (7) either are self-contragradient 
supertableaux-and this may occur only when zero is an 
allowed value of QN, which implies N even-or come into 
pairs of contragradient supertableaux with opposite values 
of QN' Let us give, as a simple illustration, the reduction of 
the one-row supertableaux of OSP(2vI2p). The superuni
tary supertableaux t have at most one covariant row and one 
contravariant row: 

I· 
k Q =k-k 

N • 

(11 ) 

When the orthosymplectic supertableau Tis irreducible 
the sum (7) is a direct sum of irreducible supertableaux and 
of generalized atypical supertableaux of SU ( vIP). In parti
cular when a t is not irreducible we find in the sum (7) the 
partners of t forming, with t, a generalized atypical supertab
leau. Of course, we have a full reducibility with respect to 

QN' 
When the orthosymplectic supertableau Tis not irredu-

cible the previous property for a nonirreducible t is no longer 
true and in order to reconstruct correctly the generalized 
atypical supertableau of OSP (2v12p) we must simulta
neously consider the decomposition of the various ortho
symplectic supertableaux forming with T the generalized 
atypical orthosymplectic supertableau. 

v. REDUCTION OF THE SUPERTABLEAUX OF 
OSP(2v + 112p) 

The Lie superalgebra of the orthosymplectic group 
OSP (2v + 112p) has the rank v + p and it is simple. The 
notation used by Kacl2 is B( v,p). The even part Lo of B( v,p) 
is Lo = Bv + Cp • It is semisimple for v> 1 and simple for 
v = O. The odd partLI ofB(v,p) is irreducible and it behaves 
like a (2v + 1,2p) representation of Lo. The dimensions of 
Lo and LI are, respectively, 

dimLo=v(2v+ I) +p(2p+ 1), 

dimLI = (2v+ 1)2p. 
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The generators of OSP(2vI2p) are also generators of 
OSP(2v + 112p) and, in addition, for B(v,p) we have (i) 2v 
orthogonal even generators, 

E~cP' root Eada; 

and (ii) 2p odd generators, 

Fj, root ej , 

Gj , root - ej' 

The subsuperalgebra of U ( vIP) is defined as in the pre
vious case (Sec. III) and the quantum numbers Bo and B s of 
the new generators are given in Table II. 

As a consequence, in the reduction OSP(2v + 112p) 
=>U (vIP), the adjoint representation of OSP( 2v + 112p) is 
decomposed in five components according to QN' The three 
components QN = ± 2,0 are the same as previously and the 
two new components QN = ± 1 are given, with SU (v) 
8 SU (p) $ U ( 1) properties as follows: 

{
{E+ a }, (v,!), Q= lIv, 

QN = + 1 { } Fj , (1,p), Q = lip; 

{
{Gj }, (1,p), Q = - lip, 

QN = - 1 {E -a}' (v,I), Q = -llv. 

These components have the same dimension (v + p) 
and they are associated to the two contragradient fundamen
tal representations of SU (vIP) described by the one covar
iant box and one contravariant box supertableaux. 

The decomposition formula (I) for the adjoint repre
sentation of B( v,p) has the form 

B 
(12) 

The considerations developed in Sec. IV for the super. 
unitary reduction of the orthosymplectic supertableaux of 
OSP(2vl2p) extend in a straightforward way with trivial 
modifications. 

For the fundamental supertableau of OSP (2v + 112p) 
we have one new contribution and the formula (2) has to be 
replaced by 

TABLE II. Generators ofOSP(2v + 112p) not in OSP(2vl2p). 

Generators Bo Bs 

E+a +1 0 
E_ a -I 0 
1j 0 +1 
GJ 0 -I 
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D ~O.1 ·8 
Q -+l Q -0 Q -+1 

N N N, 
(13) 

and, as given by the tensor product method, the decomposi
tion of the supersymmetric tensor of rank 2 takes now the 
form 

.8 • m 
(14) 

Q ··-1 Q --7 N N. 

Equations (8) and (9), restricting the superunitary su
pertableau t entering in the decomposition formula (7), are 
still valid. However all integer values of QN (t) between + N 
and - N are now allowed and we replace Eq. (10) by 

QN(t) = N,N - I,N - 2, ... ,1 - N, - N. (1S) 

The reduction OSP(2v + 112p)=>U(vlP) isalsoconve
niently obtained through the chain of subsupergroups 

OSP(2v+ 112p)=>OSP(2vl2p)=>U(vlP). 

Combining the results of the Sec. IV and of Appendix A 
we get the desired result. As an illustration we give, in Fig. I, 
the reduction of the fourth-order tensor with mixed super
symmetry whose supertableau is a square. 

Ell EE,. EP + CD 
D 

EE= 
D 

EP= 

m·rn.rn 
D 

QN-+2 QNoO QN-·2 

FIG. I. R.eduction of the square supertableau ofOSP(2v + 112p). 
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VI. CONCLUDING REMARKS 

By using the tensor product method we have obtained 
the reduction of the supertableau of the orthosymplectic 
groups OSP(2vI2p) and OSP(2v + 112p) in superunitary 
supertableaux ofSU (v~). As a by-product of these results it 
is straightforward through the decomposition formula (7) 
for supertableaux to obtain the reduction of the irreducible 
and nonfully reducible representation of OSP(2vI2p) and 
OSP (2v + 112p) described by supertableaux in terms of ir
reducible and nonfully reducible representations of the su
perunitary group SU (v~). This problem, being just a ques
tion of careful and patient computation, will not be treated 
here and we shall only give a few examples in Appendix B for 
the case of reduction OSP (214) ::::}SU ( 112). 

APPENDIX A: SUPERTABLEAUX OF OSP(2vI2p) AND 
OSP(2v + 112p) 

The two sets oflegal supertableaux ofOSP(2vI2p) and 
OSP (2v + 112p) are identical and the corresponding super
tableaux T have, at most, v rows and p columns of arbitrary 
length. 8 However, according as Tis viewed as a supertableau 
ofOSP(2vI2p) or as a supertableau ofOSP(2v + 112p), its 
dimension, the nature of its atypicity, and its interpretation 
in terms of representation of the relevant superalgebra are 
different. 

Obviously OSP(2vI2p) is a subsupergroup of 
OSP(2v+ I12p) and the reduction OSP(2v+ 112p) 
::::}OSP (2vI2p) of the fundamental representation of B( v,p) 
is conveniently written in the supertableau language as 

~D 
D 

(2v+ 1 +2p) = (2v+2p) + 1. (AI) 

We call Xo the bosonic index associated to the 
OSP(2vI2p) singlet of the previous decomposition. The de
composition of a supertableau T of OSP (2v + 112p) is then 
obtained, by using the tensor product method and the result 
is a sum of super tableaux ofOSP(2vI2p): 

The supertableaux T of the previous sum are construct
ed from T by suppressing 1,2, ... boxes, where the index Xo 

can be inserted in a way compatible with the supersymmetry 
properties of the boxes of T. 

As an illustration consider the one-row and the one
column supertableaux. In the case of a one-row supertab
leaux all boxes can receive the bosonic index Xo and we get 

k=h 

I~ 
L...---...,------'s 

(A2) 
D k 

We only have one place for the bosonic index Xo in one
column supertableau and the decomposition is simply 
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(A3) 

c-1 
D • 

D 

The two relations (A2) and (A3) are easily checked by 
using the dimension formulas for orthosymplectic supertab
leau and for that purpose they just emerge as consequences 
of the properties of the combinatory coefficients. 

APPENDIX B: REDUCTION OF THE OSP(214) 
SUPERTABLEAUX 

The supertableaux of the orthosymplectic group 
OSP (214) have been classified and interpreted in Ref. 9. The 
results are the following. 

( 1 ) The one column supertableaux (C2 = 0) are irredu
cible and atypical; they describe a self-contragradient irredu
cible atypical representation of OSP (214) . 

(2) The two-column supertableaux (C2> 1, C3 = 0) are 
irreducible and typical; they describe a self-contragradient 
irreducible typical representation of OSP (214). 

(3) The two-column and one-row supertableaux 
(C3 = I) are typical or atypical. 

(3a) When typical they are irreducible and they de
scribe a direct sum of contragradient irreducible typical 
representations of OSP (214). 

(3b) When nontypical they are nonreducible and with a 
second atypical supertableau they generate a two-general
ized atypical supertableau, which describes either a self-con
tragradient or a direct sum of two contragradient nonfully 
reducible representations of OSP (214). 

Case 1: T is a one-column supertableau with four boxes: 

T= 

The reduction of T in supertableau of SU ( 112) is the 
following: 

~"~ (93 · [3 J,:Jrn · ED 

• (~. &11.-: m V-', 

" 1) 
Q =0 

N 

For the decomposition of the atypical representation 
{4Io,oh5 we get 
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[{413h]QN= +4 $ [{31 3}1O${2I l h]QN= +2 

$ [{213}16${111}g${OIO}d QN =o 

The reduction of Tin supertableaux of SU (112) is the 
following: 

$ [{l13}1O${OI2}s]QN=-2 

$ [{OI4h]QN= -4' 

Case 2: T is a two-column supertableau 

~N=+4 e (~+ qp + 8 + OJ)Q
N

a+2 

e (HfTI + EEB + ffi + 2 ED2 
Qn"O 

T= 

For the irreducible typical representation {412,O}160 we get 

[{412}12]QN= +4 $ [{31 3}16${210}4$ ({312h + 2{211h + {ll0}gho]QN= +2 

$ [{212}12${l12h2 + {213h + 2{111}g]QN=o 

$ [{113h6 $ {- 110}4 $ ({OI1}3 + 2{012h + {OI3h)20]QN= -2 $ [{ - lI2h2]QN= -4' 

Case 3: Tis a two-column, one-row, typical supertableau 

T= IIill =:}{5Il,O}64${111,O}64' rr:-
The reduction of Tin supertableaux of SU ( 112) is the following: 

For the decomposition ofthe two typical representations ofOSP(214) we get 

{511,O}64=:}[{5Il}g]QN= +5 $ [{41 1}g${512h2${31 0h]QN= +3 

$ [{210}4 $ {ll1}g $ ({312h + 2{21lh + {lIO}3)20]QN= + \, 

{I I 1 ,O}64=:} [ {- 110}4 $ {lllh $ ({OI3h + 2{012h + {OI1}3ho]QN= - \ 

$ [{211}g${ - lI2}\2 + {- 210}4]QN= -3 $ [{ - 3I l }g]QN= -5' 

Let us notice the appearance, in the components 
QN = ± 1, of nonfully reducible representations of 
SUe 112) of dimension 20. 

Case 4: T\ is an atypical nonirreducible supertableau. 
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The simplest cases correspond to one row with three and 
four boxes. The partners of T are one-row supertableaux 
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with, respectively one and zero boxes: 

32 

:::}{3Io,oho + 2{l10,oh + {olo,I}lo, 

(T3,T2 ) =1 ~ ........ -"'~ ....... -4 

32 

:::}{4Io,0}IS + 2{010,0}1 + {OII,O}ls' 

The reduction of the one-row supertableaux of 
OSP(214) is given by the general equation (10) and it will 
not be repeated now. For the atypical representations of 
OSP(214) involved in these two supertableaux we get 

{3Io,0}1O:::}{3loh + {21I}s + {010}1' 

{OIO,I}IO:::}{OIOh + {012}s + {- 210h, 

{4Io,0}ls:::}{410h + {311h + {l10}3' 

{OII,O}ls:::}{Ollh + {- III}g + {- 310}4' 

In the reduction of the nonfully reducible representa
tions ofOSP(214) associated to the two-generalized super-
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tableaux, the components QN = ± I in the first case and 
QN = ° in the second one are nonfully reducible representa
tions ofSU( 112): 

Q= +1, ({21I}s +2{IIO}3 + {oloh) 12' 

Q= -I, ({010}1+2{01Ih+{012}s)12' 

Q = 0, ({lIOh + 2{010h + {ol I}3>S' 
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The problem of determing a boson realization for an arbitrary irrep of the unitary simplectic 
algebra Sp(2d) [or of the corresponding discrete unitary irreps of the unbounded algebra 
Sp(2d,R)] has been solved completely in recent papers by Deenen and Quesne [J. Deenen and C. 
Quesne, J. Math. Phys. 23,878,2004 (1982); 25, 1638 (1984); 26, 2705 (1985)] and by 
Moshinsky and co-workers [0. Castaiios, E. ChacOn, M. Moshinsky, and C. Quesne, J. Math. 
Phys. 26, 2107 (1985); M. Moshinsky, "Boson realization of symplectic algebras," to be 
published]. This solution is not known in closed analytic form except for d = 1 and for special 
classes of irreps for d> 1. A different method of obtaining a boson realization that solves the full 
problem for Sp( 4) is described. The method utilizes the chain Sp(2d) :JSU(2) XSU(2) 
X ... X SU (2) (d times), which, for d>4, does not provide a complete set of quantum numbers. 
Though a simple solution of the missing label problem can be given, this solution does not help in 
the construction of a mapping algorithm for general d. 

I. INTRODUCTION 

Depending on how much further we shall be able to 
develop the ideas to be presented in this paper, they may be 
viewed either as an addendum to recent systematic studies of 
boson realizations for symplectic algebras, or as an alterna
tive approach to the entire subject. 

The current interest in symplectic algebras has its gene
sis in two distinct developments. One is associated with the 
Sp(6,R) model of collective motion/ where the introduc
tion of boson realizations may be viewed inter alia as a con
venience in the identification or isolation of specific collec
tive degrees of freedom contained in the model. Here three 
sets of authors2-4 have contributed to the solution of the 
problem of obtaining a closed form of boson mapping of the 
algebra SP(2d,R), where d is any integer. 

Quite independently, interest has been regenerated in 
the compact unitary symplectic algebras Sp (2d) [in connec
tion with the problem of understanding the microscopic ba
sis of the interacting boson model (IBM)] starting with a 
discussion of Sp (6) by Ginocchio. S This same model has 
been infused with potentially new physical significance in 
recent work, which attempts to free the concept of dynami
cal symmetry from its boson realization.6 

Stimulated by Ginocchio's work, one of the present 
authors and his collaborators 7 developed two methods and 
three different boson realizations for a subset of irreps of 
Sp( 4) [ = SO(5)], namely the irreps containing the vacu
um state of some simplified shell models. One of the methods 
and the corresponding realization derived by its means is a 
special case of the method applied to Sp(2d,R) in the pre
viously cited literature. 2-4 

Further work along these lines was inspired by the con
tinuing search for a microscopic basis for the IBM for de
formed nuclei. In this development, Bonatsos and Klein8 

0) On leave from Physics Department. Hunan University, Changsha. Peo
ple's Republic of China. 

studied the shell model algebra for identical nucleons cou
pled to spin-O. This is an algebra Sp(2d) for various d (de
pending on the shell) that is analyzed through the chain 
U(d) :JSU(3), with boson realizations constructed in an 
angular momentum coupled basis. This chain is of physical 
interest in connection with the pseudo-SU (3) approxima
tion9 for heavy deformed nuclei, which may provide a basis 
for or an alternative to the IBM. 

In other recent work, Hecht and Elliott lO have applied 
the method described in Refs. 2-4 to various physically in
teresting examples ofSp(4) and Sp(6). 

In Refs. 3 and 4 the problem of obtaining boson realiza
tions of an arbitrary irrep ofSp(2d,R) has been completely 
solved by a method that proceeds in two steps: (i) a non
Hermitian Dyson mapping ll is obtained first; and (ii) this 
mapping is Hermitized. The first step is simple and yields 
closed, analytic expressions for the generators of the algebra. 
Except for the case of Sp(2,R) and special classes of repre
sentations for Sp(2d,R), d> 1, the second step involves nu
merical processes and thus the general result is not yet 
known in explicit, analytic, and closed form. The same state
ment holds for Sp(2d). 

In this note, we shall derive a boson mapping for Sp( 4) 
in an explicit, analytic, and closed form by generalizing an
other ofthe mappings derived in Ref. 7, where it was intro
duced in connection with the monopole plus pairing mod
el,12 a simplified nuclear model. The remark of the opening 
paragraph of this paper refers to the absence, so far, of an 
algorithm extending the results to follow to arbitrary 
Sp(2d). 

In Sec. II, we review some basic properties of the algebra 
Sp(2d) and outline our approach to obtaining a boson real
ization. In Sec. III, we illustrate our method by deriving a 
realization for a special irrep ofSp( 4) (the so-called vacuum 
irrep). The same problem is solved for Sp( 6) in Sec. IV. The 
point of this latter exercise is made clear in Sec. V, where it is 
shown that we have thereby also solved the problem of find
ing a general boson realization of Sp(4), requiring only a 
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renaming of some symbols. In Sec. VI, we remark how the 
results are trivially modified so as to apply to Sp ( 4,R) or 
Sp (6,R). Finally Sec. VII is devoted to a preliminary discus
sion of an extension of the results of this paper. 

II. ALGEBRA AND METHOD OF MAPPING 

We concentrate on the bounded algebra Sp(2d). The 
corresponding results for Sp(2d,R), which require only tri
vial modifications, will be presented in Sec. VI. Let 1/Imo1/lt",j 
be a set of fermion destruction and creation operators satis
fying standard anticommunication relations, e.g., 

{1/Imj,1/It",.,.}=6mm.6j,.. (2.1) 

Here m are the components of a half-integral angular mo
mentum j, 

j 

L I = 2j + 1=20 , (2.2) 
m= -j 

but the physical nature of the index i is left unspecified (tem
porarily) except that it takes on the d values i = 1,2,3, ... ,d. 
The pair operators (in = - m) 

A; = (2.[0)-1 L (- l)j-m1/lt",j1/l~j = (Aj)t, (2.3a) 
m 

A;k = (20)-1/2 L ( - l)j-m1/lt",j1/l~k =A t = (Ajk)t, 
m 

(2.3b) 

and the multipole operators 

Nj = L 1/It",j1/lmj , (2.4a) 
m 

B. = (20)-1/2 ~ .I.t .• 1. =(20)-1/2N. 
rk ~ 'f'mr'f'mk- rk (2.4b) 

m 

and [up to an additive constant for (2.4a)] the generators of 
Sp( 2d) satisfying the algebra (with the omission of obvious 
relations) 

[Aj,At] =6jk [1- (N;lO)], 

[Ajk,A;k] = 1- (20)-'(Nj +Nk), 

[Akj,A];] = - (20)-1/ 2B1k , l=I=k, 

[Aj,Ald = -0- 1/2 Bki> 

[Bjk,Bk;] = (20)-'(Nj -Nk), 

[Bjk,Bk,] = (20)-1/ 2Bu , i=l=l. 

(2.5a) 

(2.5b) 

(2.5c) 

(2.5d) 

(2.5e) 

(2.5f) 

We have chosen deliberately not to define the generators 
in as concise a form as possible, distinguishing between the 
diagonal (i = k) and non diagonal (i =1= k) generators be
cause of the physical picture we wish to associate with the 
mapping we have in mind. In this interpretation the sum 
over m couples to angular momentum zero and the index i 
enumerates different single-particle levels, so that Sp(2d) is 
an algebra of angular momentum zero operators referring to 
d single-particle levels. 

This shell model picture suggests a method for charac
terizing the irreps of Sp(2d). The simplest irrep is the one 
that contains the vacuum state as the state of minimum 
weight. This irrep is identified as the collective irrep in the 
corresponding work on Sp (2d,R ).3,4 In the present context 
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we prefer to call it the vacuum irrep, the only one studied in 
our previous work. 7 A nonorthonormal but linearly inde
pendent basis for this representation is provided by the set of 
vectors 

i< j 

where 10) satisfies the equations 

Aj 10) = Ajk 10) = Nj 10) = N jk 10) = 0 . (2.7) 

The importance for us of these well-known observations is 
that, just as in our previous work, we can, for our purposes, 
bypass a good deal of (elegant) formalism and note immedi
ately that if we introduce bosons ai,aj and aik,ajk associated 
with each of the corresponding capital letter operators, 
where 

[aj>at] = 6jk , 

[ajk,ap] = 6ij,6kl , 

[aj>aJd = 0, 

(2.8a) 

(2.8b) 

(2.8c) 

then the orthonormal basis is a Heisenberg-Weyl space of 
!d (d + 1) dimensions, namely, 

(ann, (apnij 
In, ... nd_I,d) = IT -- IT --10) (2.9) 

j Nj<jN 

can serve as a basis for the vacuum irrep. This is of interest 
provided we can realize the generators of Sp(2d) as func
tions of the boson operators with the following properties: 
(i) they satisfy the commutation relations (2.5), and (ii) 
they satisfy the conditions (2.7). 

We note that any such realization solves the problem of 
orthonormalizing the basis (2.6). This is done3

,4.7 by invert
ing the realization so as to express the boson operators as 
functions of the generators and therefore as operators in the 
shell model space. 

The realization to be studied will involve the chain of 
subalgebras 

Sp(2d):JSU(2)IXSU(2)2X'" XSU(2)d' (2.10) 

where SU(2)j is generated by [cf. (2.5a)] Ao A;, and 
!(OJ - Nj) playing the roles ofJ _,J +' andJz ' Each SU(2)j 
furnishes a pair of quantum numbers nOvj , associated with 
the operators nj and Vo where 

(2.11 ) 

(2.12) 

nij = njj , (2.13) 

and Vi the seniority of the ith level, i.e., the number of fer
mions of type i present not coupled to pairs described by A ;. 
Observe that for d = 2,3 these determine completely the ba
sis (2.9). In fact, for d = 2, we even have from (2.12), 
VI = V2• However, from d = 4 on we encounter the missing 
label problem. 

Consider, for example, d = 4, where the set (2.11) and 
(2.12) provide eight of ten needed quantum numbers. A 
possible choice for the two additional operators is the pair 

(2.14) 

A. Klein and Q. Zhang 1988 



                                                                                                                                    

(2.15 ) 

The utilization of such operators would, however, defeat our 
purposes, as will be clear below, since it would require us to 
introduce eigenvectors of these operators by carrying out a 
unitary transformation of the basis (2.9). Instead we shall 
work exclusively with the basis (2.9), the simplest of all pos
sible choices, which are simultaneous eigenstates of the oper
ators nj and nij, which provide a full characterization. The 
fact that nj and Vj are diagonal will remain of fundamental 
importance. 

It is best, at this point, to turn to specifics. In the next 
section we will develop the vacuum mapping for Sp( 4) and 
in Sec. IV the corresponding mappings for Sp(6). Some 
aspects of the problem for higher d are discussed in Sec. VII. 

III. VACUUM IRREP FOR Sp(4) 

The realization to be developed below was first given 
without proof in Ref. 7. Here we shall provide some details. 
Our method is firmly rooted in the requirements dictated by 
Eq. (2.10). The expressions (i= 1,2) 

Nj = 2nj + n12 , 

AT = (Aj)t = aTrj , 

[ 1 A-I (A A )] 1/2 rj = - u nj + Vj , 

(3.1) 

(3.2) 

(3.3 ) 

are the well-known Holstein-Primakoff13 realizations of 
SU (2) j' They provide a partial solution to our problem since 
they also satisfy the appropriate parts of Eq. (2.7). Thus we 
have only to find the realizations of A 12 (or A 12 ) and B21 
(orB12 =B1 I )· 

The most general form allowed for A 12' for example, is 

A T2 = aT2<1>I(n l ,n2,n 12 ) + aT aIa 12<1>2(n l ,n2,n 12 ) . (3.4) 

This is because A 12 is the component of a spinor [under 
both SU(2)1 and SU(2)2] satisfying the selection rules (i) 
aNj = l,i= 1,2; and (ii).:~vj = ± 1. As expressd by (3.4), 
a basis for operators satisfying these restrictions is given by 
a12 andal a1a l2;in turn each may be multiplied by a (so far) 
arbitrary function ofthe diagonal operators ni> nij' 

The great convenience of the form (3.4) associated with 
the basis (2.9) will be evident to anyone who checks the 
manipulations described below, which depend only on ver
sions of the relation 

(3.5) 

or its H.c., valid for any boson at and its associated number 
operator, and nothing more. 

To determine the functions <1>1 and <1>2' we first utilize 
the Wigner-Eckart theorem in the form 

[ A T, A lzJ = 0 , 

which leads easily to the restrictions 

<1>1 = r l r2 FI (n 12) , 

<1>2 = F2 (nd . 

Next the commutation relation (CR) 

[A I ,Ai2] = -0-1/2B21 
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(3.6) 

(3.7) 

(3.8) 

(3.9) 

yields the form for B21 in terms of the same functions FI and 
P2 , 

B21 = 0-1/2a1lalrzPl - 01/2rlP2a1a21 . (3.10) 

Because B21 = B T2 and B21 = B12( 1 ++ 2), by comparing 
these two ways of obtaining B21 from B12> we find 

- OP2 (fi 12 + 1) = PI (fi 12 ) P(n12)' (3.11) 

Thus the problem is reduced to that of the determination of a 
single function P(n12) in terms of which the generators of 
interest are expressed as 

Al2 =a12rlr2P(nd -0-IP(n I2 )a1aTaJ2' (3.12) 

01l2B21 = r IP(n 12 )a1a21 + a1l a lp(n 12 )r2 . (3.13) 

Finally to determine the function P, we may utilize ei-
ther Eq. (2.5b) or (2.5e), which contain equivalent infor
mation. For example, the latter yields a single difference 
equation that can be reduced to the form (with n12-+n) 

1 = (n + 1)(1 - 0-ln )p 2 (n) 

- n[1 - O-l(n - 2)]p 2 (n - 1) . (3.14) 

This is to be solved subject to the boundary condition 
p2(0) = 1, which follows from (3.14) providedp2( - 1) is 
nonsingular, which is verified a posteriori. 

The solution of (3.14), derived in the Appendix, is 

p 2 (n) = 0(0 + 1 - !n)/(O - n)(O - n + 1) . (3.15) 

Without loss of generality we may choose the positive square 
root. 

IV. VACUUM IRREP FOR Sp(6) 

We now show how the method of the previous section 
can be applied to Sp (6). As previously remarked, the reason 
for doing this calculation is that it turns out, as shown in the 
next section, to be technically equivalent to a solution for an 
arbitrary representation of Sp ( 4) and is thus worth our at
tention. 

We start again with realizations of-SU(2)i> i = 1,2,3, as 
inEqs. (3.1)-(3.3) except that the full definition (2.12) of 
Vj is applicable. For example, 

VI = n12 + n13 . 

Then the form for A 12 is generalized to 

A T2 = a12 <1>1 (nl,n2,n3,n12,n13,n23) + aT a1 a 12<1>2 

+ aT a13 a13<1>3 + a1aT3 a23<1>4 , 

(4.1 ) 

(4.2) 

where the <1>2,3.4 depend on the same set of variables as <1>1' 
Below these variables will be indicated explicitly only when 
they take on values shifted by some integer from their refer
ence values, e.g., 

<l>j(n l + 1)=<I>j(fi l + 1,n2,n3,n12,n 13,fi23 ) . (4.3) 

We shall, as shown below, be able to discover the detailed 
form of A T2 without bringing in either of the other off-diag
onal generators A 13 or A 13' the form of these following 
simply from the appropriate change of indices. It can also be 
verified that once the appropriate solution is uniquely speci
fied, all CR's not explicitly utilized in the derivation are, in 
fact, satisfied. 

The procedure to be followed therefore parallels closely 
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that given in the previous section, with some technical com
plications. The application of Eq. (3.5) yields the restric
tions 

~I = r l r2F I(i112,fi 13,F'23) , 

~2 = F2(fi 12,fi 13,fi23 ) , 

~3 = r~3(fiI2,fi13,fin) , 

(4.4) 

(4.5) 

(4.6) 

~4 = rIF4(fiI2,fi13,fi23) . (4.7) 

Furthermore the symmetry of A T2 under the interchange 
1_ 2 implies (i = 1,2) 

and 

F3(n12,nI3,n23) = F 4(n I2,nn,n13 ) . 

The CR (3.9) together with the requirement 

BT2 =BI2(1_2) 

provides the restrictions 

- OF2 (n 12 + 1) = FI=F, 

F4(n13 - l,n23 + 1) = F3==G, 

as well as the final forms 

AT2 =aT2rlr~-.o-IFaiaTaI2 
+ aT ai3 a 13r2G + r i GaiaT3 a23 , 

.o1/2B21 = aT2alr~ + r iFaia l2 

(4.8) 

(4.9) 

(4.10) 

(4.11 ) 

(4.12) 

(4.13) 

- nai3an'1 (fi l - 1)r2G + Gaia laT3 a23 . 

(4.14) 

The remaining conditions for the determination of the 
functions F and G can be derived from the CR 

[B2)oBd = (2.o)-I(N2 -NI ) 

= (2.o)-I[2n2 - 2nl + V2 - vtl . (4.15) 

In working out the commutator, we get some terms that 
cancel identically. The remaining terms either (i) involve 
operators not diagonal in the basis studied, whose coeffi
cients must therefore vanish, or (ii) diagonal operators that 
can have a general dependence on nlJ but at most a polyno
mial structure in n l and n2' which can ~ compared with the 
right-hand side of (4.15). Terms oftype (i), which did not 
occur in Sec. III, end up yielding only two distinct relations 

FG(n I2 + 1) = .0 - VI + 2 (4.16) 
F(n 13 - l,n23 + 1)G .0 - VI 

F(n 12 - l,n13 - l,n23 + I)G = .0 - V2 + 2 
F(n12 - 1)G(n I2 - 1) .0 - V2 

( 4.17) 

These equations can be combined so as to yield 

F
2
(n 13 - l,n23 + 1) = (.0 - vl)(.o - V2 + 1) 

F2 (.0 - VI + 2) (.0 - V2 - 1) , 
( 4.18) 

G
2
(n12 + 1) _ (.0 - VI + 2)(.0 - v2 + 1) 

G 2 - (.0 - vl)(.o - V2 - 1) 
( 4.19) 

which further imply 

F 2(n I2,n I3,n23) 

= [(.0 - vl)(.o - VI + 1)(.0 - v2)(.o - v2 + 1)]-1 

x~2(nI2,v3) , (4.20) 

G 2(n12,n 13,n23 ) 

= [(.0 - VI + 1)(.0 - VI + 2) 

X (.0 - v2 )(.o - v2 + 1)] - I 

X t!l(n I3,n23) . (4.21) 

A reduction from three to two variables is thus achieved. 
Terms of type (ii) yield the difference equations that 

generalize (3.14). We find 

.0 = (n 12 + 1)(.0 - v l )F
2 - n 12 (.o - VI + 2)F2(n I2 - 1) 

+ .on 13 (n23 + 1)(.0 - VI + 2)G 2 

- n23 (n13 + 1)(.0 - vI)G 2(nl3 + l,n23 - 1) . 

(4.22) 

We also find the same equation with 1 _ 2 and a third equa
tion that can be obtained by combining the other two. 

Further progress depends on the manipulation of Eqs. 
( 4.18 )-( 4.22). By combining (4.22) with the equation ob
tained by (1 _ 2) and remembering (4.12), we can elimi
nate G 2(n13 + l,n23 - 1) and obtain an equation for G 2, 
namely, 

n 13 (n23 + I)G 2 

=..!.. + n 12 (.o - VI + 1) (.0 - v2 + 2) F2(n12 _ 1) 
2 .0(2.0 - VI - V2 + 2) 

_ (1 + n 12 )(.o - vl)(.o - V2 + 1) F2. (4.23) 

.0(2.0 - VI - V2 + 2) 

Replacing n 12-n 12 + 1 in this equation, and utilizing Eq. 
( 4.19), we are led, after some algebra, to a second-order 
difference equation for F2. With the definitions 

.0 - Vi==U i , i = 1,2, 

this equation is 

(4.24) 

.o(UI + U2 + 1) = - (2 + n l2 )u I (UI - l)U2(U2 - 1) F2(n12 + 1) 
(u l + u2 ) 

1990 

+ (1 + n I2 )2u I (UI + 1)U2(U2 + l)(u l + U2 + 1) F2 

(u l + U2)(UI + u2 + 2) 

_ nl2(u l + l)(u l + 2)(U2 + 1)(u2 + 2) F 2(n
12 

_ 1) . 

(u l + U2 + 2) 

The solution of this equation, given in the Appendix is 
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F
2( ) 0 (20 + 2 - n12 - V3) (20 - 2n12 - V3) (20 + 2 - 2n12 - v3) 

n12,n I3,n23 = . 
8 (0 - vI)(O - VI + 1)(0 - V2)(0 - V2 + I) 

(4.26) 

ThisreducestoEq. (3.15),asitshould,ifwesetn I3 = n23 = V3 = O.Ifweinsert (4.26) into (4.23), we can calculate G 2. Some 
details are again found in the Appendix. The result is 

G 2 = (0 - n23 + tHO - n l3 + 2)[4(0 - n23)(0 - n l3 + 1) - (20 + 2 - v3)(20 - v3)] 

V. GENERAL SOLUTION FOR Sp(4) 

We initiate this discussion by some general remarks ap
plicable to Sp( 2d) for any d. A basis for a more general irrep 
than that displayed in (2.6) is obtained by replacing the 
vacuum state 10) by an irrep ofU(d) describing some num
ber JII" of unpaired fermions. For each JII", we have a single 
irrep, the antisymmetric one, of U(2Od), which decom
poses under U(2Od) :::>U(d) into irrep [JII",O, ... J, 
[JII" - 1,1,0, ... J ••. [1,1, ... ,1] as long as JII" <20 = 2j + 1, 
and with one further set of restrictions specified below. In 
general each of these irreps will occur more than once. Let us 
designate an arbitrary such representation as IA I ... Ad (a», 
where Al "'Ad is a partition and (a) designates the addi
tional quantum numbers necessary to specify a row of the 
representation. By letting the double product of pair cre
ation operators in (2.6) act on the set IAI "'Ad(a», we 
obtain a set of nonorthonormal states In l ... nd I,d; 
AI'" Ad (a», which form a basis for an irrep of Sp(2d) as 
long as one further set of conditions is satisfied by the 
IAI .•• Ad (a». We must replace (2.7) by the less restrictive 
conditions 

A1IAI"'Ad(a»=A;kIAI"'Ad(a» =0. (5,1) 

We do not wish to enter into a detailed discussion of the 
consequences of (5.1), since this will only deflect us from 
our main path, and we intend to return to matters related to 
these conditions in later work. For present purposes, the 
main effect of (5.1) is to reduce the multiplicity of occur
rence of the irreps ofU(d) described above. 

The associated generalization of (2.9) is a set of states in 
a direct product space 

In,···nd_l,d;A,I,,·Ad(a» 

(5.2) 

where Inl .•. nd I,d) are, in effect, the states (2.9) and 
lA, ... Ad (a» are a basis for an irrep ofU(d) with genera
tors 

N;-vV; , (5,3) 
A 

N;k-vV;k' (5.4) 

It is thus assumed thatJll"; andJll";k commute with all boson 
operators. In this case, it is natural to ask for a realization of 
(5.3) and (5.4). The solution of a similar problem is well 
known within the framework of the orthogonal algebras that 
occur in the usual shell model'4 and a similar solution can be 
constructed here. This question is intimately tied to the con
ditions (5,1) and thus is subsumed by the the previous com
mitment to an independent discussion. It suffices to guaran
tee the consistency of the requirements and to proceed. 

Let us now consider the case ofSp( 4). Before springing 
our main point that the results for the vacuum irrep ofSp( 6) 
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(4.27) 

I 
essentially solves the general Sp( 4) problem, let us try to see 
how the results of Sec. III need to be generalized. For exam
ple, a realization of SU (2) 1 in the basis (5.2) is obtained by 
writing (i = 1,2) 

N; = 2"1 + "12 +JII"; , (5.5) 

Ai = air; , (5.6) 

rl = [1- 0- 1(,,/ + "12 +.Y;)] -'/2, (5.7) 

which also satisfies (5.1). 
Imposing the required selection rules stated subsequent 

to (3.4) the latteris generalized to 

A t2 = at2 <1>; (" 1'"2''' '2,..A',,..A'2) + at a1 a 12<1>2 

+ aiJll"2,<I>3 + a1Jll"'2<1>4 . (5.8) 

Here it is clearly assumed that JII", and Jll"2 are among the 
operators diagonal in IA IA2 (a) ) . (In fact since 
AI + A2 = Jll"l + Jll"2' it suffices to choose a = JII", - Jll"2') 
The analogy between (4.2) and (5.8) is striking. Ifweintro
duce the purely formal correspondence 

"13-JII"I (i = 1,2) , (5.9) 

ai3a32-vV12 =A11 (5.10) 

(and suppress the operator "3)' it is straightforward to verify 
that Eqs. (4.4)-(4,12) can be copied under this correspon
dence, and we end up with the analogs of ( 4.13) and (4.14), 
namely, 

Ai2 =at2rlr~-0-IFa1ataI2 

+ at Jll"21r2G + r,Ga1Jll"'2 , 

0112B21 = ai2alr~ + r lFaia 12 

(5.11) 

- fi.Al21r l ('" - 1 )r2G + Gala lJll"12 , 

(5.12) 

where, e.g., 

F = F("12,..A',,..A'2) , 

and similarly for G. 
In fact because the CR 

[%12,..A'2.1 = %1 - %2 

(5.13) 

(5.14) 

also emerges from the correspondence (5.9) and (5.10), 
since 

[a\3 a32,a12 a l3] = "13 - "23' (5.15) 

the remainder of the calculation of Sec. IV goes through 
unchanged provided we make the replacements 

V3-vV1 +JII"2' 

"23 ( 1 + "13)-vV21%12' 

nu( 1 + "23)-vVr~./Y21 , 

A. Klein and Q. Zhang 
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(5.17) 
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inEqs. (4.16)-( 4.17). where the right-hand sides of (5.16)
(5.1S) are clearly diagonal in the basis (5.2). With these 
specifications. we have completed the task of this section. 

Some remarks concerning whether the tour de force of 
this section can be extended to higher values of d will be 
undertaken in the concluding section (Sec. VII). 

VI. REMARKS CONCERNING Sp(2d,R) 

We take the generators of Sp (2d.R) in the form 
2!l 

AT = (2.jIT)-' L b Ii b Ii' ( 6.1a) 
s=\ 

At =(20)-1/2"b t.b t 
,k ~ SI sk' (6.1b) 

(6.2) 

where 20 is an integer. i = 1 •... d. and the b Ii are boson 
creation operators. If we compute the analogs of (2.5) in 
terms of the operators (6.1) and (6.2). we find 

[A;. A 1] = ~ik [1 + (NJO)] • 

[Aik.ATd = 1 + (20)-I(Ni +Nk ). 

[A ki • A h] = (20) -INlk • I =/=k • 

[Ai.A!d = (v10)-INki • 

[Nik.Nki ] =Ni -Nk • 

[Nik.Nkd = Nil' i=/=l. 

( 6.3a) 

(6.3b) 

(6.3c) 

(6.3d) 

(6.3e) 

( 6.3f) 

This differs from the corresponding algebra (2.5) only in the 
sign of O. It follows that the results of Secs. II 1-V hold also 
for Sp ( 4.R) and Sp (6.R) as soon as we replace .0._ - .0. in 
all formulas. As expected. the various radicals involved in 
the functions F and G become real for all positive values of 
the various occupation numbers. 

VII. CONCLUDING REMARKS 

The natural question at this point is the extent to which 
we can generalize the methods described to higher d. In this 
section we shall provide only the start to an answer to this 
question by discussing first. in outline. the construction of 
vacuum realization ofSp( S) and then confronting the prob
lem of whether this provides the general realization for 
Sp(6): It does not. but it "helps." 

The essential step of our method is to write down a gen
eral form for the generator A 12' This form for Sp ( S) is 

\0 

A 12 = L Ti$i(n l ••• n4.v1 '" v4.A2.A4 ). (7.1) 
i=1 

where A2 and A4 are defined in (2.14) and (2.15) and {Tj } is 
the ordered set 

{T..} = {a12.aTaia'2.atai3a'3.aia13a23.a1ai4a'4. 

aiaT4awa12a!, a43.a!2a!\ a43.a13 aT aia42a31 • 

(7.2) 

The only question that arises is whether there are additional 
members of the set (7.2) that we have failed to recognize. 
We argue as follows that this is not the case. Let us then try to 
add to the set (7.2). The simplest additional possibility is 

1992 J. Math. Phys., Vol. 27, No.8, August 1986 

(7.3 ) 

But (7.3) can be written as a12A12 + terms of the form 
already included in (7.1). The same argument holds a for
tiori for monomials of higher degree in the at and a satisfying 
the allowed selection rules. Thus the set (7.2) is complete. 
The task of determining the $ i is being studied. It is compli
cated by the fact that A2 and A4 are not diagonal in the direct 
product boson basis. 

Supposing that we had the result. we could subsequently 
ask to what extent it provides us with a solution of the gen
eral Sp(6) problem. There are several ways of seeing that 
something is lacking. The vacuum irrep of Sp(S) is deter
mined by ten quantum numbers n i and nij or their equiva
lent. but the general irrep of Sp (6) requires 12. six for the 
boson part and six for the U(3) basis !A I.A.2.A.3(a» 
[!d(d + 1) for each part]. [In the case we solved relating 
Sp (6) and Sp ( 4 ) the quantum number count was the same!] 
Nevertheless. if in the expression (7.1) we enter the corre
spondence 

ni4 -vYi • 

aT4a4j _vYij (i.j = 1.2.3) • 

(7.4 ) 

(7.5) 

we should thereby obtain a set ofirreps ofSp( 6) in which the 
associated U (3) has at most two rows. In this restricted 
form the relationship between Sp(2d + 2) and Sp(2d) may 
generalize to any d. 

Finally, to see what is missing. consider a typical term. 
e.g .• Ts. Under the correspondence (7.5) we have 

(7.6) 

But the quantity a1vY2~31 is another independent term 
satisfying the same selection rules and must be included mul
tiplied by an independent function of the diagonal operators. 
On the face of it. therefore. the problem of finding the gen
eral irrep of Sp ( 6) is considerably more complicated than 
finding the vacuum irrep of Sp ( S ) . 
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APPENDIX: SOLUTION OF DIFFERENCE EQUATIONS 

We first consider the difference equation (3.14). We 
substitute 

(n + 1 )F2 = P. p(O) = 1 . 

The equation for f2 can be displayed in the form 

1 + .o.-IP = [1 - .o.-I(n -1)]f2(n) 

(AI) 

- [1-0-I(n-2)]f 2(n-l). (A2) 

This suggests the substitution 

[1-.o.- 1(n-l)]f2=g2. g2(O)=I+n- ' • 
(A3) 

which simplifies (A2) to the form 

1 - .o.-I(n -1) =g2(n)( 1 - .o.-In ) 

- g2(n - 1) [1 - .0.- 1 (n - 1)] 
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=h 2(n) -h2(n -1), (A4) 

h 2 (0) = 1 + 0 - I • (A5) 
Equation (A4) shows clearly that h 2 (n) is a quadratic func
tion of n, which turns out to have the form 

h 2(n) = (1 + 0- 1) + [1 + (2fl)-I]n - (20)-ln2 

=(1+n)[1+0- 1 -(20)-ln]. (A6) 

Unraveling the various substitutions yields Eq. (3.15). 
Next we study the solution of Eq. (4.25). First we sub

stitute Eq. (4.20). In the resulting equation for t/i(n I 2,v3 ), 

introduce the notation 

(A7) 

and put nI2-n, P,3-U, Then with the further substitution 
(suggested by the form of the equation) 

tjJ2(n,v3) = Oj2(n,u)(u - 2n)(u - 2n + 2) , (AS) 

we obtain the final difference equation 

(u - 2n + 1) = - (2 + n) f2 (n + 1,u) (u - 2n + 2) 

+ (1 + n)f2(n,u)(u - 2n + 1) 

- nf2(n - 1,u) (u - 2n + 4) . (A9) 

Equation (A9) is a linear combination of first and second 
differences. It is straightforward to verify that it has the solu
tion 

f2(n,u) = A(u + 2 - n) . (AW) 

This leads directly back to (4.26). 
Substituting now into (4.23) yields an expression for 

G 2. The simplest way to evaluate this expression is as follows: 
Also substitute Eq. (4.21) for G 2. We thus obtain the equa
tion 

nl3(n23 + 1 )r/l(n13,n23 ) 

1993 

= !(UI + 1) (u l + 2)U2(U2 + 1) 

+ (n 12/8) (U3 + 3 - n12 ) 

X (U3 + 4 - 2n 12 )u2(ul + 1) 

- [(1 + n12 )/8](u3 + 2 - n12 ) 

X (U3 - 2n 12 ) (u l + 2) (u 2 + 1) . 
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(All) 

Here the left-hand side is independent of n 12' Therefore so is 
the right-hand side. This can be verified explicitly with great 
pain, but it is simplest to set n 12 = 0 everywhere here. This 
yields the result 

r/l(n I2,n23 ) 

= [(0-n13 +2)(0-n23 + 1)/8n 13 (n 23 + 1)] 

X [4(0 - nl3 + 1)(0 - n23 ) 

- (20 + 2 - v3 )( 20 - v3 )] , (A12) 

and this leads immediately to (4.27). 
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Finite-dimensional irreducible representations of the Lie superalgebra sl(1 ,3) 
in a Gel'fand-Zetlin basis 
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A concept of a Gel'fand-Zetlin pattern for the Lie superalgebra sl ( 1,3) is introduced. Within 
every finite-dimensional irreducible sl( 1,3) module the set of the Gel'fand-Zetlin patterns 
constitute an orthonormed basis, called a Gel'fand-Zetlin basis. Expressions for the 
transformation of this basis under the action of the generators are written down for every finite
dimensional irreducible representation. 

I. INTRODUCTION 

Using the results obtained in Refs. 1 and 2 (hereafter 
referred to as I and II) we introduce in the present paper a 
concept of a Gel'fand-Zetlin pattern (GZ pattern) for the 
speciallinear Lie superalgebra (LS) sl(1,3). Similarly as in 
the representation theory of the classical Lie algebras, the 
GZ patterns constitute a basis in the finite-dimensional irre
ducible sl (1,3) modules. We write explicit expressions for 
the transformation of this basis, called a Gel'fand-Zetlin ba
sis (GZ basis), under the action of the generators for every 
finite-dimensional irreducible representation. 

From the point of view of the sl (1,3) representations, 
the present paper contains no new results comparing to those 
obtained in I and II. However, here we succeed in presenting 
the results in a much more compact form. This is mainly due 
to the fact that in this paper we introduce a unique notation 
for the basis vectors within the irreducible sl( 1,3) module, 
whereas in I and II we characterized the basis through its 
properties with respect to the even subalgebra gl ( 3 ). There 
we were considering a given finite-dimensional irreducible 
sl( 1,3) module Vas a representation spaceofgl(3) Csl( 1,3) 
and represented it as a direct sum of its irreducible gl( 3 ) 
submodules Vk , 

V=L ffiVk , k=I,2, ... ,8. (1.1) 
k 

As a basis r k within every Vk we choose the gl (3) Gel'fand
Zetlin basis3 and define an orthonormal GZ basis in V to be 

r=urk • (1.2) 
k 

Thus, the basis vectors, used in I and II, are 

m13,m23,m33) 
m12,m22 

mil k 

, k= 1, ... ,8, (1.3 ) 

where k distinguishes between the different gl (3) submo
dules Vk of V. In terms of this notation we did not succeed in 
expressing the transformation properties of r under the ac
tion of any generator eEsl( 1,3) in a compact form. In the 
case of the typical representations we used four relations 

a) Permanent address: Institute of Nuclear Research and Nuclear Energy, 
boul. Lenin 72, 1184 Sofia, Bulgaria. 

(one relation for each group of indices: k = 1, k = 2,3,4, 
k = 5,6,7, and k = 8) in order to represent 

m 13,m23 ,m33) 
e m 12,m22 

mil k 

(1.4 ) 

as a linear combination of vectors from r. For each of the 
three classes of nontypical representations we also used four 
relations, so that altogether we needed 16 different equations 
in order to express the transformation of the GZ basis under 
the action of only one generator. In the present paper we 
succeed in writing down all these 16 relations in terms of 
only one. This considerably simplifies the final results, mak
ing them more transparent and putting them in a form simi
lar to that known from the Lie algebra representation the
ory. 

In Sec. II we introduce as a first step an intermediate 
basis, which is appropriate for the typical representations. 
However, it contains some superficial vectors in the nontypi
cal cases. In Sec. III we define a GZ pattern for sl( 1,3) and 
write down the transformation of the GZ basis under the 
action of the genrators for every (typical or nontypical) irre
duciblesl(1,3) module [see (3.16)-(3.21)]. 

II. INDUCED REPRESENTATIONS OF 51(1,3) 

Throughout the paper we use terminology, notation, 
and assertions that were introduced in I or II. Therefore, 
here we briefly mention some notation and results, stressing 
a certain change in the notation. 

To begin with we recall that the LS sl(1,3) can be de
fined through its four-dimensional representation as follows. 
Let eAB , A,B = 0,1,2,3, be a 4X4 matrix with Ion theA th 
row and theB th column and zero elsewhere. Then sl( 1,3) is 
the linear span of its even generators 

Eij = eij + Dijeoo, i,j = 1,2,3, (2.1) 

which are the generators of the Lie algebra gl(3), and the 
odd generators 

eo;,e,u, i = 1,2,3. (2.2) 

By V( [mb), [mb=[m13,m23,m33], we denote the ir
reducible gl(3) module with m;3 = A(Eu ), i = 1,2,3, being 
the coordinates of the highest weight A in the dual to 
EIl,E22,E33 basis of the Cartan subalgebra. We always 
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choosethegl(3) GZbasis3 in V([mh): 

m l3,m23,m33) _ [m b) 
m12,m22 = [mlz . 

ml1 m l1 

(2.3) 

The complex numbers m 13,mZ3,m33 are fixed. They label the 
irreducible gl (3) module. In general, the representations 
corresponding to different triplets [m] 3 are inequivalent. 
The numbers mlZ' mZ2' and m l1 label the basis vectors in 
V( [mb). They run over all possible values, consistent with 
the "betweenness condition" (Z+ = all non-negative inte
gers) 

ml3 - m12,m 12 - m23,m23 - m22, 

m22 - m33,m 12 - mll,mll - m2ze'l+· (2.4) 

In I we have studied in detail the so-called induced mo
dules4 over the LS sl(1,3). The relevance ofthese modules 
stems from the observation that every finite-dimensional ir
reducible representation of a basic LS 5 can be realized either 
in some induced module (typical representations) or in a 
factor module of it (nontypical representations). The in
duced modules of sl(1,3) are labeled by three complex 
numbers, 

[m]4==[mI4,m 24,m34 ], 

satisfying the conditions 

(2.5) 

(2.6) 

By V( [m ]4) we denote the induced sl(1,3) module corre
sponding to [m] 4' We point out that in I and II instead 
of V( [m ]4) we were writing V([m h) and [m b 
==[m 13,m23,m33 ] instead of (2.5). 

Since every V( [m ] 4) is also a gl (3) module and every 
finite-dimensional gl (3) module is completely reducible, 
one can decompose V( [m ] 4) into a direct sum of irreducible 
gl(3) modules [1,(5.15)]: 

J 

V([m]4) = V([m]4) $ I 61V([m-l1~) 
i=1 

J 

$ I V([m-l]4- i 61V([m-2]), (2.7) 
i= I 

where here and everywhere in the paper (CEe) we use the 
notation 

[m + C14 = [m 14 + c,m24 + c,m34 + cJ, 

[m + c]n = [min + c, ... ,mnn + c], n = 2,3, 

[m]l i = [m14 ± 01i,m24 ± 02jJm34 ± OJi]' 

(2.8) 

(2.9) 

(2.10) 

[m]n±i= [min ±Oli,· .. ,mnn ±On;], n=2,3. (2.11) 

In order to indicate that the gl( 3) module V( [m b) is a 
submodule of the sl(1,3) module V([m]4)' i.e., it is a direct 
summand in (2.7), we modify the notation for V( [m ] 3) and 
write 

(
[m]4) 

V( [mb) = V [m]3 . (2.12) 

If V( [m ] 3) is not a direct summand in (2.7), we assume 

(
[m]4) -

V [mh =OeV([m]4)' (2.13 ) 
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In terms of this notation (2.7) can be written as 

- ,,([m14) V( [m]4) = "- $ V [ 1 ' 
1m!, m 3 

(2.14) 

where the sum is over all triplets [m 13,m23,m33 J, satisfying 
the conditions 

mi4 - mi3 = 0,1,2, i = 1,2,3, 

! (m i4 - miJ ) (mj4 - mj3 ) I..;; 1, i,j = 1,2,3, 

1 3 - I (m i4 - mi3 )e'l+ (or = 0,1,2,3), 
2 i=1 

m13 - m23,m23 - m33e'l+· 

(2.15 ) 

(2.16) 

(2.17) 

(2.18) 

We observe from (2.14) that the spectrum of gl(3) in 
V( [m]4) is simple, i.e., V( [m b) is a direct sum ofinequiva
lent gl ( 3) modules. Therefore, the decomposition (2.14) is 
also unique. Hence, the basis r([m 14) in V( [m 14) is 
uniquely defined in terms of the basis vectors of each 
v(lmJ.). As such a basis r(lmJ.) in v(lmJ.) we choose a GZ Iml, [m!, 1m], 

basis and introduce a new notation for the vector 

namely 

m 14,m24,m34) 
m l3,m23,m33 = 

m 12,m22 
m l1 

[m]4) 
[mh 
[mlz . 

m l1 

(2.19) 

Assuming that the different gl (3) submodules in the sum 
(2.14) are orthogonal to each other, we obtain an orthonor
mal basis in V( [m ]4): 

(
[m14 ) r( [m ]4) = u r [ 1 . 

1m], m 3 
(2.20) 

The union in (2.20) is over all [m h. which are in agreement 
with the conditions (2.15)-(2.18). We call the vectors 
(2.19) from the basis f( [m]4) induced patterns (I-pat
terns) or I-basis vectors in V( [m ]4)' In order to character
izeallI-patterns, i.e., the basis in V( [m]4), one has to add to 
the conditions (2.15)-(2.18) also the inclusions (2.4) and 
(2.6). Thus, we have the following proposition. 

Proposition 2.1: The vector (2.19) is an I-pattern, i.e., a 
basis vector in V( [m]4)' iff the numbers my, which charac
terizes it, satisfy the conditions 

(1) m 14 - m24,m24 - m34e'l+, 

(2) mi4 - mi3 = 0,1,2, i = 1,2,3, 

(3) !(mi4 -mi3 ) - (mj4 -mj3)!..;;I, i,j= 1,2,3, 

(4) (or = 0,1,2,3), 

(2.21) 

Observe that the sum (2.14) contains eight direct sum
mands. In certain cases, however, some of the terms may not 
satisfy (2.15)-(2.18). For instance [in the notation (2.7) J, 

T. D. Palev 1995 



                                                                                                                                    

V( [1,1,0]) = V( [1,1,0]) EB V( [0,0,0]) 

EB V( [1,0, - 1]) EB V( [0,0. - 2]) 

EB V( [ - 1, - I. - 2]). (2.22) 

Therefore. in general, V( [m] 4) is a direct sum of no more 
than eight irreducible gl (3) submodules. 

Associate with every I -pattern (2.19) the numbers 

(2.23) 

(

[m]4) [mb 1 3 

5 [ ] =5=-2 L (m i4 -mi3 ). 
m 2 1=1 

mil 

(2.24) 

Let. moreover, 

{
I. for x>O, 

O(x) = 0, for x<O, 

SU.j) = {l. fori<j: . 
- 1, for I> j, 

6(x) = {I. for x = 0. 
0. for x#O, 

(2.25 ) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

In terms of this notation the transformation of the basis 
in V( [m ] 4) under the action of the odd generators reads 

xl "i".j=I(lk2 -/1I)(lk2 -113 -l)IIi".i=I(/k3 -lj2 ) 1112 

(/12 -/22 - j + 1) (/12 -122 - j + 2)II~ ".1= I (/k4 - 1;4) 

[m - 1]; . [m]4 ) 

[m-lH 
(2.30) 

m ll 
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[m + Ib i • 

[m]4 ) 

[m + Ib- J 

mll 
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(2.31) 

(2.32) 

(2.33) 
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[m+lb-; , 
[m]4 ) 

[m + Ib- J 

mlJ+ 1 

(2.34) 

(2.35) 

We wish to underline that in all the above formulas 

1 3 

5;=m;4- m;3' 5=- L (m;4- m;3)' (2.36) 
2 ;=1 

One can check by a straightforward computation that the relations (2.30)-(2.35) hold if and only if the relations (5.27), 
(5.29)-(5.31), (5.36)-( 5.38), (5.44), (5.46), (5.47), (5.51 )-(5.53), (5.60)-(5.62), and (5.66)-(5.68) derived in I hold. 

III. IRREDUCIBLE REPRESENTATIONS 

Every sl( 1,3) module is either irreducible or nondecomposable. In I (Proposition 3) we have shown that V( [m ]4) is 
irreducible iff 

(3.1 ) 

The representations of sl ( 1,3), realized in these irreducible modules (and also the modules themselves) are said to be typical. 4 

Therefore the relations (2.30) - (2.35) describe all typical irreducible representations of the LS sl (1,3) . 
Each V( [m]4) that is not irreducible contains a maximal sl(1,3) invariant subspace I( [m]4) #0. The factor module 

(3.2) 

carries an irreducible representation of sl ( 1,3). All such factor modules (and also the corresponding representations) are 
called nontypical. It is remarkable that the typical and the nontypical representations exhaust the set of all finite-dimensional 
irreducible representations of sl ( 1,3) (see Ref. 4). Therefore, it remains to construct the nontypical representations. This task 
was solved in II. 

The reducible modules V( [m ]4) resolve into three nonintersecting classes2: class I, 

{V( [0,m24,m34 ]) 10>m24>m34}, (3.3) 

class II, 

{V( [m I4,I,m34 ]) Im14> 1>m34}, (3.4) 

and class III, 

{V( [m I4,m24,2]) Im I4>m24>2}. (3.5) 

The corresponding maximal invariant submodules, written in the notations ofthis paper, are (II, Propositions 5-7) 

(3.6) 

(3.7) 
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( 3.8) 

In order to obtain the representations ofsl( 1,3) in the factor spaces one has to replace in (2.30)-(2.35) all basis vectors 
from the maximal invariant subspace by zero (II, Corollary) or, which is the same, to project the relations (2.30)-(2.35) on 
the orthogonal complement to I( [m ]4)' which is isomorphic to W( [m ]4): 

(3.9) 

From now on we assume thatI([m]4) = 0 in the typical case. Then W([m]4) = V([m]4) and the projection on W([m]4) 
does not change the transformation properties of the basis, i.e., it preserves (2.30)-(2.35) in the typical modules. To be more 
precise we formulate the following proposition. 

Proposition 3.1: Let!I,J2, ... ,Jn be the I-basis in V( [m ]4), which, let us assume for definiteness, is transformed under the 
action of the sl( 1,3) generators E 1, ••• ,EI5 as follows: 

n 

EkJ:=IAj;fj, k=1, ... ,15, i=l, ... ,n. 
j=\ 

(3.10) 

Denote by P the projection operator ofV( [m ]4) on W([m ]4) [see (3.9)]. Then the algebra sl(1,3) transforms the basis of 
the factor space according to 

n 

EkPJ: = I Aj;Pfj, k = 1, ... ,15, i = 1, ... ,n. 
j=\ 

(3.11 ) 

The prooffollows from the observation that PJ: = 0 ifJ:e I( [m]4) and PJ: = J: forJ:e W( [m]4)' i.e., (3.11) means that in 
(3.10) one is replacing all basis vectors fromI( [m ]4) by zero. The nonzero vectorsPJ:, i = 1, ... ,n, constitute an orthonormed 
basis in the factor space. 

Proposition 3.2: The linear operator P, defined everywhere on V( [m ]4) with the relations 

[m]4) 
[mb [ 3 ] 

P [mb = 1 - k~\ o(mk4 - k + 1)o(s - Sk - 1) 

mll 

[m]4) 
[mb 

[mb 

mll 

(3.12a) 

or, equivalently, 

[m]4) [mb 3 

P [mh =[1-k~\O(mk4-k+1)O(mk3-k+s)] 
mll 

[m]4) 
[mb 

[mh 

mll 
(3.12b) 

is a projection operator ofV([m]4) on W([m]4)' 
The proof is straightforward. IfV( [m]4) is a typical module, mk4 - k + 1:;':0 Vk = 1,2,3, and, therefore, P = 1. In the 

nontypical case only one of the terms in the sum survives, so that 

0, ifthe vector is from I([m ]4)' 

[m]4) 
[mb -

ifthe vector is from W([m ]4)' 
[m]2 ' 

mll 

(3.13 ) 

The relation (3.12b) indicates that, when m k4 - k + 1 = 0, the I-patterns with m k3 - k + S = 0 are annihilated by Pand, 
therefore, these vectors do not belong to W([m]4)' Thus, we come to the following conclusion. In order to obtain the 
(orthonormed) basis in W( [m]4) one has to remove from the I-basis all those I-patterns, for which simultaneously mk4 
= k - 1 andmk3 = k - S hold (an equivalent statement: the I-pattern isa basis vector in the factor space itr, whenever mk4 
= k - 1, then Sk = S). This justifies the definition below. 
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Definition: The table of complex numbers 

m14,m24,m34) [m]4) 
m13,m23,m33 = [mb 

m\2,m22 - [mb 

m" m" 

will be called a GZ pattern for sl(1,3), if the entries mij satisfy the conditions (Z+ = all non-negative integers) 

(2) 

(3) 

(4) mi4 -mi3 =0,1,2, i= 1,2,3, 

(5) I (m i4 -mi3 ) - (mj4 -mj3)I<I, i,j= 1,2,3, 
3 

(6) if mk4 = k - 1, then mk4 - mk3 = L (m i4 - mi3 ), k = 1,2,3. 
i;fk= 1 

(3.14 ) 

(3.15) 

All GZ patterns with a fixed upper row [m]4=[m 14,m24,m34 ] constitute an orthonormal basis in the irreducible finite
dimensional sl (1,3) module W{[ m ] 4)' We call this basis a G Z basis. 

In order to obtain the transformation of the GZ basis under the action of the odd generators we use Proposition 3.2. We 
project all I-patterns that appear on the left-hand side and on the right-hand side of (2.30)-(2.35) on W( [m ]4)' After some 
calculations we obtain 

1999 

X( _1)(51-51-1)5/ ll~;fj=l(1k2 -1,,)(lk2 -li3 -1)lli;fi=l(1k3 -lj2 ) /1/2 

(1\2 -122 - j + 1) (1\2 -/22 - j + 2)lli ;fi= I (lk4 -li4) 

[m]4 ) 
[m-l13 , 

[m -lg 

m" 

X( _1)(51-51-1)5/ (lP. -I" + l)ll~;fj=I(lk2 -li3 -l)lli;fi=l(lk3 -li2 ) /112 

(lJ2 -/22 - j + I) (1\2 -/22 - j + 2)lli ;fi= I (lk4 -li4) 

J. Math. Phys., Vol. 27, No.8, August 1986 

[m - 113 , 
[m]4 ) 

[m -lg 
m,,-1 

(3.16) 

(3.17) 
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1 "fI(1 1)£ k=1 k2 i3 3 
[ 

3 ] III2 (I -[. _1)1 112 [m-l]i 
[m]4 ) 

X-£.. U k4 + Uki 3 • 
k=1 IIk ¥i=l(lk4-!;4) [m-lb 

(3.18 ) 

m ll -l 

The relations (2.33 )-(2.35) remain unaltered. The reason for this is that W( [m ]4) is invariant with respect to eol , e02, 
and eQ3. For completeness we also write these relations here as 

The relations (3.16)-( 3.21) describe all irreducible fin
ite-dimensional representations of the LS sl(1,3). We have 
not written the transformations corresponding to the even 
generators here. They easily can be obtained from the anti
commutators 

E ,j = {eiO,eO)' i,j = 1,2,3, (3.22) 

and have been given in Ref. 1, Eq. (3.22). 
Observe that the finite-dimensional irreducible repre

sentations ofsl( 1,3) are enumerated by all complex triplets 
[mI4,m 24,m34], such that 

(3.23 ) 

In general, two different triplets [m]4# [m']4 describe in
equivalent representations. 

Since the Cartan subalgebra of sl( 1,3), namely, 

H = lin env{EwE22,E33}' (3.24) 

is the Cartan subalgebra of the even part gl (3), it is clear that 
each GZ pattern is an eigenvector of H, i.e., the GZ basis 
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[m + 1]3- i 
, 

[m]4 ) 

[m + 1]2- 1 

m ll 

[m+1L-1 , 
[m]4 ) 

[m+l]2- 1 

m ll +l 

( 3.19) 

(3.20) 

1 

II~=I(lk2 -li3 ) 1112 
Ilk ¥i= I (lk4 -li4) 

[m + 1]3- i 
• 

[m]4 ) 

[m + 1]2 

m ll +l 
(3.21 ) 

I consists of weight vectors. The highest weight vector x A is 

(3.25 ) 

The numbers m Wm24,m34 are the coordinates of the highest 
weight A in the dual to EII,E22,E33 basis, i.e., 

A (Eii ) = mi4 , i = 1,2,3, 

and, therefore 

The interpretation of any GZ pattern 

T. D. Palev 

(3.26) 

(3.27) 

(3.28 ) 
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is the same as in the case of Lie algebras. It indicates that x 
belongs (and is defined up to a multiple) to the nondecreas
ing chain (the flag) 

XE V(m ll ) C V([mb) C V([mb) C W([m]4) (3.29) 

of irreducible gl ( 1) C gl (2) C gl (3) C sl ( 1,3) modules, cor
respondingly. 

IV. CONCLUDING REMARKS 

In Refs. 1 and 2 and in the present paper all finite-di
mensional irreducible representations of the basic Lie super
algebra sl( 1,3) have been constructed. In Ref. 2 we needed 
62 relations in order to tum the linear spaces W( [m 14) into 
irreducible modules over sl( 1,3). There we treated the typi
cal representations separately and also treated each one from 
the three classes of nontypical representations separately. 
Here, on the ground of appropriate notations for the GZ 
basis, we succeeded in expressing the transformation proper
ties of the basis in terms of six relations (3.16)-(3.21) simul
taneously for the typical and the nontypical cases. One can 
go even farther and unify (3.16 )-( 3.21) in only two expres
sions (oneforeko andoneforeok,k= 1,2,3) but this is not 

2001 J. Math. Phys .• Vol. 27, No.8, August 1986 

of great advantage. To our mind, it is more important that 
the form of the GZ patterns and the expressions (3.16)
(3.21) clearly indicate the direction in which one can try to 
generalize the results for the Lie superalgebras sl(1,n) and 
sl(m,n). 
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This paper deals with representations of connected Lie groups by bundle maps of fiber bundles. It 
is pointed out that a large class of such representations can be obtained from the bundle structure 
theroem, and explicit constructions are given, first on principal bundles and then on associated 
bundles. Examples are provided to show that, for bundle representations, the theorem of full 
reducibility breaks down even for compact Lie groups. Finally, a general construction is given for 
obtaining representations of a Lie group on an arbitrary principal bundle. However, it is not 
known whether this exhausts all possibilities. 

I. INTRODUCTION 

In physics, one commonly considers group actions on 
two kinds of spaces: ( 1 ) linear spaces (which gives rise to the 
notion of linear representations of groups), and (2) topologi
cal spaces, usually with the additional structure of a mani
fold or a metric space. In view of the significance that vector 
bundles have assumed, it would seem reasonable to study 
group representations on vector bundles. Group representa
tions on Hilbert bundles-which are generally equivalent to 
the product-have already been studied in some detail and 
found useful in physical applications. 1

,2 Moreover, the in
ducing construction in infinite-dimensional group represen
tations may be considered as based upon group representa
tions on Hilbert bundles. 3 However, to the best of our 
knowledge, there has been no discussion of group actions on 
vector bundles that are not necessarily equivalen t to the prod
uct. In the present article we shall endeavor to make a begin
ning in this direction. 

In the theory of fiber bundles, the notion of principal 
bundles has come to occupy a pivotal role. Every other bun
dle is associated with a principal bundle in a well-defined 
manner. Therefore, if we are able to define group actions on 
principal bundles, we should also be able to transfer this 
action to associated bundles without much fuss. This is in
deed the case. Now, among principal bundles, there is a very 
important class given by the bundle structure theorem; and 
(although it has seldom been noticed) the theorem also 
proves that left translations provide a representation of the 
group under consideration! We are therefore able to obtain a 
,great deal of information from a detailed study of this 
theorem and its consequences. Armed with this information, 
it becomes relatively easy to attack the problem of represent
ing any given group by bundle maps of a given bundle. 

In our case, as elsewhere, the categories of topological 
spaces and topological groups are too broad to work with, 
and some restrictions would be required. We shall therefore 
make the following assumptions in the main part of this pa
per. 

( 1) The groups that we are trying to represent are con
nected Lie groups. 

(2) The base spaces of our bundles are connected, para
compact, and Hausdorff, and the structure groups are Lie 
groups. 

It is possible to relax these assumptions somewhat, with
out too much effort.4 

Finally, in keeping with the practice in linear represen
tation theory, we shall represent only the algebraic and topo
logical structures of the group, and forget about the differen
tiable structure. Therefore we consider bundles only in the 
topological category, and disregard the geometry. 

We shall be working with a fiber bundle with a structure 
group, according to the definition given by Steenrod.4 This 
definition is more useful for our purposes than the equivalent 
coordinate-free definition of Ehresmann,5 which is used, for 
instance, in the standard work of Kobayashi and Nomizu,6 
as well as in the majority of works on physical applications 
that have appeared in recent years. We assume that the read
er is familiar with this definition, as well as the basic results 
in fiber bundle theory. A summary of these is given in Ap
pendix A. Details may be found in the book of Steenrod.4 

Our terminology is either standard or self-evident. Our nota
tions follow Steenrod's book, with a few departures. These 
are also explained in Appendix A. 

The plan of this paper is as follows. In Sec. II we give an 
exhaustive discussion of bundle representations that may be 
obtained from the bundle structure theorem. In the last sub
section we show, by means of examples, that the theorem of 
full reducibility fails for bundle representations even for 
compact Lie groups. This, in our opinion, is the feature that 
may hold promise of physical applications for such represen
tations. Finally, in Sec. III we give a fairly general construc
tion of bundle representations on arbitrary principal bun
dles. However, it has not been proved that all repre
sentations can be obtained by this method. 

II. BUNDLE REPRESENTATIONS FROM THE BUNDLE 
STRUCTURE THEOREM 

In this section we shall first define group representations 
on fiber bundles, or bundle representations7 in the general 
case. Then we shall state the bundle structure theorem of 
Whitney and Steenrod. 81t will become obvious at once that a 
large class of bundle representations of Lie groups is fur
nished by the bundle structure theorem. We shall work out 
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the details and obtain some explicit formulas in the rest of 
the section. 

A. Definitions 

Let {B,x,p,G,G} be a principal bundle such that X is 
paracompact and Hausdorff and G is Lie, and let A be a Lie 
group. 

Definition 1: A representation of A upon the bundle B is 
a continuous homomorphism 

h: A-..!if(B) (1) 

of A into a topological group .!if (B) of bundle automor
phisms of B. For computational purposes, it is convenient to 
replace the above by the following equivalent, but more ex
plicit definition. 

Definition 2: A representation A upon the bundle B is a 
map 

H: A XB-.B 

with the following properties. 
(i) H is continuous. 

(2) 

(ii) H preserves the fibers, i.e., there exists a map 
H: A XX-.X such that 

il1r=pH. 

Here 1T': A X B-.A xX is the obvious projection, defined by 

1T'(a,b) = (a,p(b»), 

whereaeA, beB, andp(b)eX. 
(iii) For each aeA, the map h(a): B-.B, defined by 

h(a)b =H(a,b), 

is a bundle map. 
(iv) The collection of bundle maps {h(a)}, aeA, has 

the standard representation properties, which follow from 
the associativity of multiplication in the group: 

h(a)h(a')b = h(aa')b, Va,a'eA, be B; 

h(e)b = b, Vbe B. 

Here e is the identity in A. 
It follows from the above that the bundle maps h (a) are 

invertible and that 

h(a)-I = h(a- I). 

Note also the following, which is easily verified: 

H(a,x) = h(a)x, VaeA, xeX, 

where h (a) is defined by 

h(a)p = ph(a). 

B. The bundle structure theorem 

We state below a simplified form of the bundle structure 
theorem. This form applies to a group B and a closed sub
group G of B such that G does not have any proper normal 
subgroups. Here BIG denotes the space of left cosets with 
the quotient topology. The reader is referred to Steenrod4 for 
the statement, proof, and discussion of the complete 
theorem. 

Theorem: (a) Let B be a topological group and G be a 
closed subgroup that admits a local cross section in B, and let 
p: B-.B IGbe the natural projection. Then (the space) B is 
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a principal bundle with total spaceB, baseB IG, projectionp, 
and group and fiber G, the group acting upon the fiber by left 
translations. 

(b) The left translations of the group B (by elements of 
B) are bundle maps of this bundle upon itself. 

Proof: See Appendix B. 
Now let H: B XB-.B be the map defined by the left 

translations. Then conditions (ii) and (iii) of Definition 2 
are proven in part II of the bundle structure theorem. Condi
tion (iv) expresses the group property of left translations. 
There remains condition (i), or the continuity of H. But this 
is exactly the continuity of multiplication in the topological 
group B! We have therefore established the following 
theorem. 

Theorem: Let G be a closed subgroup of the Lie group B. 
The left translations of B provide a representation of B on the 
principal bundle {B,B IG,p,G,G}. 

The fact that B is a Lie group is used to guarantee the 
existence of a local cross section of G in B. This is a funda
mental theorem ofChevalley. For a proof, see Varadarajan.9 

C. An explicit formula for left translations 

We shall obtain an explicit formula for left translations 
as bundle maps. 

Let b denote a point in the bundleB, withp( b) = XO' Let 
a I and a2 denote elements of the group B that act upon the 
bundle B by left translations. Set a IXO = x I and a~ I = X2' 

Finally, denote by 'T/c a local cross section over Vc' which is 
some coordinate neighborhood containing the point Xo. As 
in the proof of the bundle structure theorem, define the coor
dinate function t/lc: Vc X G-.p -I ( Vc ) by the equation 

(3) 

Assume now that XI = alxoeVc' We want an explicit for
mula for alb, 

alb = t/lc (x',g') , 

i.e., we wish to determine x' andg'.Sincept/lc (x',g') = x' and 
p(a,b) =xl, we have x' =xl. To calculate g', proceed as 
follows: 

alb = t/lc (xl,g') = 'T/c (xl)g' 

or 

g' = 'T/c (xl)-Ialb. 

Substitute for b from Eq. (3) to obtain 

g' = 'T/c (alxo) -lal'T/c (xo)g· 

The factor that multiplies g on the right is familiar to physi
cists as a "Wigner rotation" or a "Mackey cocycle." Finally, 

alb = t/lc(xI,'T/c (XJ)-laJ'T/c (xo)g). (4) 

Formula (4) solves the problem when Xo and XI lie in 
the same coordinate neighborhood. When the initial and fi
nal points on the base space do not lie in the same coordinate 
neighborhood, we have to "glue together" several pieces to 
obtain the final result. So let Vd be a coordinate neighbor
hood that contains X 2 and XJ' but not Xo, and let us try to 
obtain an explicit formula for a2alb, where p(a2a Jb) = X 2. 
We first write the point aJb in the coordinates ofp-I( Vd ). 
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The formula is 

alb = ifJd{XI,gdc (XI)g'), 

wheregdc: VcnVd~G is given by 

gdc (XI) = 'T/d (XI) -I'T/c (XI)' 

Here 'T/ d is the local cross section over Vd and ifJ d is the 
coordinate function over Vd X G. These functions are de
fined exactly as in Steenrod's proof of the bundle structure 
theorem. For the convenience of the reader who is not famil
iar with this proof, a summary of the notations is given in 
Appendix B. 

Using the explicit expression for gdc (XI)' we may re
write the formula for a Ib as 

alb = ifJd{XI,'T/d (XI) -lal'T/c (xo)g)· 

Now, by exactly the same arguments which led to Eq. (4), 

we obtain 

a2alb = ifJAx2,'T/d (x2) -la2'T/d (XI) ''T/d (XI) -lal'T/c (xo)g) 

= ifJd{X2,'T/d (x2) -la2al 'T/c (xo)g). (5) 

Observe the cancellation of'T/d (XI )''T/d (XI) -I in the middle! 
Finally, let a be any element of A, and X any point in B I 

G. The points X and ax may not lie in anyone coordinate 
neighborhood on B /G, but must surely lie in the union of a 
finite number of such coordinate neighborhoods. 10 The fol
lowing formula may easily be obtained by iterating the steps 
leading to formulas (4) and (5). Here 

ab ==h(a)b = ifJ'{ax,'T/'(ax) -la'T/(X)g), (6a) 

where g is defined by 

b = ifJ(X,g) , (6b) 

V and V' are coordinate neighborhoods containing the 
points X and ax, respectively, 'T/ and 'T/' the local cross sections 
over Vand V', respectively, and ifJ and ifJ' the corresponding 
coordinate neighborhoods; they need not be the special 
choices used in proving the bundle structure theorem. This 
last statement may be proved by a little straightforward 
computation. 

D. Group representations on associated bundles 

Let {E,x,1r,G, Y} be a bundle associated with the princi
pal bundle {B,x,p,G,G}. Denote by {Jj},jEJ, a family of 
coordinate neighborhoods on X, and by {OJ },jE J, the corre
sponding local cross sections of the bundle E: 

OJ: Jj~E, 

1rOj (x) = X, VXEJj. 

Furthermore, let Sj: Jj X Y ~1r-1 ( Jj ) be the local triviali
zation of 1r - I ( Jj ). Then the coordinate transformations gji : 
V;nJj~G are given by 

gj; (x) = S J:"/S;.x' 

and these coincide with the corresponding functions in B. 
Finally, denote by D a continuous and effective action of G 
on Y, i.e., the image of yeY under gEG is given by D(g)y. 
Then, if ZE E, the analogs offormulas (6) are the following: 

Z = S; (x,y), (7a) 

az = Sj(ax, D{Oj (ax) -laO; (x)}y). (7b) 
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Here ZE1r- 1 ( V; ) and aZE1r- 1 ( Jj ). The only new element is 
the representation D of G on Y. The choice ofthis representa
tion is arbitrary. 

E. The effect of reducing the group of the bundle 

Let us briefly recall what is meant by reducing the group 
of the bundle. Let {E,x,1r,G,Y; (Vu,Yu), OE l:} be a coordi
nate bundle. The coordinate transformations of this bundle 
are given by 

guP (x) = ifJ;;)ifJp,x, xEVunVp' 

andg", (x )Eg. Now suppose that there exists another bundle 
atlas H Jj,ifJj )},jE J, compatible with the atlas {( Vu,ifJu )}, 
OE l:, but with the additional property that 

gji (x) = ifJJ:,/ifJ;,xEK, xEV;nJj, (8) 

where K is a proper closed subgroup of G. We may therefore 
consider the equivalence class of all J-atlases on E. These 
define a bundle 

{E,x,1r,K,Y}, 

the structure group of which is a proper closed subgroup of 
the group G of the original bundle {E,x,1r,G,Y}. This pas
sage from {E,x,1r,G,Y} to {E,x,1r,K,Y} is known as "reduc
ing the group of the bundle." 

The possibility of reducing the group G of a bundle de
pends upon the topology of G. For example, if G is a connect
ed Lie group, then it is homeomorphic I 1 to Rn XK, where n 
is a positive integer and K is a maximal compact subgroup of 
G. The factor Rn is homotopically trivial, and may therefore 
be shrunk awayl2 (if the base space of the bundle is paracom
pact), and the group of the bundle reduced to K. 

We now return to the principal bundle {B,x,p,G,G} of 
the Lie group B. Since G is closed in B, G is also a Lie group, 
and therefore the group of the bundle can be reduced to K, a 
maximal compact subgroup of G. This gives us the bundle 
{B,x,p,K,G}, which is no longer a principal bundle. How
ever, we may construct the principal bundle {F ,J{,q,K,K} 
associated with it. The total space F of this bundle is no long
era group! 

Nevertheless, the representation (6) on the bundle B 
may be transferred to the bundle F. The details are as fol
lows. We work with the open cover {Jj}, jE J, of X, which 
effects the reduction of the group of the bundle B. Let 

OJr Jj---..q-I ( Jj ) 

be local cross sections over Jj of the bundle F. Since F is a 
principal bundle, the group K acts freely on the fibers from 
the right. 13 We may therefore define the local trivializations 
'h: Jj XK---..q-I (Jj) as follows: 

tPj (x,k) = Wj (x)·k, VXE~, kE K. 

Then the coordinate transformations may be written as 

kji (x) = tPj":;/tP;,x = OJj (x) -IOJ; (x), (9) 

where kji (X)E K. The fact that the bundleFis obtained after 
reducing the group of the bundle B means that the local cross 
sections OJ; may be so chosen that the kji of (9) agree with 
thegji of (8): 

kji (x) = gj; (x), VXEV;n~. 
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The representation of the group A upon the bundle F may 
now be written down immediately by comparison with Eq. 
(6). Let {3e F, and denote by a{3 the image of {3 under the 
action of aeA. Then, if q({3)eV;, q(a{3)e~, we have 

{3 = 7{1; (x,k), (lOa) 

a{3 = 7{lj (ax,Wj (ax) -law; (x)k). (lOb) 

Finally, if {C,x,1T,K,Y} is a bundle associated with the prin
cipal bundle {F ,x,q,K,K}, then we may write the action of A 
on it as 

r=t;(x,k), 

ar = t}(ax,a{Wj (ax) -law; (x)}y). 

(lta) 

(ltb) 

Here reC, the {tj } ,je J, are coordinate functions for C, yeY, 
and {D(k)} is the representation of K on Y. 

F. The effect of enlarging the group of the bundle 

If K is a closed subgroup of G, then a coordinate trans
formation onX with values in K is trivially one with values in 
G. Suppose now that the action of K on Y may be extended 
continuously, and effectively, to an action of G on Y, and 
suppose that we are given a coordinate bundle {E,x,1T,K,Y; 
( ~ ,t/Jj ), je J}. We may then enlarge the J-atlas (~,t/Jj) to 
another, call it a I.-atlas (Vu,t/Jq), in which the coordinate 
transformations take their values in G. We thus obtain the 
coordinate bundle {E,x,1T,G,Y; (Vq,t/Ju)' UE I.}. Passing to 
equivalence classes, we obtain the fiber bundle {E,x,1T,G, Y}. 
This process is called enlarging the group 0/ the bundle 
{E,x,1T,K, Y}. 

It is always possible to enlarge the group of a principal 
bundle to obtain a new principal bundle. Let G be a proper 
closed subgroup of the Lie group L, and consider the princi
pal bundle {B,x,p,G,G}. The group G, being a subgroup of 
L, acts continuously and effectively upon L by left transla
tions, and therefore one may obtain the bundle {C,x,r,G,L} 
by the Steenrod construction. The associated principal bun
dle {C,x,r,L,L} certainly exists. Correspondingly, the ac
tion of the group B upon the bundle {B,x,p,G,G} by left 
translations may always be transferred to the bundle 
{C,x,r,L,L}. The steps are as follows. 

Since G is a proper subgroup of L, there exists a natural 
injection of VI> X G into VI> XL. Denote this by i. Next, let 
{1]I>}' {t/JI>}, be B, be local cross sections and coordinate 
functions for the bundle B, given (say) by the formulas (B2) 
and (B3) of Appendix B. Let 7{lI> be a coordinate function on 
the bundle {C,x,r,G,L}. Then there exists a continuous fi-

~b 

---o----~) -1 
r (Vb) 
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a 

FlO. 2. 

ber-preserving map 

0': B-C, 

the restriction of which to p -I ( VI> ) is given by the commu
tative diagram of Fig. 1. We use 0' to define a local cross 
section WI> over VI> in {C,x,r,G,L} by requiring commutati
vity of the diagram of Fig. 2. Finally, to obtain the principal 
bundle {C,x,r,L,L} from {C,x,r,G,L} we have to pass from 
the B-atlas, {VI>,7{lI>}' beB, to an enlarged atlas {Vy,7{ly}, 
yer, in which the coordinate transformations take their val
ues in L. The formulas for the action of B on the bundle 
{C,x,r,L,L} are 

b = 7{ly (x,/), 

a·b = 7{l6(ax,w6 (ax)-law(X).l), 

(12a) 

(12b) 

where xe Vy, axe V6, Wy: Vy _C is a local cross section, and 
Wy agrees with We on the intersection VynVe' 

Observe that the representation of B on a principal bun
dle given by formulas (12) cannot be obtained by applying 
the bundle structure theorem to B. 

G.Examples 

We shall give a class of examples to illustrate phenome
na that cannot occur in representations on bundles equiva
lent to the product. 

Denote by 0" the real orthogonal group in n dimen
sions. Then 

0" 10" _ I = S" - I , 

where S" is the unit n-sphere xi + ... + x~ + x~ + I = 1. 
The group 0" acts transitively on S" - I, and is a prin
cipal bundle over S" - I with fiber and base 0" _ 1 : 

{o" ,S" - 1 ,p,0" _ I ,0" _ I}' 
The group of the tangent bundle TS" - I of S" - I is 

GL( n - t,R). However, as discussed in Sec. II E, the group 
may always be reduced to a maximal compact sub
group, which in the present case is 0" _ I' That is, the 
bundle {TS" - I ,S" - I ,p,O" _ I ,R" - \} is associated with 
{O".s" - \ ,p,O" _\ ,0" _\}. 

The bundle structure theorem gives a representation of 
0" upon {O".s" - \ ,p,0" _ \ ,0" _ \}. By the procedure of 
Sec. II D this gives rise to an action upon 
{TS" - \ .s" - \ ,p,O" - \ ,R" - \ } for any choice of a linear 
representation of 0" _ \ upon R" - \ [cf. Eqs. (7a) and 
(7b»). 

We shall obtain the examples to illustrate the phenome
na we have in mind by letting 0" _ \ act identically upon 
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TABLE I. Vector fields on spheres. 

n2 3 4 5 678 

pen) 2 1 4 1 2 1 8 
No. of vector fields on S' - I 1 0 3 0 0 7 

lR" - I . However, we first need a digression. 
The number of linearly independent vector fields 14 on 

S" -I equalsp(n) - 1, wherep(n) is the Hurwitz-Radon
Eckmann number, defined as follows. Write n = (2a 
+ 1 )2b

, where n, a, and b are non-negative integers, let 
b = c + 4d, where c and d are non-negative integers, and 
O<c<3. Then 

p(n) = 2C + 8d. 

For n = 2 to 8, the values ofp(n) and the number of in de
pendent vector fields on S" - I are shown in Table I. That is, 
S 1, S 3, and S 7 admit one, three, and seven vector fields re
spectively; S2, S4, and S6 admit none; and S5 admits one. 

A vector field on a manifold is a (nowhere zero) cross 
section of its tangent bundle. If an n -dimensional vector bun
dIe has n everywhere linearly independent cross sections, 
then it is equivalent to the product 15 (its base space is paral
lelizable). In this case the entire bundle can be expressed as 
the Whitney sum of none-dimensional subbundles. If, how
ever, the bundle has only m independent cross sections, 
m < n, then one can identify only m one-dimensional sub
bundles. If these are split off, the rest is no longer a subbun
dIe. 

Now we may return to the bundle representations ob
tained by letting the group 0" _ I act identically upon the 
fiber lR" - I ,gx = X, 't:IgEO" _ I, XE lR" - I . Then we have the 
following. 

(i) n = 2,4,8. ThespheresS I,S3, andS 7 areparalleliza
ble, i.e., TS I, TS 3

, and TS 7 are equivalent to the product. The 
representation splits into a Whitney sum of exactly n irredu
cible subrepresentations. 

(ii) n = 3,5,7. There are no vector fields at all onS 2,S4, 
and S 6, and therefore no irreducible one-dimensional subre
presentations whatsoever. 

(iii) n = 6. S 5 admits exactly one vector field. The five
dimensional representation admits only one irreducible one
dimensional subrepresentation. 

Recall that we are dealing with representations of the 
compact Lie groups, which are the best-behaved groups of 
all. Phenomena analogous to (ii) and (iii) do not exist 
among linear representations, or bundle representations on 
product bundles, and are topological. 

III. GROUP ACTIONS ON PRINCIPAL BUNDLES 

Let {B,M,p,G,G} be a principal bundle, {V;};Ej an open 
cover of M, and 

4>;: V; XG~p-l( V;), iEJ, 

the corresponding local trivializations. The corresponding 
coordinate transformations on M with values in G: 

gj;: V;nVj~G, V;nVj #0, 
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are 

gji (x) = 4>D I 04>;,x , xEV;nVj, 

where the homeomorphism 4>;.x : G~p - I (x) is defined by 

4>; (x,g) = 4>;,x (g). 

Finally, ifxEV;nVj, and 

b = 4>; (x,g), (13 ) 

then 

b = 4>j(x,gj; (x).g), (14) 

Formulas (13) and (14) show how the local trivializations 
are glued together with the help of the group G to form the 
bundle. 

Now suppose that the Lie group A has an action on B, 
say from the left. This action would give rise to an action of A 
on M. Under the latter, M would split into a collection of 
pairwise disjoint A -orbits. The bundle B itself would split 
into a collection of pairwise disjoint A-invariant subbundles, 
each of which has to be considered separately. Therefore, 
there is no loss of generality in assuming that M itself is an A
orbit. That is, there exists a closed subgroup K of A such that 
M and A / K are in one-to-one correspondence. There is no 
effective loss of generality in assuming that they are also 
topologically the same, i.e., in identifying M with A / K. Then 
A is a principal bundle over M with group and fiber K: 
{A,M,1T,K,K} . 

Thus the space M is furnished with two G-structures: 
one with group K, arising from A via the bundle structure 
theorem, and the other, with group G, being the one used to 
construct the bundle B. 

Let us now consider the action of A on the bundle B. Let 
XE V; and aE A such that also aXE V;. Finally, let bE B, gEG 
such that 

b = 4>; (x,g). 

Then 

ab = 4>; (ax, 8; (a,x)g). (15) 

The formal properties of the objects 8 are fairly obvious! Let 
a' E A such that a' aXE V;. Then 

8; (e,x)g = g, 

8; (a',ax)8; (a,x)g = 8; (a'a,x)g. 

(I6a) 

(16b) 

These are, of course, precisely the "cocycle conditions" act
ing on g. We know that if 

is a family of local cross-sections of the principal bundle 
{A,M,1T,K,K}, then the cocycles 

s; (a,x) = 7]; (ax) -la7]; (x) 

satisfy the conditions 

(17) 

s; (e,x) = e, (I8a) 

s; (a',ax)s; (a,x) = S; (a'a,x). (I8b) 

Comparing (16) and (18), we see that a solution to our 
problem is provided by any continuous homomorphism 

(19) 
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We simply set 

is; (a,x) = I (s;(a,x»), ieJ. (20) 

Thus the elementary bundle representation formula ( 15) be
comes 

ab = tP; (ax,l (s; (a,x) )g). (21) 

Next, suppose that axet/Jj. Then 

ab = tPj (ax,gj; (x) ·1 (s; (a,x») . g). 

Finally, let a'aeJj. Then 

a'ab = tPJ (a'ax,(sj (a' ,ax) )gj; (x)(s; (a,x) )g). (22) 

This process may be continued. However, unlike formula 
(5), no cancellation occurs in the middle, and the formula 
becomes longer at each step. 

Thus, to determine an action of the group A upon the 
bundle B, the only new ingredient which is required is a 
continuous homomorphism I of K into G, where K is the 
subgroup of A such that A / K and M are homeomorphisms. 
Any such homomorphism determines one such action. 

This completes our construction. 

APPENDIX A: FIBER BUNDLES AND BUNDLE MAPS 

The bundle with total space B, base space X, projection 
p (p: B_X) , group G, and fiber Y will be denoted by 
{B,x,p,G, Y}, or by B for brevity when no confusion is likely 
to result. The group G is topologized and is assumed to act 
continuously and effectively on Y. For definiteness, we shall 
assume that the group acts from the left, and write the image 
of ye Yunder geG as gy.A bundle atlas or coordinate system 
for the bundle B is an open cover {Jj} ,je J, of X (here J is an 
indexing set), and for each Jj, a homeomorphism 

tPj: Jj X Y_p-I( Jj), (Ala) 

which satisfies 

(Alb) 

The tPj are also called local trivializations. Next, a map 

tPj,x: Y-p-I(X), xeJj, (A2a) 

is defined by setting 

tPj,X (y) = tPj (x,y), xeJj, yeY. (A2b) 

Then, for each pair i,jeJ and each xeV;nJj, the map 

tPJ:~ ItP;,x: Y-Y, xeV;nJj, 
is a homeomorphism. This homeomorphism is required to 
coincide with the action of an element of G upon Y, thus 
defining a continuous map 

gj;: VjnJj_G, 

where 

(A3a) 

gjj(x) =tPJ:xltP;,x' (A3b) 

The maps gji are called, by Steenrod, coordinate transforma
tions on X with values in G. They are also known as transition 
maps in the literature. The open cover {Jj}, je J, of X, to
gether with a family of maps (A3a) and (A3b) constitutes a 
G-structure on X. The bundle B is uniquely defined by the 
base X, the G-structure upon it, and the fiber Yupon which G 
acts continuously and effectively. This fundamental theo-
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rem is sometimes known as the Steenrod recognition princi
ple. 

If the fiber Y is the same as the group G itself (consid
ered as a topological space), the bundle is called a principal 
bundle. The principal bundle is sometimes regarded as the 
fundamental object in the class of all bundles with a given 
base and given G-structure upon the base. 

Let {B,x ,p,G, Y; (Jj ,tPj ), jf!ij} be a fiber bundle with a 
given coordinate system, in an obvious notation. A map 

h: B_B 

is called a bundle map of B upon itselfif it satisfies the follow
ing conditions. 

( 1) h is continuous. 
(2) h preserves fibers, i.e., pCb) =p(b')~ph(b) 

= ph(b '), where b,b'e B. Thus h induces a base map 

h:X_X, (A4a) 

which satisfies 

hp=ph (A4b) 

(3) If xeJjnh -I( Vk ), and hx: p-I(X)_p-I(X')

where x' = h(x)-is the fiber map induced by h, then the 
map 

gkj (x) = tPk-:x'hAJj,x (A5a) 

of Y into Y coincides with the action of an element G of Y. 
(4) The map 

(A5b) 

so induced is continuous. 
An invertible bundle map with a continuous inverse will 

be called a bundle automorphism. 

APPENDIX B: THE BUNDLE STRUCTURE THEOREM 

Theorem: (a) Let B be a topological group and G a 
closed subgroup that admits a local cross section in B, and let 
p: B-B /G be the natural projection. Then the space B is a 
principal bundle with total space B, base B /G, projection p, 
and group and fiber G, the group acting on the fiber by left 
translations. 

(b) The left translations of the group B by elements of B 
itself are bundle maps of this bundle upon itself. 

Proof(outline): (I) Choose the coordinate system as fol
lows. The indexing set J is the set B itself. Let the local cross 
section fbe defined over the open set VeB /G, f V_B, 
pf(x) = x, 't/xeV. Define Vb to be the left translation of V 
bybeB: 

Vb = b·V. (BI) 

(2) Definefb: Vb-B by 

fb(X) =bf(b -IX). (B2) 

Thenfb is continuous andph (x) = x. 
(3) Define the local trivializations ifJb: Vb X G 

_p-I(Vb ) by 

ifJb (x,g) =fb (x)·g. (B3) 

Then ifJb is continuous, andpifJb (x,g) = x. Next, define 

Ph: p-I (Vb )-G (B4a) 
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by 

Pb(z) = [fblP(Z»)]-IZ, VZEp-I(Vb )· 

It follows quickly that 

Ph¢Jb (x,g) = g, 

tPblP(Z),Pb (z») = z, 

(B4b) 

(B5a) 

(B5b) 

and that Pb is continuous. Therefore tPb is a homeomor
phism. 

(4) Let xEVbnVc' Then 

PctPb(X,g) =fc(x)-'[fb(x)g] 

= [fc (x) - 'fb (x) ]g. 

Since 

gcb(X) =fc(x)-'fb(x)EG, (B6) 

it follows that PctPb (x,g) is the left translation of g by the 
element gcb (X)EG. The continuity of gcb (x) follows from 
the continuity off This completes the construction of the 
coordinate bundle. 

(5) It is proved easily that two different local cross sec
tions give rise to strictly equivalent coordinate bundles. This 
completes the proof of part (a). 

(6) To prove part (b), we have to verify properties ( 1 )
( 4 ) in the definition of bundle maps as given in Appendix A. 
Of these, (1) and (2) are immediate, and (3) and (4) are 
verified as follows. Let XE Vb' hiE B, and x' = hiE Vc' Then 
the functionsgcb (x) of eqs. (A5) are given by 

gcb (x)·g = tPc--:X '(h,tPb,x (g») 

=fc (x')-'hJJb (x)g, 

i.e., 

(B7) 
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which will be recognized as a local "Wigner rotation" of B 
into G. Thusgcb (x) takes its values in G, and is continuous in 
x for all xEVbnVc' This completes the proof of part (b). 
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Representations of the SU(mln) superalgebra are studied in terms ofthe Kac-Dynkin weight 
systems. Superprojection matrices are introduced for the possible branching patterns. 

I. INTRODUCTION 

There has been considerable interest in superalgebras I 
related to superunifications,2 nuclear physics,3 supergravi
ties.4and superstring theories.s Especially. superalgebras al
low more systematic analyses for the construction of super
multiplets in supergravities.4

•
6 

Recently we have shown that the Dynkin weight tech
nique and projection matrices are very useful for the explora
tion of grand unified theories. 7 In this spirit. we investigate 
representations ofSU ( min) superalgebras in the Kac-Dyn
kin basis.6

•
8 Branching patterns of SU(mln) (see Refs. 8 

and 9) are elegantly analyzed introducing superprojection 
matrices. Our new superprojection matrices are extremely 
powerful for the construction of supergravities. 

In Sec. II we summarize the algebraic structure of 
SU(mln). In Sec. III we present an easy method of gene rat
ing the full weight system 9fthe SU(mln) superalgebra. In 
Sec. IV. explicit constructions of weight systems are present
ed with some examples ofSU(2/3) and SU(2/2). Branch
ing rules and superprojection matrices are shown in Sec. V. 

II. ALGEBRAIC STRUCTURE OF SU(mln) 

SU ( min) is classified as a classical superalgebra of the 
type A (m - l.n - 1) according to Kac's convention. I

•
8 

SU(mln) (m=,6n) consists of the even(bosonic) part. the 
subalgebra SU(m)®SU(n)®U(1). and the odd (fer
mionic) part. which transforms as [( iii.l.1) Ell (w.ii)] repre
sentations of the even part. Thus generators ofSU (min) are 

(m2 - 1.1) + (1.n2 -1) + (1.1) + (W.iJ)F + (W.I.1)F' 
~- -~ -- (2.1) 

where the SUbscript Findicates the odd part. For m = n. the 
even part ofSU(nln) is SU(n) ®SU(n) without the U(1) 
factor. 

~.!) + (!~~) + (1.1.!j)F + (ii.I.1)F' (2.2) 

The Cartan subalgebra consists of mutually commuting 
generators H; (i = 1 ..... m + n - 1). 

Let a = {al ..... a m + n _ I} be a fixed set of simple roots 
ofSU (min) and let Cbe the graded Cartan matrix ass~iat
ed with a. Simple roots a/ .a;- correspond to raising and 
lowering operators E /.E;-. respectively. 

We use the conventions introduced by Kac l •8 (Cheval
ley basis) 

a) Permanent address: Physics Department, Chungbuk National Universi
ty, Cheongju, Korea. 

[HoE/] = ±(C)ijE/. i.j=l ..... m+n-l. 
(2.3 ) 

where the Cij are the ij elements of the graded Cartan matrix 
ofSU(mln): 

m-1 
-~-----'" 

m-1 " l
-~ -~,-~ :::: i 

o 

c = 

, , , 
, -1' , , , 

-1"2:"1'0 -------------- -'- -.... - - ---- - - --
o -1 : 0: 1 0 --------------- -,----------

o 

o 1: 2 -1 , \ 

o :-1 '. 
, . , 
I , 

. . 
,----n-1 

(2.4) 

Note that Cmm = O. Cm.m _ I = - 1. and Cm.m + I = 1. As 
Lemire and Patera 10 pointed out. the graded Cartan matrix 
for a simple superalgebra depends on the choice of simple 
roots in the root system. Throughout this paper. we adopt 
the special sets of simple roots established by Kac. 1 The fol
lowing Kac-Dynkin diagram contains the same information 
as the graded Cartan matrix (2.4): 

8 1 8 2 8m_l 8 m 8 m+ 1 8 m+n -1 

O~ ••• -v----o- ... -0 

The set (a l .a2 ..... am + n _ I) characterizes the highest weight 
A of a representation; the a;'s are non-negative integers for 
i=,6m and am can be any complex number.8 

III. CONSTRUCTIONS OF SU(mln) IRREDUCIBLE 
REPRESENTATIONS 

Classifying finite-dimensional irreducible representa
tions of the simple Lie superalgebras. Kac l pointed out the 
existence of "typical" and "atypical" irreducible representa
tions. 

The atypicality conditions 1.8 are expressed as 
j m-I 

am = I ak - I ak - 2m + i + j. 
k~m+1 k~; 

l.;;;;i.;;;;m. m.;;;;j.;;;;m + n - 1. (3.1) 

If am does not satisfy the condition (3.1). the representation 
A is called typical and otherwise atypical. In other words. 
the typical cases are direct summands in any representation 
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in which they appear. 8
•
10 The atypical representations exist 

due to the fact that finite-dimensional representations of 
simple Lie superalgebras are not completely reducible in 
general. 10 

According to the Ramond's classification, II "typical" 
means that a representation consists of Bose and Fermi sys
tems of the same dimensions (i. e., same degrees offreedom ) . 
Ramond's typical representations are important in super
gravity because Bose and Fermi systems should have the 
same degrees of freedom. 

One can obtain the full weight systems associated with 
the highest weight A by applying lowering operators; under 
the action of even generators the weight system A moves 
inside multiplets of SU (m) ® SU (n) and the odd generators 
change a weight system into other systems with different 

• 8 11Th dd t 8 /3i+ (. 1 spms. ' e 0 genera ors j- 1= , ... ,m, 
j = m, ... ,m + n - 1) reside in CiJJ,I1) and (m,ij): 

/3;+ E (m,ij), /3;- E (m,I1)· (3.2) 

Let D be a dimension of a typical representation of 
SU(m/n), and d the dimension of the weight system of 
SU (m) ® SU (n) related to the highest weight A. Then 

(3.3 ) 

This equation implies the dimensions ofbosons and fer
mions are equally 

D /2 = d . 2mn - I. (3.4 ) 

There are m . n /3; -'s and the dimensions associated with 
the antisymmetric combinations of the /3; - 's coincide with 
the binomial coefficients of (1 + 1) mn • Actually there exist 
only the antisymmetric combinations of negative odd gener
ators,8 since 

( 3.5) 

By acting /3; -'s on a state 1,.1. ), the transformed state 
alternates between bosonic and fermionic states, II i.e., 

(3.6) 

According to Hurni and Morel,8 the operation of /3; ± causes 
a floor changing, i.e., from the ground floor (GND) to the 
mnth floor. For the highest weight A, the full weight system 
is 

floor weight system 

GND 
1st 

2nd 

A 
A ® (m,l1) 

A ® [(m,l1) ® (m,I1)]A 

mnth A ® [tensor products of m . n times of 
(m,I1)]A = A, 

(3.7) 

where the subscript A means antisymmetrization. In gen
eral, the antisymmetrization of [(m,l1) ® (m,l1) ® ... ] is 
difficult to perform. This problem is easily solved using per
tinent projection matrices (see Table I). 
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TABLE I. Generalized projection matrix P(SU(mn)-->SU(m) ®SU(n») 
for searching the multiplets of [m.!!) ® (m.!!) ® ... lA' If one wants the 
antisymmetrized product of k times (m,!!). one acts P on the right of the 
weight system (0 .. ·010 .. ·0) ofSU(mn). where only the kth element is 1 
(see Refs. 7 and 12). 

m-l 

p = 

m-l n-l 
& ,~ 

1:1000 

o : 2 

: 3 
0: , 

o 

-!-----------~!~:~-------------
_Q __ Q_~~~~-_Q~-~-_Q_~~~~--------

1 :(m-l) 1 
0 I 

, 2 0 
I 

0' , 
1 : 1 . 
-------------~------------------
OO .... O:OmO .... 

-------------~------------------, 
: 0 (m-l) 1 

Repeated ' 2 

, , . 
, 
I' 

2 

1 (m-l) 

o m 

(m-l) 1 

;0 0 

o 

mn-l 

IV. EXPLICIT CONSTRUCTIONS OF WEIGHT SYSTEMS 

We explicitly construct the full weight system for 
SU (2/3) and SU (2/2) as follows. 

Example 1: SU(2/3): ~~~4 . The graded 
Cartan matrix is 

( 
2: -1: 0 0) . . . . . . . . . . . . . 

. --:1.: .. 9: ... 1 ... ~ . 
o. -1. 2 -1 
o· o· - 1 2 . . 

(4.1 ) 

SU (2/3) has 12 even roots and 12 odd ones. Simple even 
roots corresponding to the ith column of the graded Cartan 
matrix7 (4.1) are denoted by a/ (i=j:.m), and the second 
column of ( 4.1) gives simple odd roots /3 ~ ±. Then 

a l± = ( ± 2 + 1 0 0), a 3± = (0 ± 1 ± 2 + 1), 

at=(O 0 +1 ±2),/3~±=(+1 0 +1 0). 

(4.2) 

Note that /3 ~ + corresponds to the lowest weight of (~,~) 
and/3 ~- to the highest weight of (~,~), 

(~,~) = (1,0 1), (~,~) = (1,10). (4.3) 

Other odd roots are 
/3~-=[al-,/3i-]=(-l 1 10), 

/3~- = [/3~-,a3-] = ( 1 -1 -1 1), 

/3 ~ - = [/3 ~ - ,a3- ] = ( - 1 0 - 1 1), (4.4 ) 

/3! - = [/3 ~ - ,a4- ] = ( - 1 0 0 - 1), 

/3 ~ - = [/3 ~ - ,a4- ] = ( 1 - 1 0 - 1). 
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All the P J -'s belong to the (~,~) weight system. 
From the highest weight A, the whole weight system is 

generated by A ® [(1,10) ® ... )A' Tocarryoutantisymme
trization we embed the (1,10) weight system to the funda
mental representation of SU (6). The projection matrix 
P(SU(6)_SU(2) ® SU(3») is obtained from Table I: 

SU(2) SU(3) (: D 
o • 2 

( 4.5) P= 1: 1 
o . 0 

1 : 0 

For instance, the contents of [(2,3) ® (2,3»)A' or equiv
alently [(1,10) ® (1,1 O)]A' are those of 12 when SU(6) 
reduces to SU (2) ® SU (3). The desired results are derived 
by acting P (SU (6 )-SU (2) ® SU ( 3») to the right of the 
(01000) weight system, 

8=1.2=(01000). (4.6) 

Also [3 times)A coincides with (00100) . P, and so on. 
The results are s}lmmarized below: 

(~,~) = (1,10) 

[(~,~) ® (~,~)]A = (0,20) ffi (2,0 1), 

[3 times] A = (3,00) ffi (1,1 1), 

[4 times]A = (2,10) ffi (0,02), 

[5 times]A = (1,0 1), 

[6 times]A = (0,00). 

(4.7) 

Using the above relation (4.7), the typical representa
tion ofthe highest weight A of SU (213) is 

GND: Bose A ® (0,00) = A, 

1st: Fermi A ® (1,1 0), 

2nd: Bose A ® [(0,20) ffi (2,0 1)], 

3rd: Fermi A®[(3,00)ffi(1,I1)], (4.8) 

4th: Bose A ® [ (2, 1 0) ffi (0,0 2) ] , 

5th: Fermi A ® (1,01), 

6th: Bose A ® (0,00) = A, 

where the ground floor is assumed to be a Bose system for 
convenience. 11 As expected, the numbers ofbosons and fer
mions are all equal to dim(A) .25

• 

Although the weight system (4.8) is constructed, the a2 

component is still missing, which is crucial to determine the 
typicality. As in the usual Lie algebra, each floor is connect
ed with P; - strings of (4.4). In this way one gets the a2 

component consistently. The atypical condition (3.1) deter
mines whether an odd root string is decoupled or not. This 
atypical condition comes from the fact that the U ( 1) sector 
ofSU(m) ® SU(n) ® U( 1), which is reduced from SU(m/ 
n), should be supertraceless for any irreducible representa
tions. 

Given a highest weight (0 a2 00) the atypical condition 
is 

a2 = - 4 +; + j, 1<;<2, 2<j<4. (4.9) 

If i = j = 2, a2 is zero. This implies the P ~ - string is 
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terminated when a2 = O. Hence the representation (0000) 
is the singlet composed of the ground floor alone. The repre
sentation (0000) satisfies the supertraceless condition, 
which makes one sure that P ~ - and all other odd roots are 
decoupled. In general, the weight system (00· .. 0) of 
SU(m/n) is singlet because the P';.- (= (In,~)) string is 
decoupled when all the weight components are zero. 

The representation (0 a2 00) is typical when a2 =1= - 1, 
1,0, and 2. This system is resolved into ~B ffi gF' The sub
scripts B and F denote Bose and Fermi systems, respectively. 

The fundamental representation of SU (213) is 2B ffi 3F 
(Ref. 11), which coincides with the weight system ( rOO 6), 
and its complex conjugate representation is 3F ® 2B, that is, 
(0 0 0 1). Their weight systems are --

GND : Bose (1 0 0 0) 

-I~~ 
8

2].(-1100) 

Fermi(O 1 1 0) 

"-:~ 
( 4.10) 1 st : 

(0 0 -1 1) 

'\: 
and 

(0 0 0 -1) 

Fermi(tO 0 0 1~: 
2 (0 0 1 -1) 

S, ~~ 
(0 -1 -1 0) 

1st: Bose (1 -1 0 0) 

GND 

(4.11 ) 

~~ 
(-1 0 0 0). 

The representations (1000) and (000 1) are supertrace
less [cf. Sec. V, Eq. (5.8)]. 

The fundamental representations, I I of SU(m/n) 

(n =1= 1) is generally (1 0 .. ·0) [ = l!JB ffi ~F] and its conju
gate representation is (0···0 1) [ = FF ffi l!JB)' For SU (m/ 
I), thefundamentalis (10···0) [ = l!JB ffi IF] butitsconju-

6 - -
gate is (0···0 -1) [=!F ffil!JB)' 

The tensor product of the fundamental representation 
and its conjugate representation ofSU(m/n) is 

(10···0) ® (00···01) 

= (10···01) ffi (0···0) 

(m=l=n, n=l= 1), 

(1 0···0) ® (0···0 - 1) 

= (1 0···0 - 1) ffi (0 ... 0) 

(m=l=n, n=I), 

(1 0···0) ® (0···0 1) 

= (1 0···0 1) Ell (0···0) Ell (0 ... 0) 

(m = n). 

(4.12) 

(4.13) 

(4.14 ) 

Similar to the usual Lie algebra SU(N), (10···0 1) is the 
adjoint representation of SU(m/n) for n=l= 1. The adjoint 
representation of SU(ml1) is (10···0 - 1), The positive 

Kimetal. 2011 



                                                                                                                                    

odd roots/3 J + reside in the ground floor of the adjoint repre
sentation, and the even roots are in the first floor. The second 
floor consists of /3 ; - 'so 

Example 2: SU (2/2): ~3 • As the simplest case 
for m = n, we consider SU (2/2). The graded Cartan matrix 
is 

(-~ 
-1 

o 
-1 

Then one has simple roots 

a\± = ( ± 2 =t= 1 0), a 3± = (0 ± 1 ± 2), 

/3~± =(=t=10 +1). 

(4.15 ) 

( 4.16) 

Here (1 0 1) is the adjoint representation of SU (2/2): 

GND 

1st 

2nd 

The odd roots /3 ~ - and /3 ~ - are decoupled since a2 = O. 
The Cartan subalgebra H2 = (000) does not appear in the 
adjoint representation of SU (2/2). The dimension of this 
weight system is lj. Hence the even part of SU(2/2) is 
SU (2) ® SU (2). Obviously the ground, first, and second 
floors consist of the positive odd roots, the even roots and the 
Cartan subalgebra, and negative odd roots, respectively. 

floor SU(2/3) SU(2) 
GND: 1 0 0 0 1 • 

-1 1 0 0 - 1 • . 

V. BRANCHING RULES AND SUPERPROJECTION 
MATRICES 

It is extremely important to know branching rules9
.\3 of 

superalgebras in order to study low energy phenomenologies 
of superunification and supergravity models. We approach 
this problem in the context of superprojection matrices. The 
superalgebra SU(mln) has several branching types such as 

SU(mln)-SU(m) ®SU(n) ®U(l), (5.1) 

SU(m\ + m2/n\ + n2)-SU(m\lnd 

®SU(m2/n2) ®U(l), (5.2) 

SU(m\m2 + n1n2lm\n2 + m2n\) 

-SU(m\ln\) ®SU(m2In2)' 

SU(mln)-OSp(mln). 

(5.3 ) 

(5.4) 

The first two branching patterns (5.1) and (5.2) are classi
fied as regular branchings. The patterns (5.3) and (5.4) are 
special branchings. 7 

As an example of regular branchings, we analyze the 
SU (2/3) case. If one eliminates the second node (corre
sponding to the simple odd root) from the Kac-Dynkin dia
gram, SU(2/3) is broken down to the subgroup SU(2) 
® SU (3) ® U (l ), 

SU(2/3) SUeZ) & SU(3) 

o 0---<> • 

t 

The corresponding superprojection matrix of SU (2/3 ) 
_SU(2) ® SU(3) ® U(l) is 

p= (sur rr . u(!) (5.5) 

O· 0·-4 . 
o • 0 - 2 

Note that the matrix (5.5) is exactly the same as the projec
tion matrix of SU (5 )-SU (2) ® SU (3) ® U (l) except for 
the minus signs in the U ( 1 ) column.7 The minus signs come 
from the supertraceless condition. 

Let W be any weight system of SU (2/3). The SU (2) 
® SU(3) ® U(l) contents W' are obtained by acting (5.5) 
on the right-hand side of W: 

W·P= W'. (5.6) 

Branching of the fundamental representation (1 0 0 0) is 

SU(3) U(l) 
0 o· 3 
0 0: 3 (5.7) 

·P= . . . . . . 
1st: 0 1 1 0 o • 1 O· 2 

0 0 -1 1 o • . -1 1 : 2 
0 0 0 -1 o • 0 - 1 • 2 

(1000) decomposes into [( 1) (0 0)3 $ (0) (10)2]' where the subscripts denote U( 1) values. The generalized superprojec
tion matrix ofSU(mln)-SU(m) ® SU(n) ® U( 1) is 
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SU(m) SU(n) U(1) 

n 

2n 
1m _ I 0 

(m - I) . n . . . . . . 
p= 

0 0 
(5.8) 

mn . . . . . . . . . . . . 
0 In_I - (n -1). m 

0 In_I -2m 

-m 

where 1m is the m xm identity matrix. Note that the U(l) column of the superprojection matrix (5.8) only gives some 
constant value times 1m when SU(m/m)-+SU(m) ® SU(m).The branching pattern (5.1) corresponds to elimination of the 
mth node from the Kac-Dynkin diagram. As a matter offact, this pattern is just a special case (m2 = n l = 0) of (5.2). 

The second branching pattern (5.2) is defined as 

SU(ml + m 2/nl + n2 )-+SU(m l/n l ) ® SU(m 2/n 2 ) ® U( I), 

(10 .. · 0)-+(10 .. ·0)(0 .. · O)a $ (0 .. ·0)(1 O ... O)b' 

The subscripts a and bare U ( I) values that satisfy the supertraceless condition 

a(m l - nl) + b(mz - nz) = O. 

This pattern is divided into four cases: 

(i) n l = 0: SU(m l + mz/n)-+SU(m l ) ® SU(mz/n) ® U(1), 

(ii) m2 = 0: SU(m/n l + nz)-+SU(m/n l ) ® SU(nz) ® U(1), 

(iii) m z = nl = 0: SU(m/n)-+SU(m) ®SU(n) ® U(1), 

(iv) m l, mz,nl,nz=lO. 

(5.9) 

(5.10) 

Cases (i) and (ii) correspond to the elimination of the m I th and (m + n I ) th node from the Kac-Dynkin diagram, respe&tive
ly. As mentioned above, case (iii) coincides with (5.1). Case (iv) is not obtained by this simple method. For case (i), the 
generalized superprojection matrix is 

SU(m l ) SU(mz/n) U(1) 

! 
I(n - m z) 

2(n - m z) 

1m,_, · 0 m,-l 

• (m,-l)(n-mz) . . . . . . . . . . ... . . . .. . . . . . 
0 · 0 . .. . ~ ~ (~ -; T,.). . m,th . . . . . 

! 
· · m,(n-mz+l) 

· m ,(n-m z+2) mz-l (5.11 ) 

ml(n - 1) 

· · 0 1m,+n_' mIn ('n+_~,)th - ml(n - 1) 

-m,(n-2) 

-ml 

The generalized superprojection matrix of the case (ii) is 
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SU(mln l ) • SU(n2) U(1) 

! 
n2 

2n2 m-l 

(m - l)n2 

Im+n,_1 0 mn2 

! 
mth 

- (m - l)n2 
- (m - 2)n2 n l -1 (5.12 ) 

· : .~ (tn.-.nJ t !>~2. · . 
0 · 0 

. 
- (m - n l )n2 (m + nl)th · . . . . . . • : ~ (";~~1)(~2·-·1) 

! 
• 

0 In,_1 n2 - 1 

-(m-n l )2 

-(m-n l )1 

Now we consider the special patterns (5.3) and (5.4). Let aa = {a J be a set of even roots and afJ = {Pj } a set of odd 
roots ofSU(mln). The commutation relations 

[a;.aj ] eaa , [ai,pj ] eafJ , {p;.pj}eaa (5.13) 

allow the special branchings 

SU(m lm2 + nln21mln2 + m2n l) 

(10···0) 

---... SU(ml/n l ) ®SU(m2In2) 
(5.14 ) 

---... (1 0 .. ·0)( 10···0). 

As a simple example ofthis type, SU (2) ® SU ( 112) can be 
embedded in SU(2.4) with either n l = 0 or n2 = 0: 

P(SU(2/4)---...SU(2) ®SU(1I2») 

SU(2) SUe 112) 

~G 
1 

D 
2 

-1 

0 
0 

There exist special branching types 7 

SU (N)---...SO(N), SU(2n)---...Sp(2n). 

(5.15 ) 

( 5.16) 

The special branching SU (min )---...0Sp(mln) (see Ref. 13) 

is based on (5.16). 

VI. CONCLUDING REMARKS 

We presented an easy systematic method of generating 
Kac-Dynkin weight systems. The Kac-Dynkin weight 
technique is extremely powerful in particle physics, especial
ly in constructing supergravity models. 14 It is essential for 
Fermi and Bose systems to have the same degrees offreedom 
in supergravity. The typical representations of SU(mln) 
may be nice candidates. Some of the atypical representations 
also have the same degrees of freedom6 for bosons and fer
mions. For instance, the adjoint representation of 
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'SU(m -11m) or SU(mlm - 1) (m>2) has dim(Bose) 
= dim(Fermi) = 2m,(m - J,). Also the fundamental re
presentations of SU (mlm) are the systems 11!B EB 11!F' 
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The condition on the polynomial P for a Hirota equation P1' . l' = 0 to have an N-soliton solution 
for arbitrary N is examined and simplified. 

I. INTRODUCTION 

While the role of affine Lie algebras in explaining many 
of the miracles of soliton mathematics is understood,I-3 the 
Hirota conditions have so far eluded interpretation. These 
relations express the condition under which a given partial 
differential equation, when expressed in Hirota or quadratic 
(homogeneous) form, has an N-soliton or N-phase rational 
solution. It is generally agreed, although not rigorously 
proved, that, if these conditions hold for arbitrary N, the 
evolution equation is completely integrable and belongs to a 
commuting family, each of whose members is also a com
pletely integrable soliton equation. The goal of this paper is 
to simplify the Hirota conditions and to express them in a 
way that may lead to an algebraic interpretation. In particu
lar, we build on the idea, first expressed by one of the authors 
in Ref. 4, that the phase shift function plays a central role in 
identifying the members of a particular family of soliton 
equations. This function is common to each of the equations 
in the commuting family and measures the phase shift expe
rienced by two colliding solitons. The fact that the same 
phase shift, which is a function of the two-soliton ampli
tudes, is shared by each of the members of the family is a 
simple consequence of the commutability of the flows. 

The Hirota formalism homogenizes the partial differen
tial equation by converting it into a bilinear, and in some 
cases a quadratic, equation. For example, the transforma
tion 

a2 

q(x,t) = 2 -2 In l' ax 
converts the Korteweg-de Vries equation 

qt + 6qqx + qxxx = 0 

into the form 

(1.1 ) 

( 1.2) 

1'1' xt - 1'x 1't + 1'1'xxxx - 41' x l' xxx + 31';x = O. ( 1.3) 

Hirota developed a very neat way of writing this equation by 
introducing a derivative operator D x , which acts on ordered 

J 

pairs of functions as follows: 

Dxu(x) . 1'(x) = lim!... u(x + E)1'(X - E) 
E--->O aE 

and in general 

(1.4) 

a) Present address: Department of Mathematics, University of Science and 
Technology of China, Hefei, Anhui, People's Republic of China. 

D a, ... D a"U(X ) . 1'(X ) 
XI XI'! r r 

The right-hand sides of (1.4) and (1.5) are exactly the same 
as the Leibnitz formula for derivatives of products except for 
certain sign changes. Using this notation, Eq. (1.3) may be 
written (call t = t3 ) 

( 1.6) 

Associated with the Korteweg-de Vries equation is the po
lynomial x IX3 + xt (x I = x, X3 = t3). Each member of the 
Korteweg-de Vries (KdV) family of equations may be writ
ten in quadratic form. The next member in the family, desig
nated KdV 5, is 

qt, - qxxxxx - 20qAxx - lOqqxxx - 3Oq2qx = 0, (1.7) 

and, using (1.5), this may be written 

Notice that in order to write KdV 5 in quadratic form, one 
needs to include the KdV 3 time variable t3 in addition to the 
time t5 that appears in (1.7). The Hirota equations for 
KdV 5 are the pair of equations (1.6) and (1.8). We also 
observe that these two examples of Hirota equations are even 
and homogeneous under the weight assignment WeD ) 

t2k + 1 

= 2k + 1. 
Other well-known equations that have Hirota form are 

the Sawada-Kotera equation, t I = x, 

(D~, + 9Dt,Dt,}1"1' = 0; (1.9) 

the Ramani equation 

(D ~ - 5D: Dt - 5D 2t )1" l' = 0', 
I I 3 3 

the Ito equation 

(D:, + 2Dt,D:, )1' . l' = 0; 

and the Kadomtsev-Petviashvili equation 

(u t + uUx + uxxx)x + Uyy = 0, 

which is transformed by (1.1) into 

(iD ; -DxDtJ +lD!)1"1'=O. 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

One of the advantages of the Hirota formalism is that it 
is relatively easy to find expressions for the multisoliton solu
tion. The reason for this is that the N-phase multisoliton 
solution, which for the KdV family is given by 
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1"(x = t l ,t3,t5, ••• ) 

= L exp ( .f p/lj + 
1', I'l= 0.1 J= I 

(1.14) 

consists of sums of exponentials and the Hirota operator D 
acts in a simple way on ordered pairs of exponentials, e.g., 

In (1.14), 
<0 

OJ = L (-I)nk;n+lt2n +I' tl =x, 
o 

The phase shift Ajl is given by 

e
AjI = (kj - kl )/(kj + kl W, 

(1.15 ) 

(1.16) 

( 1.17) 

and the first sum is taken over all configurations of the Pj, 
j = 1, ... ,N, each choice being either a zero or a one. 

We emphasize that (1.14) provides the common N-soli
ton solution for all members of the KdV family. As we have 
mentioned, they all share the same phase shift, a property 
that can be deduced readily from the fact that the flows 
q, , r = 0,1, ... , commute. The general formula analogous 

2,.+ 1 

to (1.15) is 

P(D, ,D, , ... )efJ1 • efJl = P(k, _ kl )/1+ fJ1
, 

, , J 
(1.18) 

where 

P(kj -k/ ) =P(kj -kl , ... ,( -l),(kf'+I-k;r+I), ... ). 

(1.19) 

We now ask a natural question. Given an even homo
geneous polynomial P2L (D" ,D" , ... ,D'lk + I) of weight 2L, 
under what conditions does the corresponding Hirota equa
tion 

P2L (D" ,D" , ... ,D'lk+ 1)1"' 1" = 0 (1.20) 

having an N-soliton solution for arbitrary N? The one-soli
ton form 

1" = 1 + efJ, 

with 
00 

0 = ~ k(2r+l)t 
~ 2r+I' 
o 

(1.21) 

( 1.22) 

is a solution provided that the vector {k (2r + I)} 0 lies on the 
manifold (which we call the dispersion relation) 

P2L (k (I),k (3), ... ,k (2r+ 1), ••• ) =0. (1.23) 

We are going to confine ourselves in this paper to the class of 
Hirota equation for which (1.23) is satisfied by k (2r + i) be
ing a power of a single parameter k: 

k(l)=k, k(2,+1) = (_1)'k 2,+1. ( 1.24) 

This corresponds to evolution equations like the Korteweg
de Vries equation, which describe how a function of x = II 
evolves with respect to a sequence of times t 2, + I • The Ka
domtsev-Petviashvili (KP) equation, on the other hand, is 
part of a family for which the equations describe the evolu
tion in times t3 ,t4 , ... of a function q(x = tHY = t2,t3,t4 , ... ) of 
x = t I and y = t2• The dispersion relative for (1.13) is satis-
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fied by expressing each k(r) (here 0 = ~k(') t,) as a function 
of two parameters 

k(l) = u - V, k(2) = u2 - v2, k(3) = u3 _ v3, .... 

These equations are associated with the Lie algebra gl ( 00 ) 

corresponding to the infinite-dimensional linear group. On 
the other hand, the KdV hierarchy, which is recovered from 
the KP hierarchy by setting v = - u = k /2 and writing 
t 2r + 1 as ( - 1)' 2r + 1 t 2r + 1 , is associated with a subalgebra 
of gl( (0), namely the Kac-Moody algebra AP) associated 
with s1(2). . 

The two-soliton solution 

1" = 1 + efJ, + efJ, + ~,,+ fJ, + fJ, 

is a solution of (1.20) with 

OJ= I(-lYk f'+l t2,+1 
o 

provided the phase shift is chosen as 

~"= - P2L (kl - k Z)/P2L (kl + k2), 

(1.25 ) 

( 1.26) 

where P(k l ± k2) is defined by (1.19). The coefficients of 
e2fJ, and e2fJ, are zero because of (1.18) and the fact that 
P 2L (0) is zero. The coefficient of e2fJ, + fJ, is zero because 
P 2L (kl ) = P 2L (k l , - k ~,k ~ , ... ) is zero. Thus, Hirotaequa
tions in quadratic form always have a two-soliton solution. 
For a three-soliton solution, there is an additional con
straint, obtained by demanding that the coefficient of 
efJ, + fJ, + fJ, in the expression 

P(D" ,D" , ... )1" • 1" 

be zero. This condition can be written 

PI23{P2L (k2 - k 3 )P2L (k3 + k l ) 

XP2L (k2 + k l )P2L (kl - k2 - k3)} 

+ PZL (k2 - k3 )P2L (k3 - k l ) 

XP2L (k2 - kl )P(kl + k2 + k3) = 0, 

where 

P(k l + k2 + k3) 

=P(kl +kz+k3' -k~ -k~ -kL ... , 

X( -1)'(k~ +k~ +k;), ... ), 

( 1.27) 

andpI23 is the permutation over 1,2,3. For an N-soliton solu
tion, the condition, originally derived by Hirota,S is 

Lp(fpjkj) IT P(Pmkm -P/k/)PIPm =0. (1.28) 
1'1 1 m>1 

The summation in ( 1.28) is over all sequences 
(PI,f.l2"",PN)' wherepj = ± 1,j = 1, ... ,N. In each term of 
the summation, 

P (i pjkj ) IT P(Pm km - P/kl )PIPm, 
1 m>1 

all the p's are determined once a particular choice of the 
sequence (PI,f.l2, ... ,f.lN) of plus and minus ones is made. 
Equation (1.28) is known as the Hirota condition and we 
call a homogeneous polynomial P of even degree that satis
fies this condition for all N a Hirota polynomial. It is the 
expression (1.28) that we aim to simplify. In particular, we 
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would like to find an algorithm to determine all polynomials 
of weight 2L that satisfy it. 

II. DISCUSSION OF RESULTS 

The first curious fact about ( 1.28) is that it is not, on the 
surface, linear. And it should be, because integrable evolu
tion equations come in families and therefore linear combi
nations of these flows should also be integrable and satisfy 
( 1.28) for every N. However, recall that all the members of a 
commuting family share the same phase shift 

eAml= _ P(km -k/) = _ P2M (km -k/) , (2.1) 
P(km + k/ ) P2M (km + k/ ) 

where 2M is the lowest weight of any number of the integra
ble family. For example, the lowest weight of the KdV family 
(1.9) is that of the KdV equation itself, namely 4. The 
Sawada-Kotera family of integrable equations begins at lev
e16. Therefore in ( 1.28), we can replace the second P, which 
contains differences on two k's only, with P 2M , because di
viding (1.28) across by P 2L (k/ + km ) gives an equation lin
ear in P2L (If,u/k/) with coefficients of functions of the 
phase shifts, which are the same for every L in the commut
ing family of Hirota equations. With this observation, the 
Hirota condition for a given P 2L can now be written 

Q(k1,···,kN ) 

= L P2L (~,ujkj) 

x IT P2M (,um km -,u/k/),u/,um =0. (2.2) 
m>/ 

What we will show is that if Q(kh ... ,k.) = 0 for s<,N - 1, 
then (2.2) has a factor 

N 

kf+l ... k'~+l IT (k~ _k;)2 
m>/ 

of degree 3N 2 - N. But, from (2.2), a straightforward count 
showsthatQ(kw .. ,kN ) has degree 2L + MN(N - 1). Thus 
if 

3N 2 -N>2L +MN(N -1), (2.3) 

Q(k1, ... ,kN ) must be identically zero. For cases in which 
M = 2 or 3, that is, in those cases for which the lowest weight 
member of the integrable sequence is 4 or 6, this condition is 
nontrivial and tells us that after one establishes that P 2L has 
an r-soIiton solution, 3<r<No, where No is the maximum 
integer for which (2.3) holds, then it has an N-soliton solu-

tion for arbitrary N. For M = 2, No = [( - 1 + ~1 + 8L)1 
2] and for M = 3, No = L. In actual fact one simply has to 
establish that P 2L has an No-soliton solution because, by sim
ply allowing several soliton amplitudes to decay or their lo
cations to move to infinity, the fact that P 2L has an No-soli
ton solution implies that it has an r-soliton solution 
3<r<No· 

Let us look at several consequences of this result. De-
note by P i~) the polynomial weight 2L, which has the 
phase shift function given by (2.1). Then we have the follow
ing. 

(i) If M = L = 2, (2.3) holds for every N>2. It follows 
that 
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P4 (D" ,D" )7 . 7 = 0 

has an N-soliton solution for all N. This is the well-known 
result that the KdV 3 equation has an N-soliton solution. 

(ii) If M = L = 3, then (2.3) is satisfied for any N> 3. 
This implies that if 

P6(D" ,D" .D,,)7. 7 = 0 

has a three-soliton solution, then it has an N-soliton solution 
for arbitrary N. 

(iii) In thecaseM = 3, whenN>L, (2.3) holds. There
fore, if 

Pit) (D" ,D", ... )7· 7 = 0 

has an L-soliton solution, then it has an N-soliton solution 
for arbitrary N. 

(iv) In the case M = 2, (2.3) is satisfied provided 

N> [( - 1 + ~1 + 8L)/2] = No. 

Therefore, if 

Pii!(D, ,D, , ... )7·7 = 0 , , (2.4 ) 

has a No-soliton solution, then it has an N-soliton solution 
for arbitrary N. For instance, when L = 3,4,5, (2.4) has an 
N-solitonsolution for arbitrary N; whenL = 6,7,8,9, if (2.4) 
has a three-soliton solution, then it has an N-soliton solution 
for arbitrary N. 

Because we have assumed the dispersion relation ( 1.23 ) 
is satisfied by (1.24), this last result refers to members of the 
KdV family. It shows that, contrary to the conjecture stated 
by the first author in Ref. 4, the Hirota polynomials (that is, 
the polynomials that have N-soliton solutions for arbitrary 
N) are not completely determined by the phase shift func
tion. Namely, just because P 2L satisfies (2.1) with M = 2 is 
not sufficient to guarantee it is a Hirota polynomial. As we 
have just mentioned, it is sufficient for L = 3,4,5 that is, for 
polynomials of weights 6, 8, and 10. For polynomials of 
weights 12-18, P 2L needs also to satisfy the three-soliton 
condition. For a polynomial of general weight 2L, P 2L must 

satisfy (2.2) for all Nup to [( -1 +~l + 8L)/2]. 
Since the general form of the polynomial at any weight 

level is a linear combination of all products of odd weights 
that add to 2L, these constraints leads to a set of homogen
eous linear algebraic equations on the WL coefficients, 
where WL is the number of ways an even number 2L can be 
decomposed into a sum of odd numbers less than 2L. It is 
reasonable to conjecture that these equations will contain 
information about the underlying algebraic structure of the 
equation family whose phase shift function is given by (2.1 ). 

III. PROOF OF MAIN RESULT 

Consider the equation in Hirota form 

P2L (D",D", ... )7· 7 = 0, (3.1) 

with the phase shift function given by 

-4" = _ P2L (kl - k2 ) = _ P2M (k l - k2 ) , 
e M<L, 

P2L (kl + k2 ) P2M (k l + k2 ) 

(3.2) 

where P2L and P2M satisfy the conditions 
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P2i ( -Dt" -D"",,) =P2i (Dt ,.Dt,,"')' 

P2i(0,0, ... ) = 0, 

P2i (k) =P2i (k,-k 3,k s, ... ) =0, 

and we define 

P2i (k, ± k2 ) = P2i (k l ± k2, - (k i ± k ~ ), ... , 

X{ -l)'(ki'+' ±k~'+'), ... ). 

The condition that (3.1) has an N-soliton solution is 

L P2L (f J.tiki) IT P2L (J.tjkj - J.tiki )J.tiJ.tj = 0, 
I j>i 

which is equivalent to [using (3.2)] 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

L P2L (f J.tiki) IT P2M (J.tjkj - J.tiki )J.tiJ.tj = 0, (3.7) 
I j>i 

where the sum is taken over all sequences (J.ti )f"= I of plus 
and minus ones. It is easy to see that (3.7) can be rewritten as 

QN = Q(kl,···,kN) 

= I'J=~ '.' P2L (~J.t/k/) 
x IT P2M (J.tjkj - J.tiki) IT J.tf" - I = O. (3.8) 

j>i i 

In the following proof, we follow closely the ideas used by 
Hirota6 for proving that the KdV equation has an N-soliton 
solution. The QN has the following properties. 

(i) When N is odd, QN is even in the ki ; when N is even, 
QN is odd in each of the ki , i.e., 

Q(k
" 

... , - ki, ... ,kN) = (- l)N-'Q(k\J" .. ,k" ... ,kN)· 

(3.9) 

(ii) QN is a homogeneous symmetric polynomial in the 
ki's, i.e., 

Q(k" ... ,kw .. ,kj, ... ,kN) = Q{kl,···,kj, ... ,ki, ... ,kN). 

(3.10) 

The result (3.9) is easily seen by replacing k/ by - k i andJ.t/ 
by - J.ti (dummy index) in (3.8). Also, (3.10) can be veri
fied by interchanging kit kj , andJ.ti,J.tj' 

N dP2M {kj - k , ) I 
= 2 IT Q(k2,· .. ,kN) = O. 

j=2 dk) k, =0 

According to (3.9) and (3.18), QN can be written as 

It is clear from (3.5) and (3.8) that 

Q(kl ) =P2L (k,) =0, 

Q(kl ,k2) = P2L (kl + k2 )P2M(kl - k2 ) 

- P2L (k, - k2 )P2M (k, + k2 ) = O. 

Theorem: Provided 

Q{kl, ... ,ki ) = 0, i<.N - 1, 

then 

Q(kl,···,kN) 
N 

= kf+' ••• k~+ I IT (k; - k~)2Q{k" ... ,kN)' 
j>/ 

and if N,L,M satisfy 

(3.11 ) 

(3.12) 

(3.13 ) 

(3.14) 

3N 2 -N>2L +MN(N - 1), (3.15) 

then 

Q(kl, ... ,kN) = O. (3.16) 

Proof: (3.5) implies 

P2M (J.tj kj ) = 0, (3.17) 

which yields 

P2M (J.tjkj - J.tik/) = kjkiP 2M (J.tj,p."kj,ki )· 

Hence we obtain from (3.8) that 

Q(kl, ... ,kN) = kf- ' ... k~-IQ(k" ... ,kN)' (3.18) 

By using (3.13) and (3.17) and noting that (3.3) implies 

P(J.tjkj - J.tiki) = P(kj - J.tiJ.tjk/), (3.19) 

and 

dP2M {J.tj kj -J.tik/) I 
dk i k,=O 

= dP2M (kj - J.t/J.tjk/) I 
dk/ k,=O 

_ dP2M (kj -k/) I 
- J.tiJ.tj dk ' 

i k,=O 

(3.20) 

we find 

(3.21) 

Q(kl,. .. ,kN) =kf- 'R)(k2,· .. ,kN) +kf+ IR2{k2,· .. ,kN) +kf+ 3R3 (k2, ... ,kN) + .... 
Using (3.21), we obtain 

R 1(k2, ... ,kN ) =0 
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and 

Q(kl, .. ·,kN ) =kf+IR2 (kz,···,kN) +kf+ 3R 3(k2,·.·,kN) + ... =kf+IR(k1,kz, ... ,kN )· 

Therefore, from the properties (3.9) and (3.10), it follows that 

Q(kw .. ,kN ) = k f + I ••• k Z + IQ(kl, ... ,kN), (3.22) 

where the polynomial Q(kl, ... ,kN ) is even and symmetric in the ki's. 
Next, evaluate QN when kl = k 2 : 

Q(k l,kl ,k3,···,kN) = 2: PZL (f/Llki) fi /Lf- I IT PZM (/Ljkj - /Liki )PZM (/Llkz - /Llk 1 ) I 
p,].=P. ] 1=3 ]>1 

I'j= -1.1 j>Z k, = k, 

+ I',XI" PZL (*/Liki) ,(i3/Lf-
l
( -1)N-I

j
lt PzM(/Ljkj -/Liki) 

I'j= -1.1 

x IT [PZM (/Ljkj + /Llk2 )PZM (/Ljkj - /Llk l )]PZM (/Llk2 + /Llkl) I 
p3 ~=~ 

= 1', =2: /t, PZL (f3 /Li k;) ;~X /Lf - I )t PZM (/Ljkj - /Liki) 

I'j= -1,1 

x ( - l)N- I IT [PZM (kj + /LI /Ljk1 )PZM (kj - /LI /Ljkl )]P2M (/Llkl + /Llk l ) 
j>3 

= (_l)N- 12IT [PzM(kj +kl)PZM(kj -kl)]PZM(kl +k1)Q(k3, ... ,kN) =0. 
j>3 

(3.23 ) 

Since QN is a symmetric polynomial in the ki's, (3.23) im
plies that for any i,j, 

Q(kl,· .. ,kN ) Ik= k. = 0, , J 

and from (3.22) this yields 
A 

Q(kl,. .. ,kN) k= k
j 

= 0. 

~ence QN is certainly factorized by (k; - kj ) and therefore 
QN, as a symmetric polynomial in the k; 's, must be factor
ized by 

IT (k; - kj ) or IT (kj - ki)Z, 
;,j= 1 j>i 

;¥-j 

But since QN is even in the k i , QN must be factorized by 

IT (k~-kf)z. 
j>i 

This implies that (3.14) holds. So the order ofQN must be at 
least 3N z - N. However the order of P2L is 2L and the order 
of the polynomial product 

N 

IT PZM (pjkj - Plki ) 
j>i 

is MN(N - 1); hence according to (3.8) the order of QN 
must be at most 2L + MN(N - 1). Clearly, if QN #0, it 
must satisfy that 

3N Z -N.;;;order(QN).;;;2L + MN(N - 1). 

Therefore, if 3N z - N> 2L + MN(N - 1), there is a con
tradiction and we must conclude that Q(k1, ... ,kN ) = 0. 
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IV. FURTHER SIMPLIFICATION AND EXAMPLES 

The previous section has pointed out that in order to see 
whether the equations 

(4.1 ) 

or 

Pi1!(D",D", ... )r.r=O (4.2) 

has an N-soliton solution for arbitrary N, we only need to 
check whether it has an r-soliton solution r.;;;No' However, it 
is not trivial to check the condition (3.8) for some rand 
therefore it is useful to simplify it further. 

If H(k1, ... ,kN ) is a polynomial of kl, ... ,kN, 

H(kl, ... ,kN ) = 2: a(iI,· .. ,IN)k ii, ... k ~N 

'" b( . . )k Zj + 1 kZjN+ 1 + £.. h,···,JN l' ... N 

where some of the i l1 ... ,iN in the last sum are even and some 
of them are odd. 

Define the operators Le and Lo as follows: 

LeH(kl, ... ,kN) = 2: a (l1, ... ,lN )k ~/, ... k ~N, 

L H(k k) "'b(' . )k 2} +1 k 2}N+' o I"'" N = £.. JI, .. ·,JN 1 ' ••• N . 

Proposition: The condition (3.8) that (3.1) has an N
soliton solution is equivalent to 
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Le [P2L (~k;) D P2M (kj - k;)] = 0, whenNis odd, 

(4.3) 

La [P2L (~k;) DP2M (kj - k;)] = 0, when N is even. 

(4.4) 

Proof: It is easy to see from the definition for the opera
torsLe andLo that 

Le [P2L (~,u;k;) g P2M (,ujkj - ,ulk; ) ] 

=Le [P2L (~k;)gP2M(kj-kl)] 
and 

La [P2L (~,u;k;) j!J; P2M (,ujkj - ,u;k; ) ] 

= .ft ,uILo [P2L (fk;) HP2M (kj -kl)]' .= I I J>' 

Since QN is even in k; when N is odd we have, for N odd, 

Q(kl,···,kN) 

= LeQ(kl,···,kN) 

= L Le [P2L (f,ulk;) HP2M (,ujkj -,u;k;)] 
/t=-I,I I J>' 

= 2NLe [P2L (~k;) g P(kj - k;)] . 
When N is even, QN is odd in k;, hence we get 

Q(kl,···,kN) 

= LoQ(kl,· .. ,kN) 

/tj=~I'1 Lo [P2L (~,u;k;) 
X g P2M (,ujkj - ,u;k;) ill,u;] 

= L Lo [P2L (f k;) np 2M (kj - k;)] .ft ,u~ 
/tJ= -1,1 I J>' .= I 

= 2NLo [P2L (~k;) g P2M (kj - k;)] . 
As an example, we will use these simplifications to identify 
all equations with weight level 6 with the Hirota property. 
The most general form of P6 is 

Dt,Dt, + aD;, +bD:,Dt, +cD~,. 
From (3.S), a,b,c, must satisfy 

1 +a-b+c=O. 

(4.S) 

(4.6) 

The theorem given in the previous section told us that 
( 4.S) has an N-soliton solution for arbitrary N if it has a 
three-soliton solution. Therefore the condition that (4.5) 
has an N-soliton solution reads 

Le [P6 (k l + k2 + k 3 )P6 (k3 - k 2 ) 

(4.7) 
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Notice that this expression is considerably simpler than 
(1.7). Using (4.6) and (4.7), a little calculation shows 

(3a + 6c + 1)(9c-1) 

x[a2 + (7c+2)a+c2 +2c+ 1)] =0. (4.8) 

This implies that all the Hirota equations at weight level 6 
are the following equations: (i) KdV equation, 

(Dt,Dt, + ( -! - 2c)D;, 

+ (~-c)D:,Dt, +CD~,)T'T=O; 

and 

(ii) (Dt,Dt, + aD;, + (.If + a) 

XD:,Dt, + VJ~)T' T= O. 

Taking a-oo, we get Ito's equation from (4.10), 

(D;, + 2D :,Dt'>T' T = O. 

(iii) (Dt,Dt, + ( - ~c - 1 ± !~4SC2 + 2Oc)D;, 

+ (-~c±!~45c2+2Oc)D:,Dt, 

(4.9) 

(4.10) 

+ cD ~ )T • T = O. ( 4.11) 

Takingc = - 1, (4.11) yields the Sawada-Kotera equation 
after rescaling the variables 

(D~, + 9Dt,Dt,)T' T = O. 

We obtain the Ramani equation by taking C-oo in (4.11), 

(D~, -SD:,Dt, -5D;'>T'T=0. (4.12) 

We emphasize that this is a complete list of all Hirota 
polynomials of weight 6 that satisfy the conditions (3.3)
(3.5). 
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~n.explicit construction of spinor structures on real, complex, and quaternionic projective spaces 
1S glVen for all cases when they exist. The construction is based on a theorem describing the bundle 
of orthonorma.l fr~mes of a h~mogeneous Riemannian manifold. This research is motivated by a 
remark~ble comc1d~~ce of spmor connections on low-dimensional spheres with simple, 
topologtcally nontnv1al gauge configurations. 

I. INTRODUCTION 

Spinors-and structures associated with them-are in
dispensable in physics and important in geometry. They 
have become an essential tool in theoretical physics of part i
cles and nuclei; they are also useful in the study of gravita
tion. 1 A proper treatment of spinors on manifolds, with an 
account oftheir topology, is relatively recent.2 It has led to 
the deep idea of spin cobordism,3 to a study of harmonic 
spinors4 and of the index theorem for the Dirac operator. 5 

In physics, spinors have recently acquired a new signifi
cance through the twistor program,6 work on supersym
metry and unified theories based on higher-dimensional geo
metries of the Kaluza-Klein type. There are interesting 
ideas on the possible physical relevance of inequivalent 
spinor structures.7 The Feynman method of quantization 
based on sums over classical histories applied to gravity cou
pled to fermions requires an analysis of nontrivial spinor 
configurations. 

A somewhat unexpected link between spinors and an
other part of physics consists in the recognition of coinci
dences between spinor connections on low-dimensional 
spheres and simple, topologically nontrivial gauge configu
rations.8 Indeed, any sphere S n of dimension n > 2 has a 
unique spinor structure. The Levi-Civita connection corre
sponding to the standard Riemannian metric on Sn lifts to a 
spinor connection, which may be interpreted as a "gauge 
configuration" for the group Spin(n). This configuration is 
invariant under the action of Spin (n + 1) and satisfies the 
Yang-Mills equations on Sn. For example, the cases 
n = 2,3, and 4 correspond to the Dirac magnetic pole oflow
est strength, the meron solution, and the instanton-cum
anti-instanton system, respectively. Lande has shown that 
the spinor connection on S8 concides with a gauge configura
tion described recently by Grossman, Kephart, and Stasheff 
(GKS).l0 Rawnsleyll generalized the duality properties of 
the instanton and of the GKS solution to the gauge field 
obtained from the spinor connection on any 4k-dimensional 
sphere. The local, differential-geometric properties of the 
spinor gauge fields and Riemannian curvature tensors of 
spheres are the same, but their global properties are differ
ent; in particular, they have different values of "topological 
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charge." For example, the Levi-Civita connection on S2 cor
responds to a magnetic pole of strength twice the lowest, 
Dirac value. The meron charge is related to the Chern-Si
mons 12 conformal invariants. 

These considerations have led us to study spinor struc
tures on projective spaces, which are, after spheres, the sim
plest homogeneous manifolds. The natural spinor connec
tions on these spaces also may be interpreted as simple gauge 
configurations, but we postpone their description to another 
work. In this paper, we restrict ourselves to the construction 
of the spinor structures themselves. 

In order to find the spinor structures on a Riemannian 
manifold it is convenient to know its bundle of orthonormal 
frames. For a "generic" manifold without isometries there is 
not much one can say about this bundle: it is, for example, a 
parallelizable manifold, but this does not help much in con
structing spinor structures. If, however, the manifold is ho
mogeneous, i.e., admits a transitive Lie group G of isome
tries, then its bundle of frames can be explicitly described in 
terms of G and its subgroups. Moreover, the bundle of ortho
normal frames can be restricted to a subgroup of the full 
orthogonal group. Such a restriction is convenient because it 
allows one to work with a bundle of lower dimension than 
that of the bundle of all orthonormal frames. 

If a Riemannian n-manifold M is orientable, then its 
bundle of frames can be restricted to SO (n ). This group 
admits a unique, nontrivial (for n> 1) double covering by 
the spin group, Spin(n)_SO(n). A spin structure on Mis a 
"prolongation" of the bundle of frames that "agrees" with 
this covering. (The precise definition is recalled in Sec. II.) 
It exists if, and only if, the second Stiefel-Whitney class of M 
is zero. In the nonorientable case the situation is somewhat 
more complicated (Whiston13

). The full orthogonal group 
O(n) has, in general, several inequivalent double coverings. 
For example, for n = 1, Spin(1) = Z2 and SO(1) = 1, but 
the orthogonal group O( 1) = Z2 has two different cover
ings: 

p+: Z2XZ2-Z2 and p_: 1:4-1:2 , 

In any dimension n, two such coverings p + and p _ can be 
obtained from Clifford algebras of Rn equipped, respective
ly, with quadratic forms ¢' and - ¢" where 

¢,(x) =xi + ... +x~ . 
The topological obstructions to the existence of prolonga
tions of the bundle offrames associated with p + and p _ are 
different from each other. We use the term "pin ± structure" 
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for such a prolongation corresponding to p ± . In Sec. III we 
show that a real projective space of dimension 2k admits two 
inequivalent pin + or pin - structures depending on whether 
k is even or odd. We also give an explicit description of the 
spin structures on odd-dimensional complex projective 
spaces in terms of metaunitary groups. 

II. PRELIMINARIES: SPINOR GROUPS AND 
STRUCTURES 

This chapter contains a brief summary of the basic defi
nitions and results related to spinor groups and structures 
that are needed in the sequel. We follow rather closely the 
articles by Atiyah, Bott, and Shapiro,14 Atiyah and Bott,15 
and Karoubi,16 but we adapt the notation and terminology 
to our needs. 17 

Let (ej ), i = I, ... ,n, be the standard orthonormal frame 
in Rn. We denote by C + (n) and C - (n) the two related 
Clifford algebras generated by the e's subject to the relations 

ejej + ejej = + ~jj and - ~jj (i,j = I, ... ,n) , 

respectively. In any of the Clifford algebras we have the main 
involution a and the main anti-involution p. The groups 
Pin + (n) and Pin - (n) consist of all invertible elements of 
C + (n) and C - (n), respectively, which preserve the under
lying vector space Rn under the twisted adjoint representa
tionp± ' 

p ± (s)v = a(s)vs-I, where veRn, SEC ± (n) , 

and are normalized by IP(s)sl = 1. [The last condition is 
meaningful because the previous ones imply P(s)sER.] In 
general, the groups Pin + (n) and Pin - (n) are nonisomor
phic. The connected components of the identity of these 
groups consist of even elements and are isomorphic to each 
other; they are both denoted by Spin (n ). The sequences 

P± 

1-+Z2-+Pin± (n)-+O(n)-+I 

and 
p 

I-+Z2-+Spin(n)-+SO(n)-+I, where p =P± ISpin(n), 

are exact. We use the generic term "spinor group" to denote 
one of the groups Spin(n), Pin+(n), or Pin-(n), 
n = 1,2, .... The centers of these groups are as shown in Ta
ble I. Here Z2 = {I, - n, Z2+ = {I,d, Zz- = {I, - d, 
Z4 = {I,E, - 1, - d, and E = elez ••• en is the "volume ele
ment." The products occurring in Table I are direct. Note 
also that if E EPin ± (n), then 

~ = ( ± l)n( _ l)n(n - 1)12 • 

TABLE I. Centers of spinor groups. 

n Spin(n) Pin+(n) Pin- (n) 

4k Z,+ Xz,- Z2 Z, 
4k+ 1 Z2 Z2+ XZ2- Z. 
4k+2 Z. Z2 Z, 
4k+3 Z2 Z. z,+ XZ2-
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The existence of spinor structures on projective spaces de
pends crucially on the structure of the center of an appropri
ate spinor group. It is convenient to define 

Pin(n)={p~n:(n), for n_O,I mod4, 
Pm (n), for n=2,3 mod 4, 

and make a corresponding notational convention for the 
covering map p. If l: is one of the groups Spin(4k) or 
Pin(2k+ 1), k= 1,2, ... , then [s]± denotes the coset 
sZl El:/Zl , i.e., if s,tEl:, then 

[s] ± = [t] ± iff s = t or s = ± tE. 

We inject Rn into Rn + 1 by sending (xl, ... ,xn) into 
(xl, ... ,xn ,0) and extend this to injections ofthe correspond
ing Clifford algebras and spinor groups. 

In order to adapt to our purposes the classical definition 
of a spinor structure on the tangent bundle of Riemannian 
manifold M (see Haeftiger and Milnor in Ref. 2), consider 
the following. Let M be n dimensional with a positive-defi
nite metric tensor g. Let n be a closed subgroup ofO(n) and 
l: = P ± 1 (n) C Pin ± (n). Assume that F C Fg is a restric
tion to n of the bundle Fg of all linear frames on M that are 
orthonormal with respect to g. A spinor structure on M is 
defined by giving a prolongation of 'IT: F-+M to the group l:, 
i.e., principall:-bundle (7: S-+M and a morphism of bundles 
1]: S-+F such that there is a commutative diagram 

S X l: ---, f" 
1]X P ± l 1] ~ M, 

F X n • F~ 
where the horizontal arrows denote the action maps. If 
nCSO(n), then M is orientable and one has a spin struc
ture. If M is nonorientable, then Fg is connected, but n is 
not, and one has a pin ± structure. The two structures pin + 
and pin - corresponding to the two covering maps p + and 
p - are, in general, inequivalent. In some cases one exists 
whereas the other does not as may be seen from the topologi
cal conditions for their existence 16: W 2 = ° for pin +, wi 
+ W 2 = ° for pin-, and WI = 0, W 2 = ° for spin. (Here WI 

and W2 denote, respectively, the first and second Stiefel
Whitney classes of the tangent bundle of M.) We sometimes 
say "pin structure" when we mean one of the two and we use 
the generic term "spinor structure" to denote a pin or spin 
structure. 

It is clear that, given the bundles described above, one 
can always extend their structure groups nand l: to O(n) 
and Pin ± (n), respectively. The extended bundles provide a 
classical description of pin structure. Conversely, given such 
a classical pin structure on M, say 

f 
Pin± (n)-+P-+Fg-+M, 

and a restriction F of Fg to nco (n ), one can restrict the 
structure group Pin ± (n) of P to l: by taking the induced 
bundle S=f-I(F). Similar remarks apply to spin struc
tures. 

The classical definition of equivalence of spinor struc
tures can be easily adapted to our considerations. Let, for 
simplicity, 1]a: Sa-+F (a = 1,2) be two spin structures, 
where each Sa is the total space of a principall:-bundle over 
M. They are equivalent if there is a based isomorphism 
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i: SI-S2 of principall:-bundles such that 'TJ2°i = 'TJI' The 
bundles 1T0'TJa: Sa-M may be isomorphic, as principall:
bundles, without defining equivalent spin structures. The 
equivalence classes of isomorphic spinor structures are in a 
bijective correspondence with the elements ofH I (M,l2)' the 
first cohomology group of M with coefficients in l2 (see 
Milnor2 and Whiston I3 ). 

III. FRAME BUNDLES OF HOMOGENEOUS SPACES 

We restrict our study to very regular situations: all man
ifolds and maps are smooth, Lie groups and other spaces are 
compact, and subgroups are closed. All Riemannian mani
folds areproper, i.e., their metric tensors are positive definite. 
The italicized adjectives will be omitted from now on. 

Let M be a manifold admitting a transitive left action y: 
G XM-M ofa Lie group G. Denoting Ya (x) = y(a,x) one 
has Ya °Yb = Yab' for any a,bEG, and YI = id, where I is the 
unit of G. Let H = {aEG: Ya (x) = x} be the stability ("lit
tIe") group at xEM. The homogeneous space M is canonical
ly diffeomorphic to the quotient space G I H. The diffeomor
phismh: G IH-M, mapping the coset bH, bEG, intoYb (x), 
intertwines the actions of Gin G IH andM, hOYa = Ya oh for 
all aEG (cf., for example, Bredon 18). We shall often identify 
G IH with M and, by doing so, make h disappear. 

Let y~ denote the tangent map to Ya at x. For any aEH, 
this map is a linear automorphism of the tangent space Tx M 
toMatx, and 

is a homomorphism of groups. Its kernel N is a normal sub
group of H and, therefore, also a subgroup-but not normal, 
in general-of G. According to the general theory of fiber 
bundles (Steenrod I9

) these data define a principalH INbun
dIe 

F=GIN-GIH=M, (1) 

where the action of H IN in F is given by (aN) (bN) = abN, 
aEGandbEH. 

Let now M be an n-dimensional Riemannian manifold 
with a metric tensor g admitting a group G of isometries 
acting transitively on M. The preceding construction leads 
to the following theorem. 

Theorem: The bundle 1T: F_M, defined by (1), is a re
striction to the group H / N of the bundle 1T g: Fg -M of all 
linear frames on M, orthonormal with respect to the metric 
tensor g. 

To prove the theorem, it suffices to give an injective 
immersion i: F-Fg and a monomorphism of Lie groups j: 
H IN-O(n) such that 

i(aN)(bN») = i(aN) j(bN) and 1Tg 0i = 1T . (2) 

Recall that an orthonormal frame in an n-dimensional vec
tor space V may be identified with an isometry from R n to V. 
Let/be a frame at x, orthonormal with respect to g. This 
frame is unchanged by y~, aEH, if and only if aEN. For any 
aEG, the composition y~ 0/ is a frame at Ya (x), also ortho
normal with respect to g. The maps i andj are now defined by 

i(aN) = y~ ° J, aEG, 
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and 

j(bN) =/-1 ° y~ oJ, bEH, 

where 

/-1: TxM_Rn 

is the inverse, or "dual," frame with respect to f The mor
phism properties (2) are now easy to verify. 

Example 1: The (n - 1 )-dimensionalsphereSn _ I with 
its standard Riemannian metric admits SO(n) as a group of 
isometries. The action yofSO(n) onSn _ I is transitive and 
the stability group of any point is isomorphic to SO (n - 1), 
whereasN = ker Y' reduces to the identity. The SO(n - 1)
bundle, 

SO(n)-SO(n)/SO(n - 1) = Sn -I , 

is simply the bundle of orthonormal frames of Sn _ I with 
coherent orientation. For n even, n = 2k, the group SOC 2k) 
contains a subgroup U(k), which also acts transitively on 
S 2k _ 1 • The stability group is U (k - 1) and 

U(k)_U(k)/U(k - 1) = S2k_1 

is the bundle of "unitary frames." Similarly, for n = 4/, there 
is the bundle of "symplectic frames" 

SP(l)-Sp(l)/Sp(l- 1) = S4/_ 1 • 

Example 2: Let K denote one of the three number fields: 
R, C, or H. The set K n + 1 is a right module (a vector space if 
K = R or C) over K: if q = (qa )EKn + I, a = l, ... ,n + 1, 
and AEK, then 

qA = (qaA)E K n + I, 

so that 

(qA)j.L = q(Aj.L), q(A + j.L) = qA + qj.L, etc. , 

for any A, j.LE K. If qE K n + 1 and q ¥= 0, then the direction of q 
is the set 

dir q = {qA: O¥=AE K} 

and the set of all such directions is the projective n-dimen
sional space over K, 

KPn = {dir q: O¥=qEKn+ I}. 

The module K n has a natural, positive-definite quadratic 
form r/J given by 

n 

r/J(q) = L qaqa , 
a=1 

where A = A forK = RandA is the conjugate of). otherwise. 
Let U(n,K) be the set of all maps a: Kn_Kn such that 
r/J 0 a = r/J, a(qA) = a(q)A, and a(q + q') = a(q) + a(q') 
for any AE K and q,q'E Kn 

• With respect to composition of 
maps this set is a group, namely 

{

o(n) , 

U(n,K) = U(n), 

Sp(n) , 
{

R' 
for K= C, 

H. 

The action of U (n + I,K) in KP n given by 

Ya (dir q) = dir a(q) 

is transitive. Let ea denote the element of Kn + 1 consisting of 
1 at the ath place and zeros elsewhere so that 
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n+1 

q= L eaqa . 
a=1 

The stability group H of x = dir en + I E KPn may be com
puted as follows; let 

where aafJE K and a,/3 = 1 •...• n + 1. The condition 
dir a(en + I) = dir en + 1 implies aa.n + I = 0 for a = 1 •...• n. 
Since r/Joa = r/J is equivalent to 

L araarfJ = {jail • 
y 

we obtain also an + I,a = O. for a = 1 ..... n. so that H is iso
morphic to U( 1$) xU(n$). The isomorphism is realized 
as follows: ifl!.EU ( 1.K) and bEU (n$). then the correspond
ing element of H is represented by the matrix 

a = (~ ~). (3) 

Let y: R_KPn be a curve through x. y(O) = x. For suffi
ciently small I t lone can write 

y(t) = dir(en + 1 + q(t») • 

where 
n 

q(t) = L eaqa (t). q(O) = 0 • 
a=1 

is a curve in K n 
• The tangent vector to y at t = 0 is represent

ed by 
n 

q(O) =V= L eaVa' 
a=1 

If aEH is as in (3). then the tangent vector to the curve 

t-ra(y(t») 

= dira(en+ I + q(t») = dir(en + IA + bq(t») 

= dir(en + 1 + bq(t)A -I) 

is represented by 

r~ (v) = bVA -IEK n
• 

Therefore. the kernel N of r' consists of all matrices of the 
form (3) such that bv = VA for any VE K n 

• It follows that b is 
A times the unit automorphism of Kn and A belongs to the 
center of K. The group N is thus isomorphic with the center 
ofU(n + 1.K). 

{

Z2. {R. 
N = U (1). for K = C. 

Z2' H. 
Taking into account 

{

Z2. 
U(1$) = U(1). 

Sp( 1) • {

R. 
for K= C. 

H. 
we can compute the structure groups 

{

o(n) • {RPn • 
HIN= U(n). for cpn • 

(Sp(n)XSp(1»)/Z2' HPn. 
and the reduced bundles of orthonormal frames 
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{

o(n + 1 )/Z2 • {RPn • 
GIN = U(n + l)1U(1). for cpn • 

Sp(n + 1 )/Z2 HPn . 

For n even. n = 2k. the quotient 0(2k + 1 )/Z2 can be 
identified with SO (2k + 1): the bundle of all orthonormal 
frames of RP 2k is connected. i.e .• RP 2k is not orientable. 
Note that the quotient 0(2k + 1 )/Z2 may also be represent
ed as Pin(2k + 1)/Zt XZ2-. For n odd. n = 2k - 1. the 
quotient 0(2k)/Z2 is the disjoint sum of two copies of 
SO(2k)/Z2. Therefore. RP2k _ 1 is orientable and its bundle 
of orthonormal frames of coherent orientation is diffeomor
phic to SO(2k)/Z2• The bundle U(n + 1)1U(1) is diffeo
morphic to the quotient SU(n + 1 )/Zn + 1 of the group 
SU(n + 1) by its center. 

Example 3: Consider a Lie group G with a bi-invariant 
metric; e.g .• if Gis semisimple. then such a metric is obtained 
from the Killing form. In this case. the manifold of G is a 
homogeneous Riemannian space with respect to the action 
ofG XG given by 

r(a,b) (c) = acb -I. 

for any a.b.cEG. The stability group at the unit element of G 
is isomorphic to G embedded diagonally in G X G. For any 
aEG. the map rCa,a) coincides with Ada. where 

Ad: G_GL(g) 

is the adjoint representation of G in its Lie algebra g = T1G. 
The kernel of Ad is the center Z (G) of G and the reduced 
bundle of orthonormal frames is a G IZ( G)-bundle 

(G xG)/Z(G)-G. (4) 

Note that. unless G is Abelian. the total space of the bundle 
( 4) is "larger" than that obtained by considering G as a 
homogeneous space with respect to left translations. 

IV. SPINOR STRUCTURES ON SPHERES AND 
PROJECTIVE SPACES 

In this section we use our description of the restricted 
bundle of orthonormal frames to construct spinor structures 
on spheres and on the projective spaces: RPn (n = lor n > 1 
and ¥=lmod4). CP2k - 1 (k=I.2 .... ). and HPn 
(n = 1.2 .... ). The case of spheres is easy and well known. 
For an orientable projective space over K. the crucial infor
mation is contained in the structure of the center Z(n$) of 
the group l:.(n.K) =p-I (U(n$)nSO(m»). where p: 
Spin(m)-SO(m) is the covering map and m = n dimR K. 
If the center is a direct product of the form Z2XA(n$). 
then there is a spin structure on KPn _ 1 given by the se
quence 

l:.(n$)1 A(n.K)-l:.(n$)/Z(n$)-KPn -I . (5) 

A similar statement applies to the nonorientable space RP 2k ; 
here the relevant groups are Pin(2k + 1) and its center. 
Each real projective space other than RP 41 + 1 (/ = 1.2 .... ) 
has two pin or spin structures. We construct them both and 
show that they are inequivalent. 

A.Spheres 

The circle SI has two inequivalent spin structures (Mil
nor). Since both S I and SO (2) can be identified with U ( 1 ). 
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and Spin ( 1) = Z2' these structures are given by the maps 

U( 1) XZ2~U( 1 )~U( 1) 
pr, id 

and 

U(l) ~ U(1)~U(1). 
square id 

For any n;;.2, there is a unique spinor structure given by 

Spin(n + 1 )~SO(n + 1 )~Sn . 

For n = 4/- 1 (l = 1,2, ... ) one can restrict the bundle of 
frames to n = Sp(l- 1) and the spinor bundle to 
:I = Sp(/ - 1) XZ2. The (restricted) spinor structure is 

Sp(l) XZ2~Sp(l)-S41_1 . 

There is an analogous restriction of the spinor bundle of 
S2k_1 to the metaunitary group MU(k) CSpin(2k), cf. 
Sec.IVC. 

B. Real projective spaces 

(i) Consider first the case of odd dimension. The one
dimensional real projective space is diffeomorphic to the cir
cle SI; its spin structures have already been given. Let now 
the dimension n = 2k - 1 be greater than 1. The space 
RP 2k _ I is orientable and the fundamental group n) of its 
bundle offrames SO (2k) 112 may be computed by consider
ing three curves in Spin(2k) joining 1 to E, - E, and - 1, 
respectively. Each of these curves projects to a loop in 
SO(2k)/Z2 and defines a nontrival element ofn). No two of 
these elements coincide and, since f2 = ( - l)k, one has 
n I = Z4 for k odd and n) = Z2 X Z2 for k even. The group 
SO(2k - 1) is the fiber of 

SO(2k)1l2~RP2k_1 

and its fundamental group Z2 is embedded in n I as follows: 

if k is odd, k;;.3, 

then Z2~Z4 is given by 1 mod 21--+2 mod 4; 

if k is even, 

then Z2~Z2 X Z2 is the diagonal map. 

To check this for odd k one can consider the projection to 
SO (2k) IZ2 of the curve in Spin (2k) joining 1 and - 1. This 
projection is the square of the loop obtained by projecting the 
curve joining 1 and E. The square is represented by 2 mod 4 
in Z4 and, since it is noncontractible, it is homotopic to a 
nontrivial loop in SO(2k - 1). It is now clear that RP 41 + ) 
(l = 1,2, ... ) has no spinor structure: a noncontractible loop 
in a fiber of its bundle of frames ("rotation by 360°") can be 
continuously deformed into the square of a loop in the bun
dle (Clarke20). This result is, of course, well known: RP 41 + I 

has W) = ° and w2 :;i:O for I = 1,2, .... 
The space RP 41 I has WI = 0, W2 0, and 'lT1 = Z2' 

There are, therefore, two inequivalent spin structures on 
RP 41-1 (l = 1,2, ... ). They are 

1T±: Spin(41)/Z2±~SO(41)/Z2' 

where the 1T± are obvious projections and the action of 
Spin (41 1) in Spin(4/)lll is obtained from the natural 
action of Spin ( 41- 1) in Spin ( 4/) by passing to the quo-
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tient. To see that 1T+ and 1T- define inequivalent spin struc
tures consider a curve in Spin ( 4/) connecting I with f. Its 
projection to SO ( 4/) 112 is a loop. There are exactly two lifts 
of this loop to Spin ( 4/) Ilt and they are both closed curves 
(loops). There are also exactly two lifts of this loop to 
Spin ( 4/) 112 and neither of them is closed. This contradicts 
the existence of a bundle isomorphism h: Spin ( 41) / 
zt ~Spin( 4/)1l2- such that 1T- oh = 1T+. 

There is, however, an orientation-reversing isometry 

j: RP41 1 ~RP41 I' 

dirl,P (a )e41 )t-+dirl,P (e4la )e4/)' 

which lifts to an isomorphism of one spin structure onto the 
other, given by [a] +f-+ [ e41ae41 J _ . 

(ii) The even-dimensional real projective spaces are 
nonorientable; they will be shown to admit pin structures. 
For any k = 1,2, ... , the space RP 2k admits two inequivalent 
pin structures. Depending on whether k is even or odd, one 
has to consider the covering map Pin(2k)~(2k) corre
sponding to a pin group associated with an Euclidean space 
R2k with a quadratic form that is positive or negative, re
spectively (cf. Sec. II). 

The pin structures on RP 2k are 

1T ±: Pin(2k + 1 )/Zl 

~Pin(2k + 1)Ilt XZ2- = SO(2k + 1), 
where the projections 1T± are obvious and the action {j of 
Pin (2k) in Pin (2k + 1) /Z2± comes from the natural embed
ding Pin(2k)~Pin(2k + 1) by passing to the quotient, i.e., 

{j b ([ a] ± ) = [ab ] ± ' 

for anyaEPin (2k + 1) andbEPin(2k). The inequivalence of 
1T+ and 1T- may be seen as follows. Consider a curve in 
Pin(2k + I) beginning at 1 and ending at elf. Its projection 
to Pin(2k + I )1l2+ XZ2- has the property that its end is 
obtained by applyingp(e l )EO(2k) to its beginning. There 
are again exactly two lifts of this curve to each Pin (2k + 1) / 

zt and Pin(2k + 1 )1l2 • The starting and end points of the 
curves in Pin (2k + 1) IZ2± are related to each other by the 
action of ± el , respectively. This difference in sign implies 
that there is no isomorphism of bundles h such that 
1T- oh = 1T+. 

The total spaces Pin(2k + 1 )/Zl are both diffeomor
phic to Spin(2k + 1). More precisely, let 

0": Spin(2k + 1)~RP2k (6a) 

be the projection ~ir p(a)e2k + I and 

{j±: Spin(2k+ l)xPin(2k)~Spin(2k+ 1) (6b) 

be right actions defined by 

{jt(a) ={j±(a,b) = {ab, 
±fab, 

if b is even, 
if b is odd. 

The two maps h ± : Pin (2k + 1) 1l2± ~Spin (2k + 1) given 
by 

[ {
a , if a is even , 

a] ± f-+ 'f . dd ± fa, 1 a IS 0 , 

define, respectively, isomorphisms of the two principal bun
dles (6) with the bundles 
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u±: Pin(2k + 1 )/ZZ±-HPzk , 

where u± = 1T'0 1T'± and 

1T': SO(2k + l)-HPzk . 

We have indeed 

uoh ± =u± and h ±o8b =8b±oh ±, 

for any bePin(2k). 

(7) 

Even though the two spin structures on HP 2k are inequi
valent, the two bundles (6) are isomorphic to each other 
when considered as principal bundles over RP Zk . Indeed, a 
based isomorphism 

i: Pin(2k + 1 )/Zt _Pin(2k + 1 )/Zz-

is given by 

[a]+~[a(a)ezk+d_ . 

C. Complex projective spaces 

It is well known that even-dimensional complex projec
tive spaces have no spinor structure. In order to understand 
the difference between even and odd dimensions and to con
struct the spin structure in the latter case, it is convenient to 
consider the metaunitary group MU(n) (see Rf. 21) and 
find its center. This group may be defined as that subgroup of 
Spin (2n) that (doubly) covers the unitary group U (n) con
sidered as a subgroup of SO (2n): 

Let (el, ... ,ez,,) be an orthonormal frame in HZ" embed
ded in the Clifford algebra C + (2n). Let JeSO (2n), given by 

{ 
- e,,+a' for a = 1, ... ,n, 

J(ea ) = 
ea_", for a = n + 1, ... ,2n, 

define a complex structure in RZ
" so that U (n) 

= {ae SO(2n): Joa = aoJ}. The center ofU(n) is isomor
phic to U (1) and consists of all elements of SO (2n) of the 
form cos 2t + J sin2t = exp 2tJ, 0,1 < 1T'. Let 

t = ele" + I + ... + e"ez"espin(2n) , 

then 

p( ± exp tt) = exp 2tJ. 

Any element of Spin (2n ) commuting with t projects by p to 
an element of SO(2n) commuting with J. One can, there
fore, define the metaunitary group as follows: 

MU(n) = {seSpin(2n): St = ts}. 

Its Lie algebra is spanned by the set of n2 elements 

eae,,+p +epe,,+a' 1,a,/3,n. 

Any element of the center of MU (n) is of the form exp It or 
- exp tt for some teR. Since 

exp It = (cos t + ele" + I sin t) ... (cos t + e"e2" sin t) , 

one sees that expl1rl covers J and exp!1rl = E. Moreover, 

exp 1rl = C = ( - 1)" , 
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and the center of MU (n) is the set 

{exptt: 0<t<21T'}=U(1), fornodd, 

and 

{±exptt: 0<1<1T'}=Z2XU(l), forneven. 

If n is odd, then the spinor structure on CP" can be 
described as follows. Let U ( 1) be embedded in MU (n + 1) 
so as to coincide with the connected component of the identi
ty of its center, 

exp 2t.r=T~xp tt, O<t<1T', 

and put 

S=MU(n+'I)IU(1) . 

A right action of MU (n) in S is obtained by passing to the 
quotient with the action defined by the natural embedding 
MU(n)-MU(n + 1). On quotienting, the double cover 
MU(n + 1)-U(n + 1) passes to a double cover of the uni
tary frame bundle E" , 

S-U(n + 1)1U(1) =SU(n + l)/Z"+1 =E", 

and the action of MU (n) in S projects to the action of U (n ) 
in U(n + 1 )IU( 1), as defined in Sec. III. 

The nonexistence of a spinor structure in CP Zk results 
from WI = 0 and wz#O for such a space. It also may be de
duced directly from a comparison of the fundamental groups 
of the total space of the fibration E2k -CP2k and of its fiber 
U(2k). We have indeed 

1T'1(U(2k») = Z 

and 

1T'1 (Ezk ) = Z2k+ I· 

The injection U(2k)_E Zk defines a homomorphism 
Z-ZZk + I such that 2k + 1 ~ mod (2k + 1). This contra
dicts the existence of a spinor structure.22 It is known, how
ever, that all complex projective spaces admit a natural 
spine -structure. 14,23 Recently, Robinson and Rawnsley24 

have shown that any symplectic manifold admits a complex 
metaplectic structure. The metaplectic structure on CP 2k + I 
gives rise to symplectic spinors. 25 

D. Quaternlonlc projective spaces 

This is the simplest and easiest case: since WI = 0 and 
W2 = 0 for UP", n = 1,2, ... , any such space admits a unique 
spinor structure given by the sequence 

S = Sp(n + 1 )-Sp(n + 1 )/Z2 = F-UP" . 

The right action ofl: = Sp(n) XSp(1) inSis obtained from 
the natural embedding. Incidentally, our considerations 
prove the existence of a natural monomorphism of groups 

Sp(n) xSp(1 )-Spin( 4n) , (8) 

which covers the injection (Sp(n) xSp(1»)/Z2-SO(4n). 

v. CONCLUDING REMARKS 

Most of the work on spinor structures is based on meth
ods of algebraic topology and concentrates on problems of 
existence. Our approach is differential geometric and Lie-
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group theoretic. It yields an explicit construction of all 
spaces and maps occurring in the description of spinor struc
tures on projective spaces. It can be extended to other homo
geneous spaces, such as the Grassmannians, as well as to 
pseudo-Riemannian manifolds. 

Besides the two coverings of the orthogonal group, 
which we have used in the case of real projective spaces, 
there are coverings not coming from the Clifford scheme. 
The analogous coverings-Clifford and not-can be defined 
also for the pseudo-orthogonal groups and related to the 
transformation properties of fermions under space-time re
flections considered by physicists. 26 Our method can also be 
used to construct "extended spinor structures" such as the 
spine and complex metaplectic structures. It is clear from 
this work that, in the nonorientable case, the topological 
condition for the existence of a pin structure depends on 
which particular double cover of the orthogonal group is 
being considered. It would also be of some interest to study 
the spinor connections on projective and other homogen
eous spaces. Stiefel bundles over Grassmannians, together 
with their canonical connections, are universal. Can one give 
a meaning to the idea of "universal spinor structures and 
connections "? 
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The Freund-Rubin mechanism is based on the equation Rik = Agik (where A >0), which, via 
Myers' theorem, implies "spontaneous" compactification. The difficulties connected with the 
cosmological constant in this approach can be resolved if torsion is introduced and A is set equal to 
zero, but then compactification "by hand" is necessary since the equation Rik = 0 can be satisfied 
both on compact and on noncompact manifolds. In this paper we discuss the global geometry of 
Ricci-flat manifolds with torsion, and suggest ways of restoring the "spontaneity" of the 
compactification. 

I. WHAT IS "SPONTANEITY"? 

The problem of understanding the relationship between 
gravitation and the other interactions is currently being ad
dressed in a variety of ways-Kaluza-Klein, supergravity, 
superstrings, and so on. I The majority of such models either 
suggest or require that the universe be represented by a 
manifold of more than four dimensions, and so are apparent
ly faced with an immediate conflict with the observational 
evidence. This problem is usually circumvented by assuming 
that (i) the ground state of the universe is a product of some 
simple space-time with a spacelike manifold M, and (ii) Mis 
compact and has a very small diameter. (Noncompact mod
els for M have also been proposed; for a general discussion 
and further references, see McInnes.2

,3 We shall not consider 
this possibility here.) This strategy is often loosely described 
as "spontaneous compactification," but, in fact, it is not at 
all evident that there is anything "spontaneous" in this pro
cedure. Perhaps "compactification by hand" would be a 
more apt description. 

In the particular case of ll-dimensional supergravity, 
however, the Freund-Rubin4 mechanism does indeed inject 
a strong element of "spontaneity." If the generalized Max
well field has nonzero vacuum expectation values F pro-I'vpq 

portional to the alternating tensor el'vpu (Greek letters for 
space-time), then the Einstein equations imply that the in
ternal space M satisfies Rik = Agik , with A > O. Now if we 
further assume that M is connected and complete (in the 
sense that every Cauchy sequence in M converges to a point 
in M), then Myers' theorem (see below) implies that M 
must be compact. Thus, the compactness of M need not be 
presumed, but rather can be deduced from certain natural 
assumptions regarding the nature of the ground state. This 
compactification is therefore genuinely "spontaneous." 

Taking the Freund-Rubin mechanism as our prototype, 
we can now give a much more general characterization of 
"spontaneous compactification" in the true sense. The key 
ingredients may be listed as follows. 

(a) Assumption concerning the vacuum expectation val
ues of the matter fields: Intuitively, we expect the ground 
state matter configuration to be as simple as possible. For 

aj Permanent address: Department of Mathematics, National University of 
Singapore, Kent Ridge 0511, Republic of Singapore. 

example, the fact that the Freund-Rubin energy-momen
tum tensor (in space-time) is covariantly constant seems 
reasonable, since this means that the "matter" in the ground 
state is uniformly distributed. Similar considerations moti
vate the assumption that the off-diagonal components 
Fl'vpk' FI'Vik' Fl'ijk vanish. There is, admittedly, an element of 
vagueness in this procedure, but this is inevitable in the ab
sence of a rigorous formulation of the concept of a "gravita
tional ground state." 

(b) Assumption concerning the geometry of the ground 
state: It is essential to realize that the field equations alone 
cannot induce compactification, since they constrain the 
manifold only at a local level. Thus, for example, Freund and 
Rubin implicitly assume that the internal manifold M is a 
complete metric space, since otherwise Myers' theorem can
not be applied. Indeed, if M were not complete, it would 
necessarily be noncompact, independently of all other condi
tions. (This follows from the Hopf-Rinow theorem-see 
Cheeger and Ebins.) Therefore, any compactification 
scheme must assume completeness. This is quite reasonable, 
since otherwise the internal manifold will have "holes" or 
"rips," and we do not expect the ground state to display such 
pathologies. (This is partiCUlarly true in those theories in 
which the higher-dimensional geodesics have a direct phys
ical interpretation. See McInnes3 for a discussion.) We con
clude, then, that in setting up a compactification mechanism 
we will have no option but to make some assumptions as to 
the global structure of the ground state. Obviously these 
should be as general as possible, and should be physically 
motivated; but, above all, they must not themselves auto
matically imply compactness, since this would be tanta
mount to compactification "by hand." In the Freund-Rubin 
case, the assumption that M is connected and complete does 
not, of course, imply that M is compact. 

(c) Gravitational field equations: These allow us to 
translate the assumptions in (a) above into constraints on 
the geometry of M. 

(d) A "compactijication theorem": We must have a 
theorem that states that, under certain conditions compati
ble with (a)-(c) above, M is necessarily compact. This 
theorem should refer only to those aspects of the geometry 
that are controlled by the gravitational field equations. For 
example, the Einstein equations give full information only 
about the Ricci tensor, not the curvature tensor: fortunately, 
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however, the Myers "compactification theorem" only re
quires conditions on the Ricci tensor. 

We have given this rather detailed and general formula
tion of spontaneous compactification in the hope that the 
technique can be extended beyond the specific model consid
ered by Freund and Rubin. For, as is well known, that model 
encounters difficulties connected with the cosmological con
stant. Specifically, if the space-time cosmological constant is 
assumed to be very small, then the internal cosmological 
constant also becomes very small, and this is thought to be in 
conflict with the supposition that the internal manifold has a 
submicroscopic diameter. (Strictly speaking, this conclu
sion is unwarranted, because there does not seem to be any 
direct relationship between the "cosmological constant" of 
an Einstein manifold and its diameter, especially ifit is mul
tiply connected. Thus, for example, a sphere of given curva
ture has a totally different diameter to a real projective space 
of the same curvature. By means of a sufficiently large num
ber of topological identifications, one might be able to reduce 
the diameter very substantially. But a topological structure 
of this level of complexity probably can be justified only in 
the context of quantum gravity.) 

A solution of this problem, which is of course not pecu
liar to the Freund-Rubin mechanism, has been proposed by 
Orzalesi and collaborators (Destri et al.6 and references 
therein), who propose to consider manifolds with torsion as 
models of internal space. Various generalizations have been 
proposed, notably the "seven-sphere with torsion" and the 
"squashed seven-sphere with torsion" (Duff et aU and 
Wu8

). In none of these cases is the compactification "spon
taneous" in the sense in which we are using the term. 

The principal purpose of this work is to consider the 
form that a genuine spontaneous compactification mecha
nism might take if the internal manifold is endowed with 
torsion. This will be done by relaxing some of the more re
strictive assumptions made by Destri et al.6 and then by 
proving a "compactification theorem" for the resulting class 
of manifolds. These manifolds have a vanishing (Riemann
Cartan) Ricci tensor. In the case of Riemannian manifolds, 
the vanishing of the Ricci tensor very severely restricts the 
isometry group, with serious consequences for Kaluza
Klein theories. We therefore explain in detail precisely why 
this does not, in general, occur if the torsion is nonzero. Fin
ally, we consider the possibilities for generalizing or modify
ing our compactification scheme. 

Notation: In general, we adhere strictly to the conven
tions of Kobayashi and Nomizu.9 A Riemann-Cartan mani
fold or RC manifold is a manifold endowed with a positive
definite metric tensor g and a connection V with Vg = O. On 
such a manifold there are always (if the torsion T # 0) two 
fundamental connections, namely V and the Levi-Civita 
connection V generated by g. Hence 'Ye need a ~ual notation 
(R is the curvature tensor for V, and R that for V) and also a 
dual nomenclature. We shall use the letters RC to indicate 
that we are referring to quantities generated by V, and the 
ordinary term for V. Thus, for example, a tensor A will be 
called constant if VA = 0, and "RC constant" if VA = O. 
Finally, note that we follow Kobayashi and N omizu in using 
S to denote the Ricci tensor, but Rik to denote its compo-
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nents. The symmetric part of S will be denoted (S). 

II. COMPACTIFICATION WITH LIE GROUPS 

A somewhat drastic solution of the cosmological con
stant problem in the Freund-Rubin framework would be to 
assume that all components of the vacuum expectation value 
of the tensor F vanish. The space-time cosmological constant 
is then precisely zero, and the internal space M satisfies 
R;k = 0, which can be satisfied on certain compact mani
folds. 

There are two objections to this procedure, if we retain 
Riemannian geometry without torsion. In order to discuss 
the first, we need the following theorem (which unifies var
ious results in Kobayashi and Nomizu9

). 

Theorem 1: Let M be a connected compact Ricci-flat 
Riemannian manifold. Then we have the following. 

(i) The connected component of the identity of the iso
metry group Isom(M) is Abelian. 

(ii) Ifdim(Isom(M) );;.dim M, then Mis a flat manifold 
(and is therefore llln/D for some discrete group D). 

(iii) If the universal covering manifold of M is compact, 
then Isom(M) is a finite group. 

The proof will be given later as a consequence of a more 
general result. 

From the point of view of Kaluza-Klein theories, this 
result is disastrous, since it means that only an Abelian gauge 
group (at best) can be obtained. [This comment does not 
apply to superstring theories, but, even there, the absence of 
symmetries is a major technical impediment to explicit cal
culation with the metric. Note that the spaces considered by 
Candelas et al.1O as vacuum configurations for superstrings 
are of the form (compact and simply connected) / (discrete) 
and therefore satisfy part (iii) of the above theorem.) 

A second, and in our view, equally serious objection to 
internal manifolds with R;k = 0 is that this equation can be 
satisfied both on compact and on complete noncompact 
manifolds. The compactification is therefore not spontane
ous. 

The introduction of torsion immediately resolves the 
first of these objections: for example, any semisimple com
pact Lie group can be endowed with a Riemann-Cartan con
nection which is RC Ricci-flat (in fact, RC flat), but obvi
ously the symmetry group is not Abelian. Indeed, Destri et 
al.6 propose just such a space as a model of M. In more detail, 
these authors assume (a) the Einstein-Cartan theory of 
gravitation, 11 where the field equations are (A, B, C, D being 
indices for the full multidimensional universe) 

RAB - ~ABR = kEAB , 

T
A

BC +8A
B T

D
cD -8A

c TDBD =kS A
BC ' 

where E AB is the canonical (nonsymmetric) energy-mo
mentum tensor, T~c is the torsion, andS~c is the spin ten
sor' (b) that the internal manifold M is a semisimple con
nedted Lie group with a positive-definite Cartan-Killing 
metric; and (c) that the spin tensor S ~c has nonzero vacu
um expectation values only in the internal space 
Sl =fl/k (wherep'k are the structural constants in the 

Jr Jr ] 

appropriate basis), and the EAB = O. 
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The resulting ground state is a product of Minkowski 
space with a compact Lie group. However, it is clear that the 
compactification is not spontaneous. In particular, the for
mal condition (b )-which has no clear physical meaning
automatically entails the compactness of M: a well-known 
theorem ofWeyl (see Kobayashi and Nomizu12 for a geo
metric proof) states that any connected semisimple Lie 
group with a positive-definite Cartan-Killing is compact. 
Thus, the compactness of M is implicit in the geometric as
sumptions at the outset. 

The difficulty with this mechanism, then, arises from 
the lack of a physical motivation for (b) and (c). The status 
of these assumptions can be greatly clarified with the aid of 
the following theorem, which simplifies and slightly modi
fies certain results of Hicks 13 and Wolf. 14 

Theorem 2: Let Mbe a complete, connected, simply con
nected Riemann-Cartan manifold such that (i) the curva
ture tensor R = 0; and (ii) the "fully covariant" torsion ten
sor, defined by T(X, Y,Z) = g(X, T( Y,Z) ), is totally 
antisymmetric. 

Then M is a homogeneous (coset) space. If, in addition, 
we have (iii) Tis constant, i.e., VT= 0, then Mis a connect
ed, simply connected Lie group. 

Proof (outline): Using (i), let {eJ} be a global basis of 
RC constant vector fields. From the definition of torsion we 
obtain, foreachj, k, the equations [ej,ek] = - Tjke,. Now 
consider a vector field of the form aie;o where the ai are fixed 
numbers. Then X = aiei is a Killing vector field, since (if L 
denotes the Lie derivative) 

Here the second and third terms vanish by total antisym
metry, and the first term vanishes since Vg = 0 implies 
eigjk = 0 in this basis. Furthermore, X is obviously of con
stant length, and its integral curves are therefore geodesics. 

Now let x andy be arbitrary points in M. Then since Mis 
complete, there exists (by the Hopf-Rinow theorem-see 
Cheeger and Ebin5

) a minimizing geodesic joining x to y. 
(This curve is both a V geodesic and V geodesic.) The tan
gent vector to this curve at x may be expressed as a linear 
combination aiei (x). Now define X = aiei as a vector field; 
then, as we have seen, the integral curves of X are geodesics. 
By the uniqueness of geodesics with given initial conditions, 
the geodesic joining x to y is an integral curve of X. But the 
isometry group G of M acts on M through motions along the 
integral curves of the Killing fields: hence G maps x into y. 
Since x and yare arbitrary, G acts transitively, and so M 
must be a homogeneous space G IH. 

Now suppose that T is constant. Choosing the ej to be 
orthonormal, one finds that the components of the Levi
<;ivita connection in this basis are t~k = - ~T~k' and so 
VT= 0 yields 

or 

eiTjkm + ~Tji,T'mk + ~Tjm,T'ki + ~Tjk,T'im = O. 

Permuting twice on ikm and adding, we find 
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eiTjkm +ekTjmi + em Tjik 

+ ~(Tji,T'mk + Tjm,T'ki + Tjk,T'im) = O. 

But the Jacobi identities corresponding to the basis {ei } are 

eiTjkm +ekTjmi + em Tj;k 

+ (Tj;,T'mk + Tjm,T'k; + Tjk,T';m) =0. 

Substracting these two equations, we find 

Tj;,T'mk + Tj m,T'k; + Tjk,T';m = 0 

and so e; T j km = 0, that is, the T j km are constants. In view of 
[e;ej ] = - Tije" it is evident that the {eJ generate a Lie 
algebra. Let G be the corresponding simply connected, con
nected Lie group. Then, G acts on M through motions along 
the integral curves of the vector fields a;e;. Arguing as before, 
we find M = G I H. But now we have (since the Lie algebra of 
G is generated by the {eJ) the relations dim G = dim M 
= dim G - dim H, whence H must be discrete. Since M is 

simply connected, H must be trivial, and so M = G. This 
concludes the proof. 

Remark 1: If M is not assumed to be simply connected, 
then one finds (by applying the above argument to the uni
versal covering space of M) thatM has the form G I D, where 
G is a connected, simply connected Lie group, and D is a 
discrete subgroup. 

Remark 2: It is easy to see that the given connection on 
M coincides with standard ( - ) connection on G. But the 
given metric on M may not coincide with the Cartan-Killing 
metric on G-indeed G may not be semisimple. See the re
marks after the proof of Proposition 1 in the next section. 

The great virtue of this theorem from our present point 
ofview is that we can now do away with the assumption that 
M is a Lie group. Instead we can make assumptions regard
ing the torsion and RC curvature of M, and it may be possi
ble to motivate such assumptions in a physical way through 
the field equations. Thus, assumption (b) of the mechanism 
of Destri et al. can be reformulated as follows. 

(b' ) The internal manifold M is a complete, connected, 
simply connected Riemann-Cartan manifold, which satis
fies (i) R Jkl = 0; (ii) Tijk is totally antisymmetric; (iii) Tijk 
is constant (thus M is a Lie group); and (iv) the metric on M 
is the Cartan-Killing metric. 

(Note that the fourth assumption is independent of the 
others-the Cartan-Killing metric is not the only possible 
metric on a Lie group.) Now let us consider the justification 
for these assumptions. Since the second Einstein-Cartan 
field equation relates the torsion to the spin tensor by an 
invertible algebraic equation, (iii) means that the vacuum 
expectation value of the spin tensor Sijk is constant: in other 
words, the spin source is uniformly distributed throughout 
M. This appears to be quite reasonable for a ground state
indeed, as we have already mentioned, one reason for accept
ing anti-de Sitter space as a space-time ground state is that 
the "matter" is uniformly distributed throughout the space 
(that is, the cosmological term is constant). Similarly, (H) 
means that the spin tensor is taken to be totally antisymme
tric. Destri et al. 6 justify this on the grounds that the simplest 
source of spin-the Dirac field-does indeed generate a to
tally antisymmetric spin tensor. Thus a spin tensor of this 
type is naturally associated with spin-~ condensates. While 
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this is plausible, in practice one might also be interested in 
Rarita-Schwinger condensates, for which the spin tensor 
need not be totally antisymmetric. 8 However, while (ii) is 
less well motivated than (iii), it does at least have a physical 
interpretation. 

The same cannot, unfortunately, be said of (i), and still 
less of (iv). Assumption (i) can be partially justified on the 
grounds that it implies the vanishing of the internal energy
momentum tensor-again, this is a reasonable condition for 
the ground state to satisfy-but is obviously unnecessarily 
strong, since the vanishing of the RC Ricci tensor would 
suffice for this. Finally, (iv) appears to have no physical 
meaning whatever; again, since M is spacelike, this assump
tion amounts (via the theorem ofWeyl mentioned earlier) to 
compactification by hand. 

This analysis clearly indicates that some of these as
sumptions must be relaxed or replaced if we are to obtain a 
genuinely spontaneous compactification mechanism. Such 
modifications will lead us to spaces that are not necessarily 
Lie groups, but this is desirable: in particular, one would 
hope that (at least some) homogeneous (coset) manifolds 
can be included. A specific procedure will be proposed in the 
next section. 

We conclude this section with a brief discussion of the 
"seven-sphere with torsion" solutions. As is well known, the 
round seven-sphere with torsion 15 satisfies the first two as
sumptions listed under (b') above, but, since it is not a Lie 
group, it cannot satisfy the third. The squashed seven-sphere 
with torsion violates (i) and (iii) but satisfies (ii) (see Duff 
et aC). Finally, Wu8 proposes to retain (i) but neither (ii) 
nor, in general, (iii). We shall not consider these models 
further, since in each case the topology is assumed at the 
outset to be that of the seven-sphere. 

III. A FRAMEWORK FOR SPONTANEOUS 
COMPACTIFICATION WITH TORSION 

We now propose to extend the concept of spontaneous 
compactification to spaces with torsion by generalizing the 
mechanism of Destri et 01.6 In this paper we shall not pro
pose a specific model, but rather a general framework to 
guide the construction of such models. We proceed accord
ing to the principles laid down in the first section, and list our 
assumptions in the same way. 

A. Assumptions concerning the vacuum expectation 
values 

(i) We shall retain the following assumptions of Destri 
et 01. First we take the canonical energy-momentum tensor 
EAB to be zero. (Thus RAB is zero and the problem of the 
cosmological constant does not arise.) Second, we assume 
that the spin tensor has nonvanishing components Sijk only 
in the internal direction. (Thus space-time may be taken as 
Minkowski space. ) Third, we assume that the "spin conden
sate" is uniformly distributed throughout the internal 
ground state manifold M-that is, we take Sijk to be a covar
iant constant tensor. We do not assume that the RC curva
ture tensor vanishes. 

(ii) We shall not assume that the tensor Sijk is totally 
antisymmetric; however, we will be forced to assume that (in 
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a certain technical sense to be clarified later) the totally anti
symmetric part gives the dominant contribution to Sijk' 

B. Assumption concerning the geometry of the ground 
state 

Beyond the standard assumptions that the universe 
splits into a product of space-time with a connected, com
plete, spacelike manifold M, we wish to impose the following 
additional condition: the universe splits only once. That is, M 
itself must not split into a product. Let us be more precise 
about this. Let N be any Riemannian manifold, and x be an 
arbitrary point in N. Suppose that there exist two submani
folds N' and N" of N and an open neighborhood U of x such 
that UistheRiemannianproductofU' with U", where U' is 
an open neighborhood of x in N', and U" is an open neigh
borhood of x in N". Then we shall say that N is "locally 
decomposable." More simply, a locally decomposable mani
fold is one in which, at each point, it is possible to find a 
coordinate system such that the metric has block-diagonal 
form throughout a neighborhood around that point-in 
short, a locally decomposable manifold is what is usually 
(but not quite correctly) described in the physics literature 
as a "product manifold." We propose to forbid such mani
folds as candidates for M. 

There are two major reasons for imposing this condi
tion. The first is that, in general, a locally decomposable 
manifold has an isometry group that is not simple. In the 
Kaluza-Klein context, this would lead to a nonsimple gauge 
group with (possibly) different gauge couplings, and so uni
fication would be lost even among the nongravitational in
teractions (unless the Candelas-Weinbergl6 method can be 
applied, which seems somewhat problematic). It is true that 
the presence of torsion complicates this picture; in principle, 
one could use the torsion to break completely all of the fac
tors in the gauge group save one. But this is clearly very 
unnatural. 

The second reason for requiring local indecomposabi
lity is more vague but also more deep. Throughout this pa
per, we have assumed as usual that the ground state of the 
universe is a (pseudo-) Riemannian product W = L XM, 
where L is space-time. Why should W split in this way? The 
answer is of course unknown, but it is significant that W 
should split into a compact part and a part that cannot be 
compact. As is well known, compact space-times violate 
causality. I? Thus we may speculate that space-time splits off 
from W in order that causality be preserved. (Freund and 
Rubin4 have attempted to explain why precisely four dimen
sions split off.) The fact that the Myers compactification 
theorem is not valid for pseudo-Riemannian manifolds 18 

reinforces this idea. The point is that if the existence of time 
is indeed responsible for the splitting of W, then M, being 
entirely spacelike, should not split. 

To summarize, then, we assume that the internal mani
fold M is a spacelike, connected, complete, locally indecom
posable manifold. These conditions in themselves are quite 
general and certainly do not imply compactness. 

C. Gravitational field equations 

We use the Einstein-Cartan theory. 
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D. A "compactlflcatlon theorem" 

Before stating the appropriate result, we must use the 
gravitational field equations to express the assumptions con
cerning the vacuum expectation values in geometrical form. 
First, EAB = ° implies that the RC Ricci tensor is zero. Sec
ond, the assumption that Sijk is constant means that the tor
sion T is constant. The idea that the "spin-!-like" contribu
tion to Sijk is dominant can be expressed as follows. (As we 
shall see, our torsion has to be traceless, and so Tijk and Sijk 

essentially coincide; therefore we refer directly to T ijk .) The 
tensor Tijk corresponds to reducible representation of the 
appropriate rotation group, but can be split into two"irredu
cible" parts (not three, because T is traceless) according to 

Tijk = T[ijk I + Uijk' (3.1) 

where T[ijk I is the totally antisymmetric part and 

Uijk =~(Tijk - T Ukli )' (3.2) 

The deviation of T from total antisymmetry can be measured 
by the quantity 

(J 'k I"k I = UijkU'j /T[ijk IT lJ • (3.3) 

Since Tis constant, (J is a fixed number that is zero if and only 
if T is totally antisymmetric. The statement that the totally 
antisymmetric part of T is dominant simply means that (J is 
small. 

We are now in a position to state and prove our main 
result. [We denote the symmetric part of the RC Ricci ten
sorby (S).] 

Proposition 1: Let M be a complete, connected, locally 
indecomposable Riemann-Cartan manifold with constant 
nonzero torsion. If (S) = ° and (J < ~, M must be compact. 

Corollary: Let M be a complete, connected, locally inde
composable Riemann-Cartan manifold with constant, non
zero, totally antisymmetric torsion. If (S) = 0, then M must 
be compact. 

This proposition has the following partial converse. 
Proposition 2: Let M be a complete, connected, locally 

indecomposable Riemann-Cartan manifold with constant 
nonzero torsion, and with a continuous non-Abelian iso
metry group. If (S) = 0, then M is compact if and only if 
(J <~. 

These results will be proved with the aid of the following 
definitions and theorems. (See Kobayashi and Nomizu.9

•
12

) 

LetNbe any Riemannian manifold (assumed to be connect
ed, but not necessarily complete). The holonomy group acts 
(via parallel transport around closed loops) as a group of 
linear transformations on the tangent space T" at any point 
x. Thus T" yields a representation of the holonomy group. If 
this representation is reducible, then N is said to be a reduc
ible manifold. Similarly, if the restricted holonomy group 
(obtained by parallel transport around null-homotopic 
loops) acts reducibly, then we shall say that N is locally 
reducible. We now have the following theorem. 

Theorem 3 (local de Rham decomposition theorem): Ev
ery connected locally reducible Riemannian manifold is lo
cally decomposable. 

Theorem 4 (global de Rham decomposition theorem): 
Every connected, simply connected, complete, reducible 
Riemannian manifold is globally decomposable, that is, glo-
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bally isometric to a Riemannian product. 
We shall also use the following results. 
Theorem 5 (Myers): Let N be a connected, complete 

Riemannian manifold. If all eigenvalues of the Ricci tensor 
are bounded from below by a strictly positive constant, then 
N must be compact. 

Theorem 6 (Bochner): Let N be a compact, connected 
Riemannian manifold, with a negative-definite Ricci tensor. 
Then the isometry group of N is finite. 

Theorem 7 (Schur): Let G be a subgroup of the orthogo
nal group O(n) that acts irreducibly on Rn. Then every sym
metric bilinear form on Rn that is invariant by G is a multiple 
of the standard Euclidean inner product. 

We may now prove Propositions 1 and 2. 
Proof of Proposjtion 1: Define a (1,2) tensor on M by 

K(X,y) = V"Y - V"Y, where X and Yare vector fields. In 
components with respect to an arbitrary basis, K is 

(3.4) 

Note that Kij/ = gi,K'j1 is antisymmetric in its first and third 
indices. A straightforward computation yields 

Rij =Rij + KnnmKmji -KnjmKmni 

+ VnK n
ji - VjKnni (3.5) 

as the general relation between Rij and Rij' In the present 
case, the last two terms on the right-hand side vanish, as also 
does the second-for the following reason. Since M is locally 
indecomposable, it must also (by Theorem 3) be locally irre
ducible. Now T and (therefore) T m are constant with re
spect to V and so T::: i is an invarian;~ector under the action 
of the restricted holonomy group. Hence T::: i is zero, that is, 
T is traceless. But K::: i = T::: i , and so only the first and third 
terms in (3.5) are nonzero. Thus, setting the symmetric part 
of R ij equal to zero, we find 

(3.6) 

Clearly VpRij = 0, and so Rij is a symmetric bilinear form 
invariant under the action of the restricted holonomy group. 
As we have seen, this action is irreducible, and so by 
Theorem 7 we have 

Rij = egij' (3.7) 

Substituting this into (3.6), contracting and setting 
n = dim M, we obtain 

Using the antisymmetry of K and the easily derived relations 

Knim = ~Tinm + !(Tnim _ Tmin), 

~(Kmni -Knmi) = ~Timn' 

one obtains 

en = IT T inm + IT T nim 
4 Imn 2 Imn • 

Setting T imn = T limn 1+ Uimn and using the relations 
T imn U imn = 0 and! (Uimn - U min) = ! Unmi , one finds 

en = !Tlimn IT[imnl - ~Uimn uimn. (3.8) 

From the definition of (J, assuming T limn I is not zero, we 
have finally 

en = ~(~ - (J)T[imnIT[imnl. (3.9) 
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Thus c > 0 if (J < ~. Since M is connected and complete, it now 
follows from (3.7) and Theorem 5 that M is compact. This 
completes the proof. 

Remark 3: In our general discussion, we assume that the 
full Ricci tensor vanishes, but clearly this assumption can be 
weakened to (S) = O. However, this has no clear physical 
meaning. 

Remark 4: Combining Theorem 2 with Proposition 1, 
we can show that any complete, connected, simply connect
ed; locally indecomposable RC manifold that satisfies the 
three conditions of Theorem 2 must be a simply connected 
compact Lie group. Furthermore, the given connection co
incides with the ( - ) connection, and the given metric coin
cides with the Cartan-Killing metric. [This follows from 
(3.6), which becomes cgij = AT';;; Tjm. Here T';;; are essen
tially the structural constants.] Thus, the group must also be 
semisimple in this case. 

We now prove Proposition 2: The proof is precisely as 
above, except that we now must also show that M is noncom
pact if (J>!. In this case c<O and so if M were compact we 
could use either Theorem 6 (if (J > ~) or Theorem 1 (if (J = !) 
to produce a contradiction. This completes the proof. 

Remark 5: Proposition 2 fails without the assumption 
that the isometry group is continuous and non-Abelian. In 
Kaluza-Klein theories we must in practice have such an 
isometry group, and so in this context the condition (J < ! is 
not only sufficient but also necessary for compactification. 

Remark 6: If T[ijk j = 0, then (J is undefined, but it is 
clear from (3.8) that c<O in this case; therefore, we can 
include this case in the statements of Propositions 1 and 2 by 
formally allowing (J to be infinite. 

With Proposition 1 we conclude our general description 
of spontaneous compactification for spaces with torsion. 
The problem of constructing nontrivial particular examples 
will be considered in the next section. 

IV. SYMMETRIES OF MANIFOLDS WITH TORSION 

As Theorem 1 clearly shows, the vanishing of the Ricci 
tensor of a compact Riemannian manifold strongly restricts 
the symmetry group. The example of Lie groups shows that 
the restrictions are less severe in the Riemann-Cartan case. 
But this tells us nothing about the more interesting case in 
which the RC Ricci tensor vanishes but the RC curvature 
does not. Part (ii) of Theorem 1 means that, in the Rieman
nian case, such a manifold is less symmetric than its flat 
counterparts. It is important to determine whether this is so 
for RC manifolds. 

In this section we shall show that, unless it is supple
mented by some quite unnatural technical conditions, RC 
Ricci-flatness imposes only a very weak condition on the 
symmetry group of a compact RC manifold. It is even con
ceivable that some Riemannian coset manifolds can be 
"Ricci-flattened" by torsion without losing any symmetry, 
though we have no examples as yet. 

Let Aff(M) be the identity component of the group of 
affine automorphisms of a RC manifold M: that is, Aff(M) 
consists of mappings of M into itself, which preserve the 
affine connection. In the case of compact Riemannian mani
folds, Aff(M) coincides with the identity component of the 
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isometry group, denoted Isom(M), but for a general RC 
manifold this is not so. A vector field X on M that generates 
local isometries will be called a metric Killing vector, while a 
field that generates local affine automorphisms will be called 
an affine Killing vector. The corresponding algebras can, 
under certain natural conditions,9 be identified with the Lie 
algebras of Isom(M) and Aff(M). The following simple re
sult specifies the relationships between these various objects. 

Proposition 3: A vector field X on a compact Riemann
Cartan manifold is an affine Killing vector if and only if it is a 
metric Killing vector and also the Lie derivative Lx T is zero. 

Proof: Let K be the tensor defined in the proof of Propo
sition 1. Clearly Lx T = 0 if and only if LxK = O. Now it may 
be shown that X is an affine Killing vector if and only if, for 
every vector field Y, Lx Vy - VyLx = V[xyj' oLet X, Y, Z be 
arbitrary vector fields. Then using VyZ = VyZ + K( Y,Z) 
one finds 

Lx VyZ - VyLxZ - V[xyjZ 

=Lx VyZ - VyLxZ - V[XyjZ + (LxK)(Y,Z). (4.1) 

Thus it is clear that if X is a metric Killing field and Lx T = 0, 
then X is also an affine Killing field. Conversely, if X is an 
affine Killing field, the left-hand side vanishes. Exchanging 
Yand Z and subtracting, we find 

Lx (VyZ - Vzy) + (VzLx Y - V[XyjZ) 

+ (V[xz jY - VyLxZ) + (Lx T) (Y,Z) = O. 

Since V is torsionless, we have 

[X, [Y,Z]] + [Z, [X,Y]] 

+ [[X,Z ],Y] + (Lx T)( Y,Z) = 0, 

and so, by the Jacobi identities, Lx T = O. Substituting this 
into (4.1) we find that X is a metric Killing field. This com
pletes the proof. 

Corollary: Aff(M) is a subgroup ofIsom(M). 
In physical language, one would say that, unless the tor

sion is invariant by the isometry group, it breaks the symme
try from Isom(M) down to Aff(M). Thus, the "symmetry 
group" is Aff(M) , not Isom(M). 

In order to proceed, we introduce the following nota
tion. For any vector field X, let Ax =Lx - "Ix. Since Ax 
annihilates any function, it may be treated as a (1,1) tensor. 
If X is a metric Killing vector, then Ax, regarded as a (0,2) 
tensor, is antisymmetric. For any vector fields X, Y, one has 
Ax Y = - Tx Y - VyX, where Tx is the (1,1) tensor defined 
by Tx (Z) = T(X,Z). It is also possible to show that if X is an 
affine Killing vector and Y is arbitrary, then 
V y (A x) = R (X, Y), where R is the RC curvature tensor. 9 

The following result is a direct generalization of 
Theorem 1. 

Proposition 4: Let M be a compact connected RC mani
fold with traceless torsion and RC Ricci tensor equal to zero. 
Suppose either that every affine Killing vector satisfies 

(i) Trace Ax Tx <0 everywhere on M, 
or that every affine Killing vector satisfies 

(ii) Tx = bAx everywhere on M, where b is a constant. 
Then (a) [X,y] = ± T(X,Y) for every pair X, Y,ofaffine 
Killing fields, where the ( - ) sign occurs only in case (ii) 
and only if b = - 1; and (b) if dim Aff(M) >dim M and T 
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is totally antisymmetric, then M has the form G / D, where G 
is a simply connected Lie group and D is a discrete subgroup. 

Proof (outline): Let X be an affine Killing vector field, 
and let Y, Z be arbitrary vector fields. Then 

(VyA,)(Z) = Vy(Ax(Z») -Ax( -AzY - TzY) 

=R(X,Y)Z= -R(Y,x)Z. 

By definition, the Ricci tensor S is given as the trace S(X,Z) 
ofthe map Y-R(Y,x)Z, and so 

-S(X,Z) =div(AxZ) + Trace AxAz + TraceAxTz· 
(4.2) 

Now Stokes' theorem for a compact orientable RC manifold 
takes the form 

f div W dv = - f Trace T w dv, 

where W is any vector field and dv is the volume element. In 
our case T w is traceless, and so, setting S = 0 in (4.2) and 
integrating, we obtain 

f (Trace AxAz + Trace Ax Tz )dv = O. (4.3) 

(If M is not orientable, we can take the appropriate twofold 
covering, without altering our conclusions.) 

Now assume conditions (i). Set Z = X in (4.3). Since 
Ax is antisymmetric, Trace Ax Ax <0 at each point, and since 
the same is true of TraceAxT". we must have 
Trace A xA x = 0 and therefore A x = 0 at each point. Thus if 
X and Yare affine Killing fields. we have Tx Y + V yX = O. 
Exchanging X and Yand subtracting, one finds (from the 
definition of n that [X,y] ;= T(X,y). 

Now if dim A1f(M) >dim M, then at any point one can 
set up a basis of affine Killing vectors {Xi}' We have just seen 
that A x = 0 for an affine Killing field, and so R (Xi,xj ) 
= V XjAXi = O. Thus M is RC flat. Now from Proposition 3 

and the relation [Xi ~] = T<Xj.Xj ), one finds 

[X;oT<Xj,xk)] = T(TrijX,,xk) + T<Xj,Trikxr ), 

which, after simplification, becomes 

XiTmjk = TmirTrki + TmkrT'ji + TmjrTrik . (4.4) 

Permuting twice on ijk and adding, one obtains an equation 
that can be compared with the Jacobi identities for the basis 
{Xi}. The result is that both sides of ( 4.4) vanish. Now using 
Lxg = 0 and the assumed total antisymmetry of T, one 
shows thatXigik = 0 in this basis and so, since the commuta
tor coefficients are T ~k' t~k = ! T ~k' Hence 

VjTjkl = Xi Tjkl + !T'klTij, - !Tj,IT'ik - !TikrTril , 

which is zero since both sides of (4.4) vanish. Finally, M 
must be complete because it is compact. Thus, by Theorem 
2, M is essentially a Lie group. 

The proofis similar in case (ti). PuttingZ = Xin (4.3), 
as well as Tx = bA", one has 

(1 + b) f TraceA"Ax dv = 0, 

whence Ax = 0 as above, unless b = - 1. But in that case 
VyX = - (A x + Tx ) Y = 0 for every affine Killing vector X 
and arbitrary Y. Thus every affine Killing vector is RC con-
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stant, and so, from the definition of torsion, every pair X, Y 
of affine Killing fields satisfies [X,y] = - T(X,y). Except 
for unimportant details, the proof that M is RC fiat and is 
essentially a Lie group now proceeds as before. This con
cludes the proof. 

Remark 7: Any compact connected Riemannian mani
fold obviously satisfies the conditions of this proposition if 
its Ricci tensor is zero, and so one obtains the first two parts 
of Theorem 1 by setting T = 0 in Proposition 4. The third 
part of Theorem 1 is obtained as follows. It is clear from the 
above proof that for such a manifold, every Killing vector 
satisfies Ax = 0, and so VyX = VyX = O. Now let if be the 
universal covering manifold of M, which inherits its local 
geometry from M. Then the algebra of Killing vectors is 
invariant under the action of the holonomy group, and so if 
is reducible and consequently splits, according to Theorem 
4. The Killing vectors generate a flat simply connected mani
fold. But such a manifold is noncompact, which is impossi
ble if if is compact. Hence, there can in fact be no Killing 
vectors, and so the Lie algebra of the isometry group is trivial 
and the isometry group is discrete. As M is compact, so also 
is its isometry group, which must therefore be not only dis
crete but actually finite. 

Remark 8: Any compact semisimple Lie group satisfies 
the conditions of Proposition 4. The ( + ) connection corre
sponds to case (i), and the ( - ) connection to case (ii) 
(with b = - 1). 

Apart from its general interest, Proposition 4 is mainly 
of interest to us because it shows that, in general, the vanish
ing of the Ricci tensor imposes a remarkably weak condition 
on the symmetry group of a Riemann-Cartan manifold. The 
restrictions of Theorem 1 are so strong in the Riemannian 
case simply because these manifolds "accidentally" satisfy 
condition (i) of Proposition 4. But for a general Riemann
Cartan manifold with zero Ricci tensor, there is no reason 
whatever to expect that either (i) or (ii) will hold. In this 
case the only restriction is Eq. (4.3), which, being an inte
gral equation, is a weak constraint. We conclude, therefore, 
that the Ricci-flatness condition is unlikely to restrict the 
symmetry of a Riemann-Cartan manifold to any significant 
extent. 

The existence of symmetry is of great value in construct
ing explicit examples of manifolds. In the present context, 
homogeneous (coset) manifolds are of particular interest. 
The vast majority of such manifolds do not admit RC fiat 
connections, but it is certainly possible that many may admit 
RC Ricci-flat connections. In view of our assumption (in 
Propositions 1 and 2) that VT = 0, the following result sug
gests one approach. (Here we use the term "symmetric 
space" in the technical sense; see Kobayashi and Nomizu. 12

) 

Proposition 5: Let M = G / H be a Riemannian symmet
ric space with a G-invariant metric g. Then if Tis the torsion 
of any G-invariant Riemann-Cartan connection on M, we 
have VT = 0, where V is the Levi-Civita connection for g. 

PrOOF Since the RC connection is G-invariant, it follows 
from Proposition 3 that T is G-invariant. But standard re
sults on symmetric spaces state (i) that the Levi-Civita con
nection induced by a G-invariant metric coincides with the 
canonical connection, and (ii) that any G-invariant tensor is 
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constant with respect to the canonical connection. Hence 
VT = 0, which completes the proof. 

Remark 9: This result could be regarded as further moti
vation for the assumption in Proposition 1 that Tis constant. 

Proposition 5 suggests that examples of compact mani
folds compatible with Proposition 1 may possibly be found 
by substituting the metric of a symmetric space (in particu
lar, a space of constant curvature) into the left-hand side of 
(3.6) and solving for K ~k subject to the constraint (J < ~. One 
hopes that nontrivial solutions (with nonzero RC curva
ture) can be found in this way. 

V. MODIFICATIONS OF THE COMPACTIFICATION 
THEOREM 

As several of the known examples of internal manifolds 
with torsion do not satisfy all conditions of Proposition 1, it 
is of some interest to ask whether these conditions can be 
modified or dropped. Here we list briefly some relevant re
marks. 

First, note that it is not possible to remove either com
pleteness or local indecomposability. Without the first, the 
manifold would necessarily be noncompact. Without the 
second, we would be including manifolds of the type 
M X Rn, where M satisfies all conditions of Proposition 1. 
This manifold satisfies all conditions of Proposition 1 except 
local indecomposability, and fails to be compact. 

Second, note that both the round and the squashed sev
en-spheres with torsion have V T totally antisymmetric but 
nonzero. Although the physical motivation is not clear, one 
may ask whether the condition VT = ° in Proposition 1 can 
be relaxed to total antisymmetry (on all four indices) for 
VT. Interestingly, the answer depends on the solution to a 
problem in pure mathematics which, to the author's knowl
edge, remains unresolved. Taking both Tand VT to be total
ly antisymmetric in equation (3.5), and setting Rij = 0, one 
obtains 

Rij =~TmniTnjm' 
Clearly Rij is non-negative, but this certainly does not imply 
compactification. (Myers' theorem requires that the eigen
values be positive and bounded away from zero.) However, if 
one calculates the gradient of the scalar curvature, it is found 
(by judicious use of the antisymmetry properties) that 
ViR = - 2VjRji . The Bianchi identities then imply thatRis 
a positive constant. It is apparently unknown at present 
whether it is possible for a noncompact complete manifold 
with non-negative Ricci tensor to have a constant positive 
scalar curvature, assuming local indecomposability of 
course. This is related to an extension of the well-known 
Yamabe conjecture. 19 

Finally, one may wish to consider replacing VT = ° by 
equation V T = O. The consequences of this can be explored 
as follows. Let M be a Riemann-Cartan manifold that is RC 
locally reducible-that is, the restricted holonomy group of 
V (not V) acts reducibly. Let xEM and let U be an open 
neighborhood of x. Let H ~ be an invariant subspace of the 
tangent space at x, and let H;: be the orthogonal comple
ment of H ~. Then H ;: is also invariant, and in fact this split
ting of the tangent spaces can be extended throughout U in a 
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consistent and continuous way. We shall say that the torsion 
T splits holonomically if, for each x, T(H ~ ,H ~ ) r;,.H ~, 
T(H;:,H;)r;,.H;, and T(H~,H;) = 0. The following re
sult now generalizes the local de Rham decomposition 
theorem to Riemann-Cartan manifolds, and should be com
pared with Theorem 3. (The proof is given in the Appen
dix.) 

Proposition 6 (local de Rhamfor RC manifolds): Let M 
be a connected, RC locally reducible Riemann-Cartan 
manifold such that the torsion splits holonomically. Then M 
is locally decomposable, regarded as a Riemannian mani
fold. If in addition V T = 0, then M is locally decomposable, 
regarded as an RC manifold. 

Remark 10: If V T is not zero, then the torsion may not 
decompose, and so one has only a Riemannian decomposi
tion. 

It is now clear that V T = ° cannot be replaced by 
VT = 0, because Proposition 6 means that local indecom
posability does not imply RC local irreducibility, and this is 
what one needs in order for Schur's lemma to apply and for 
the proof to go through. In fact, all other parts of the proof of 
Proposition 1 can be suitably modified, and the result re
mains valid if V T = 0, but only if Tsplits holonomically. But 
there is no physical motivation for this last assumption. 

In conclusion, then, we see that Proposition 1 is very 
sensitive to modifications of the hypotheses. 

VI. CONCLUSION 

In this work we have examined the foundations of the 
Freund-Rubin spontaneous compactification technique, 
and have indicated the form that an extension of these ideas 
to Riemann-Cartan manifolds could take. Our purpose has 
been to provide a framework that not only guides the con
struction of particular models (in the sense that these should 
be compatible with the hypotheses of Proposition 1 or some 
similar result), but which also sheds some light on the whole 
question of compactification. Although our treatment has 
been primarily concerned with the Kaluza-Klein approach, 
many of the results apply also to the "field-theoretic limit" of 
superstring theories and possibly to other multidimensional 
theories. (This is why we have avoided, as far as possible, 
any assumptions as to the symmetry group of the internal 
manifold: in particular, Proposition 1 is independent of any 
such assumption. ) 

The specific technical problems that amict Kaluza
Klein theories (chiral fermions, zero-mass modes-see Wit
ten20 and Muzinich21 need not be rehearsed here. We shall 
conclude instead by pointing out some more general prob
lems that deserve greater attention. 

It is often claimed as a virtue of Kaluza-Klein theories 
that they reduce gauge theories to gravitation, and that they 
explain the origin of gauge symmetries. This is somewhat 
dubious, however, because these theories postulate at the 
outset that the internal space has a nontrivial isometry 
group. Most manifolds, of course, do not have this property. 
In general relativity theory, nontrivial isometry groups are 
imposed only as a useful approximation. The electromagnet
ic gauge symmetry, however, is practically exact. From this 
point of view, the Kaluza-Klein manifolds are thus highly 
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"nongeneric." The virtue of the Kaluza-Klein formulation 
of gauge theory is not so much that it explains the symmetry 
as that it may provide a route to an explanation. One could 
imagine high degrees of symmetry arising, for example, from 
quantum gravitational effects of the type that tend to reduce 
anisotropies in cosmology. 22 Another line of approach is 
suggested by the work of Isenberg and Moncrief,23 who 
show that, under certain conditions, a space-time must inevi
tably develop nontrivial isometries. 

At the other extreme, the claim is often made that gravi
tation can be reduced to gauge theory or the field theory of 
spin-2 particles. The analyses of Trautman24 and Penrose,25 
respectively, make it quite clear that these viewpoints are 
considerably, and perhaps grossly, oversimplified. 

However, the most basic problem confronting all high
er-dimensional theories is that of understanding the reason 
for the "factorization" of the universe into "internal" and 
"external" parts. Spontaneous compactification has the rel
atively modest aim of explaining the topological differences 
of the two factors in terms of their geometric differences
the point being that Myers' theorem (and related results 
such as Proposition 1) is not valid for pseudo-Riemannian 
manifolds. Thus, the internal space differs topologically 
from space-time because the latter has a time dimension and 
the former does not (and cannot, lest causality be violated). 
But in all this, the "factorization" is presumed to be given
it is certainly not explained. 

We have already remarked, in Sec. III, that the exis
tence of a time dimension may be partly responsible for the 
factorization of the universe, since it implies that the full 
multidimensional space cannot be compact. But this is obvi
ously a very incomplete explanation. No theory that makes 
use of multidimensional spaces can be considered complete 
unless it gives a detailed account of the origin of the internal! 
external dichotomy. It is sometimes stated that this problem 
can be resolved by considering nontrivial fiber bundles in
stead of product spaces, but this is in fact not correct. Not 
every manifold can be regarded as the bundle space of a fiber 
bundle--the structure must be imposed by means of a postu
late that is hardly less arbitrary than the assumption that the 
space factorizes. What is required is a physically motivated 
scheme which splits the universe "spontaneously." The 
de Rham decomposition theorems and their generalizations 
may be of value here. 
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APPENDIX: PROOF OF PROPOSITION 6 

Here we shall only indicate those parts of the proof that 
differ from the corresponding parts in the Riemannian case; 
the remainder will be asserted without proof. 9 

Let H' and H " be the distributions defined throughout 
U in the way described in the text. It may be shown that these 
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distributions are differentiable and that, if X is any vector 
field, Vx (H') C;;H' and Vx (H") C;;H". Thus if X and Yare 
vector fields belonging to H " [X, Y] also belongs to H " since 
[X, Y] = V x Y - V xX - T(X, Y) and T splits holonomical
ly. Thus H', and similarly H", is involutive. Given the point 
x, one can therefore (by the Frobenius integrability 
theorem) find a submanifold M' generated by H' and con
taining x, and similarly for M " generated by H ". It now can 
be shown that there exists a neighborhood V around x in U, 
which is of the form V'XV", where V' is an open neighbor
hood of x, inM', and similarly for V" inM". Letk = dim H', 
and let {xl, ... ,x\ Xk+ t, ... ,xn} be a coordinate system adapt
ed to the splitting, that is, al ... ak belong to H', and 
ak + I ... an belong to H ". We now show thatthe metric in V' 
is independent of the coordinates in V", and vice versa. 

The "off-diagonal" components of g, g(ai,aj ) are obvi
ously zero. To see that ai (g(aj ,am )) is zero, we use Vg = 0 to 
write 

ai(g(a"am)) = g(Vaiaj,am) + g(aj,v ajam ). (Al) 

Now by definition of Twe have 

vaiaj-V(jjai - [aj,aj ] =T(ai,aj ). 

The third term on the left vanishes since we are dealing with 
a coordinate basis and the right-hand side vanishes since T 
splits holonomically. Thus, the first two terms are equal. But 
the first belongs to H ", and the second to H': hence, both 
must be zero. Substituting into (A 1 ), we find that the V" 
part of the metric is independent of the V' coordinates. Simi-
1arly the V' part of the metric is independent of the V" co
ordinates, and so Vis the Riemannian product of V' and V". 

Notice that the proof depends only on Vg = O. Thus T 
will decompose in the same way if VT = 0, and so, in this 
case Vis also the Riemann-Cartan product of V' and V". 
This completes the proof. 
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An exact IS-term recursion relation and the associated generating function are derived for the 
number of arrangements of q particles on a 2 X N lattice such that s occupied nearest neighbor 
pairs, v of which are transverse, and t unoccupied nearest neighbor pairs are formed. 

I. INTRODUCTION 

In the mathematical statistical mechanics of adsorption 
of molecules on double chains of polymers the following 
combinatoric problem arises: Obtain a recursion relation for 
the number A (N,q,s,t,v) of arrangements of q identical, in
distinguishable particles on a 2 X N rectangular lattice, com
posed of two horizontal rows of N square cells, in such a way 
that there are a number s of occupied nearest neighbor pairs, 
v of which are vertical, and a number t of unoccupied nearest 
neighbor pairs. In Fig. 1, for example, ten particles are ar
ranged on a 2 X 8 lattice. In this case there are a total of eight 
occupied nearest neighbor pairs and a total of three unoccu
pied nearest neighbor pairs. Three of the occupied nearest 
neighbor pairs are vertical. 

The desired recursion relation may be obtained by first 
utilizing a method of McQuistan and Hock· to derive a set of 
coupled recursion relations for conditional arrangement 
numbers and then by employing a technique developed by 
Phares2 for decoupling the recursion relations. These two 
steps are presented in Secs. II and III of this article. In Sec. 
IV a previously obtained result is derived by a reduction of 
the relation for A (N,q,s,t,v). 

II. RECURSION RELATIONS FOR CONDITIONAL 
ARRANGEMENT NUMBERS 

The conditional arrangement numbers are the numbers 
of arrangements of the particles with the specified numbers 
and types of nearest neighbor pairs, given the configuration 
of occupied and unoccupied cells on the leftmost edge of the 
lattice. The four such arrangement numbers will be labeled 
Aj (N,q,s,t,v), withj = 1,2,3,4. The given configurations are 
indicated in Fig. 2. For example, A. (N,q,s,t,v) denotes the 
number of arrangements of q particles on a 2 X N lattice such 
that there are s occupied nearest neighbor pairs, v of which 
are vertical, and t unoccupied nearest neighbor pairs, pro
vided that the upper leftmost cell is occupied and that the 
lower leftmost cell is unoccupied. 

As a consequence of the relation 

A(N,q,s,t,v) = IAj(N,q,s,t,v), (1) 

... ... ... ... • 
• ... .. ... ... 

FIG. 1. On this 2X8 lattice ten particles have been placed so that s = 8, 
t = 3, v = 3, and e = 3. 

At (N,q,s,t,v) A3 (N,q,s,t,v) 

Ea-.:--I--I -II I----I-gl-l 
A2 (N,q,s,t,v) A. (N,q,s,t,v) 

1--1--[:1 -III J-.I.--I -I 
FIG. 2. Arrangements may be characterized by the state of the two leftmost 
cells of the lattice. The conditional arrangement numbers associated with 
each state are indicated. 

the question of obtaining a recursion relation for 
A (N,q,s,t,v) reduces to one of obtaining relations for the 
conditional arrangement numbers, and this shall be the fo
cus of the following discussion. 

The variables N,q,s,t, and v have for their domains the 
non-negative integers, and the arrangement number 
A (N,q,s,t,v) and the conditional arrangement numbers 
Aj (N,q,s,t,v) have specific initial conditions. Fo~ the sake of 
simplicity, however, we shall assume that the vanables range 
unrestrictedly over the entire set of integers, and that the 
arrangement number functions take nonzero values only for 
those values of their arguments that make sense and are self
consistent. We adopt the following convention concerning 
the values of the domain variables for which the arrange
ment number functions may be nonzero. Since the lattice 
must have some length, the arrangement numbers may be 
nonzero only for positive N. For nonzero values of these 
numbers the number q of particles distributed on the lattice 
must be non-negative and less than 2N. The number s of 
occupied nearest neighbor pairs must also be non-negative 
and less than some maximum number Sm' which is never 
greater than 3(q/2) - 2. It is clear that v can only range 
from zero to the lesser of the two numbers Nand Sm • Finally, 
t must be a non-negative number equal to 
3(N - q) - 2 + s + e, where e is the number of particles 
found in the two leftmost and the two rightmost cells of the 
lattice. 

The convention just defined permits a reduction of the 
question of listing the initial conditions of the conditional 
arrangement numbers to that of listing their first nonzero 
values when their domain quintuples are ordered lexicogra
phically. These conditions are 

A.(1,I,O,O,Q) = 1, 

A 2 (1,I,O,O,Q) = 1, 

A 3 (1,2,I,O,I) = 1, 

(2a) 

(2b) 

(2c) 
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1*1*1 

J 

1*1:1 
u 

u 

1*' I 
FIG. 3. The partition of the set of arrangements for A I (N,q,s,t,v) is indicat
ed schematically. Such partitions give rise to the recursion relations (3). 

(2d) 

The conditional arrangement numbers are not indepen
dent. It is clear from Fig. 2, for example, that since the 2 X N 
lattice is symmetric under a reflection about the central line, 
A,(N,q,s,t,v) and A 2 (N,q,s,t,v) are identical. The task at 
hand is thus to obtain the recursion relations for three func
tions in five variables. 

One way to obtain coupled recursion relations for the 
conditional arrangement numbers is to take each of the cases 
in Fig. 2 and partition the set of associated arrangements into 
four disjoint classes characterized by how the two cells sec
ond from the left in the lattice are occupied. The decomposi
tion is shown schematically for A I (N,q,s,t,v) in Fig. 3. Con
sideration of similar decompositions for the other 
conditional arrangement numbers leads to four coupled re
cursion relations: 

A I (N,q,s,t,v) 

=A,(N-I,q-l,s-l,t-l,v) 

+ A2(N - l,q - l,s,t,v) 

+ A3(N - l,q - loS - l,t,v) 

+A4(N-I,q-l,s,t-l,v), 

A2 (N,q,s,t,v) 

=A,(N - l,q - l,s,t,v) 

+ A2 (N - l,q - l,s - l,t - l,v) 

+ A3(N - l,q - l,s - l,t,v) 

+A4(N-I,q-l,s,t-l,v), 

A3 (N,q,s,t,v) 

=A,(N - l,q - 2,s - 2,t,v - 1) 

+A2 (N - l,q - 2,s - 2,t,v - 1) 

+A3(N - l,q - 2,s - 3,t,v - 1) 

+A4(N - l,q - 2,s - l,t,v - 1), 

A4 (N,q,s,t,v) 

2040 

=A,(N - l,q,s,t - 2,v) 

+A2 (N - l,q,s,t - 2,v) 

+A3(N - l,q,s,t - l,v) 
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(3a) 

(3b) 

(3c) 

+A4(N -l,q,s,t- 3,v). (3d) 

III. DECOUPLING THE RECURSION RELATIONS 

The recursion relations for the conditional arrangement 
numbers may be decoupled by introduction of the generat
ing function associated with each arrangement number. For 
eachj = 1,2,3,4, we define a polynomial Gj (X) in the quin
tuple of variables X = (x,y,z,a,b): 

(4) 

The ranges of the indices of summation may be considered to 
be the set of all integers; the convention adopted concerning 
the arrangement numbers ensures that for each value of N 
almost all terms are zero. 

Substitution of the relations (3) and of the initial condi
tions (2) into the summations (4) yields a set of simulta
neous equations for the generating functions: 

(1 - xyza - xy) G I (X) - xyzG3 (X) - xyaG4 (X) = xy, 
(5a) 

- 2xy2z2bGI (X) + (1 - xy2z3b)G3(X) - xy2zbG4(X) 

= xy2zb, (Sb) 

-2xa2GI(X) -xaG3(X) + (1-xa3)G4(X) =xa. (Sc) 

Solution of the system (S) yields the generating func
tions forj = 1,2,3,4: 

Gj (X) = Hj (X)ID(X), 

where 

D(X) = 1 - xy - xyza - xa3 - x 2ya3 - xy2z3b - x 2y2zab 

+ x 2yza4 + X 3y3zab _ X 2y3z3b 

+ X 2y3z4ab + x2y2z3a3b 

_ 3x3y3z2a2b + 3x3y3z3a3b _ x3y3z4a4b, 

HI (X) = xy + x 2ya2 - x2ya3 + X 2y3rb 

_ X 3y3zab _ X 2y3z3b + x3y3za2b 

+ X 3y3z2ab _ x3y3z3a2b _ x3y3z2a3b + x3y3~a3b, 
H 2(X) =H,(X), 

H 3(X) = xy2zb - X 2y3zb + x2y2zab + 2x2y3z2b 

- X 2y3z2ab _ x2y2za3b _ X 3y3zab 

+ 2x3y3za2b + x3y3z2a2b 

_ x3y3za3b _ 2x3y3z2a3b + x3y3z2a4b, 

H4(X) = xa - x 2ya + 2x2ya2 - x 2yza2 + x2y2zab 

_ X 2y2z3ab _ X 3y3zab + 2x3y3z2ab 

_ X 3y3z3ab + x3y3z2a2b 

_ 2x3y3z3a2b + x3y3z4a2b. 

Comparison of the coefficients of like monomials in the 
equations 

(6) 

yields recursion relations and associated sets of initial condi
tions for each of the conditional arrangement numbers. 
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TABLE I. Nonzero initial values for AI· 

(N,q,s,t,v) 

0,1,0,0,0) 
(2,1,0,2,0) 
(2,2,0,0,0) 
(2,2,1,1,0) 
( 2,3,2,0,1) 
(3,1,0,5,0) 
( 3,2,0,2,0) 
(3,2,0,3,0) 
(3,2,1,3,0) 
(3,3,0,0,0) 
(3,3,1,1,0) 
(3,3,1,2,1) 
( 3,3,2,1,1) 
(3,3,2,2,0 ) 

Al (N,q,s,t,v) 

1 
1 
1 
1 
1 
1 
1 
2 
1 
1 
2 
1 
1 
1 

Since the highest power of x in any of the functions H j (X) is 
the third, all the Aj (N,q,s,t,u), and consequently 
A (N,q,s,t,u), obey the same recursion relation when N> 3: 

o = A (N,q,s,t,u) -A(N-1,q-1,s,t,v) 

-A(N - 1,q - 105 - 1,t - 1,u) 

- A (N - 1,q,s,t - 3,v) 

-A(N - 2,q - 1,s,t - 3,u) 

-A(N - 1,q - 2,s - 3,t,u - 1) 

-A(N-2,q-2,s-1,t-1,u-1) 

+A(N - 2,q - 1,s - 1,t - 4,u) 

+A(N-3,q-3,s-1,t-1,u-1) 

- A (N - 2,q - 305 - 3,t,v - 1) 

+A(N - 2,q - 305 - 4,t - 1,v - 1) 

+A(N - 2,q - 205 - 3,t - 3,v - 1) 

- 3A (N - 3,q - 305 - 2,t - 2,u - 1) 

+ 3A (N - 3,q - 305 - 3,t - 3,u - 1) 

-A(N - 3,q - 305 - 4,t - 4,u - 1). (7) 

The nonzero initial values for the conditional arrange
ment numbers are given in Tables I-III. The appropriate 
initial conditions for A (N,q,s,t,u) may be obtained from 
these tables and Eq. (1). The generating function for 
A (N,q,s,t,u) is the sum of the generating functions for the 
conditional arrangement numbers: 

G(X) = GI(X) + G2 (X) + G3 (X) + G4 (X). 

TABLE II. Nonzero initial values of A 3• 

2041 

(N,q,s,t,v) 

0,2,1,0,1) 
(2,2,1,1,1) 
(2,3,2,0,1 ) 
(2,4,4,0,2) 
( 3,2,1,4,1) 
( 3,3,1,2,1) 
( 3,3,2,2,1) 

1 
1 
2 
1 
1 
2 
2 
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TABLE III. Nonzero initial values of A •. 

(N,q,s,t,v) 

( 1,0,0,1,0) 
(2,0,0,4,0) 
(2,1,0,2,0) 
(2,2,1,1,1) 
(3,0,0,7,0) 
( 3,1,0,4,0) 
(3,1,0,5,0) 
( 3,2,0,2,0) 
(3,2,1,2,1 ) 
(3,2,1,3,0) 
( 3,3,2,1,1) 
( 3,3,2,2,1) 

IV. CONCLUSION 

A.(N,q,s,t,v) 

1 
1 
2 
1 
1 
2 
2 
2 
1 
2 
2 
2 

In this section we indicate how restrictions of the recur
sion relation (7) and of its generating function lead to 
further results. The summation 

I A (N,q,s,t,u) (8) 

represents the number of ways of arranging q particles on a 
2 X N lattice with s occupied nearest neighbor pairs and with 
t unoccupied nearest neighbor pairs. Let us denote this num
ber by A (N,q,s,t); then G(x,y,z,a,l) is the generating func
tion for A (N,q,s,t). A reduced form ofEq. (6), 

D(x,y,z,a,l ) G(x,y,z,a, 1 ) = H(x,y,z,a,l), 

indicates that the recursion relation for A (N,q,s,t) may be 
read off from D(x,y,z,a,l): 

o = A (N,q,s,t) -A(N-1,q-1,s,t) 

-A(N - l,q - l,s - l,t -1) -A(N - 1,q,s,t - 3) 

-A(N - 2,q - l,s,t - 3) -A(N - l,q - 205 - 3,t) 

-A(N-2,q-2,s-1,t-1) 

+A(N-2,q-1,s-l,t-4) 

+A(N - 3,q - 3,s - l,t - 1) 

-A(N - 2,q - 3,s - 3,t) 

+ A (N - 2,q - 305 - 4,t - 1) 

+A(N - 2,q - 2,s - 3,t - 3) 

- 3A(N - 3,q - 3,s - 2,t - 2) 

+ 3A (N - 3,q - 305 - 3,t - 3) 

-A(N - 3,q - 305 - 4,t - 4). (9) 

The same convention regarding the ranges of the domain 
variables and regarding the nonzero values of A (N,q,s,t) 
holds just as it does for A (N,q,s,t,u). The initial values for 
A (N,q,s,t) may be obtained by use of (8) and the initial 
values for the conditional arrangement numbers. Relation 
(9) was obtained by McQuistan and Hock l by a different 
method. 

Similarly, G(x,y,z,l,l) is the generating function for the 
numbers A (N,q,s) of arrangements of q particles on a 2 XN 
lattice with exactly s occupied nearest neighbor pairs. As 
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above, the recursion relation for A (N,q,s) may be read off 
from D(x,y,z, I, I): 

O=A(N,q,s) -A(N-I,q,s) 

2042 

-A(N - I,q - I,s) -A(N - I,q - I,s - 1) 

-A(N-2,q-I,s) +A(N-2,q-I,s-1) 

-A(N - 2,q - 2,s - 1) -A(N - I,q - 2,s - 3) 

+A(N - 3,q - 3,s - I) +A(N - 2,q - 2,s - 3) 

-A(N - 2,q - 3,s - 3) - 3A(N - 3,q - 3,s - 2) 

+A(N - 2,q - 3,s - 4) + 3A(N - 3,q - 3,s - 3) 

-A(N - 3,q - 3,s - 4). 
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This expression is a generalization of a result obtained for the 
I X N case by McQuistan. 3 

The recursion relation (7) may be used to gain informa
tion about the grand canonical partition function of a phys
ical system of gas molecules being adsorbed onto double 
strands of polymers. Results concerning such a system will 
be published elsewhere. 

'R. B. McQuistan and J. L. Hock, "An exact recursion for the composite 
nearest-neighbor degeneracy for a 2 X N lattice space," J. Math. Phys. 25, 
261 (1984). 

2 A. J. Phares, "Decoupling of a system of partial difference equations with 
constant coefficients and application," J. Math. Phys. 25, 2169 (1984). 

3R. B. McQuistan, "Exact nearest neighbor statistics for one-dimensional 
lattice spaces," J. Math. Phys. 13, 1317 (1972). 
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The Sparling equation, a first-order, matrix-valued linear differential equation that is equivalent 
to the self-dual Yang-Mills equations for any group, has recently been solved by quadratures for 
the case ofSL(2,C) or its subgroup. It is the purpose of this paper to show how for a series of 
special cases, rather than integrating the quadratures, the Sparling equation can be reduced to an 
algebraic equation and then solved, yielding the single- and multi-instanton fields parallel to 
isospace. 

I. INTRODUCTION 

The self-dual Yang-Mills equations have, for a variety 
of reasons, played an important role in both physics and 
applied mathematics. They have supplied the instanton solu
tions used in the quantum theory of the Yang-Mills field and 
recently they have been shown 1 (for different gauge groups 
and special symmetries) to reduce to a wide variety of differ
ential equations as, for example, the Bogomolny equation, 
the stationary, axial symmetric Einstein equations, the sine
Gordon equation, the Euler equations for the spinning top, 
and others. It is thus clear that solution generating tech
niques are of considerable interest. In this paper one such 
technique will be discussed. In a future paper a more power
ful method [which promises to reduce the (at least) 
SL(2,C) case to quadratures] will be presented. 

It has been known2
•
3 for some time that one can express 

the self-dual Yang-Mills field equations on Minkowski 
space in terms of a single, matrix, first-order differential 
equation for a GL(n,c) matrix-valued function G(Xa,b,;)' 
This equation (the so-called Sparling equation) has the form 

- aG 
(1 + bb) -=lJG = - GA, 

ab 
(1.1 ) 

where A is a given but arbitrary (Lie-algebra) matrix-valued 
function on a characteristic surface (usually taken as null 
infinity, I +), representing the characteristic initial data for 
the Yang-Mills field. Thus A is a function of three variables 
that coordinatize I + (R X S 2 ): the retarded time u = t - r 
and the complex stereo graphic coordinates band ;. If an 
interior point x a of Minkowski space is chosen, the light cone 
from x a intersects I + on a two-surface that can be described 
by 

( 1.2) 

with 1 a simple, explicit function of XO and (b,;)' When Eq. 
( 1.2) is substituted into A (U,b,;), Eq. (1.1) becomes a dif
ferential equation in t for G(xa,t,;), with the x a entering 
only as parameters in A. 

The solutions of ( 1.1) with the demand of regularity on 
the (t,;) sphere (Le., existence of expansion in spherical 
harmonics) constitute the solution of the associated Yang-

Mills equations in the sense that from the regular G(Xa,b,;), 
one can, by differentiating, directly construct the "self-dual" 
Yang-Mills vector potential3 Ya' 

( 1.3) 

with h = /alJ(VaGG -I), and 1° and rna explicit functions 
(b,;)' (See Sec. II.) 

The freedom in the regular solutions 

G-G I (Xa,b,;) = g(xa) G(Xa,b,;) (1.4) 

is a manifestation of the usual gauge freedom in the choice of 
Ya' Le., 

( 1.5) 

Though on a formal level, Eq. (1.1) can always be 
solved in terms of path-ordered integrals 

G(Xa,b,;) = Go(xa,;)O exp (f~ A db -), (1.6) 
1 +b; 

the difficulty of choosing the Go(xa,b) so that G is a regular 
function has never been solved. Recently,4 an alternative 
method of solution has been developed [in the SL(2,C) 
case] that allows the G to be expressed in terms of quadra
tures over A. 

It is the purpose of this paper to show how, for a special 
class of A, the method of quadratures can be circumvented 
and the Sparling equation can be reduced to an algebraic 
equation. The solutions correspond to the single- or multi
instanton fields, which are parallel in isospace. 

In Sec. II, we discuss the meaning and derivation of the 
Sparling equation, while in Sec. III, we choose a special A 
and obtain the single-instanton solution. In Sec. IV, this in 
generalized to the parallel multi-instanton fields. 

II. THE SPARLING EQUATION 

In this section we will discuss the meaning of the Spar
ling equation and its derivation. The details will be omitted 
as they have appeared elsewhere.5

•6 

We begin with a GL(n,C) bundle, with connection 
Ya (xa), over Minkowski space M. Let x a be an arbitrary 
point of M and Cx denote the future null cone of xa. The null 
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generators of Cx will be labeled by (~-,;) obtained from their 
intersection with the generators of I + , and will be denoted by 
Ix (;,;). The GL(n,C)-valued matrix G(xa,;,;) is the paral
lel propagator of the fiber over x a to I + along Ix (;,;) via the 
connection y, i.e., 

G(xa,;,;) = 0 exp ( r _ Ya dxa) = 0 exp (f Ya I adS), Jlx (;,;) 

(2.1 ) 

where 0 indicates the path-ordered integral and la(;,;) is 
the (null) tangent vector to Ix (;,;). 

Note that from the definition of G one can, by differenti
ation, obtain 

laVaG. G -I = Ya la, (2.2) 

from which Eq. (1.3) can be derived. 
If we now restrict the discussion to self-dual Yang-Mills 

fields, the Sparling equation can be derived in the following 
fashion. 

Consider the two infinitesimally close generators /(;,;) 
and 1(; + d;,;) of Cx ' (The second is slightly into the com
plexified Minkowski space.) They lie in an integrable two
blade, which is anti-self-dual. Ifwe connect these two gener
ators by a connecting vector on I + , we have an 
infinitesimally narrow closed loop. Since we are dealing with 
a self-dual field Fab , parallel transport around an anti-self
dual loop is integrable, i.e., parallel transport around an anti
self-dual loop always yields the identity. Expressed in terms 
of the parallel propagator G we have 

G -I(;,;)G(; + d;,;) [I + Ad; I( 1 + ;;)] = I, 
(2.3 ) 

where I + A d; 1(1 + ;;) is the infinitesimal parallel propa
gator along the connecting vector on 1+ , and A (u,;,;) is an 
asymptotic component (along the connecting vector) of the 
connection on 1+. The point (u,;,;) on I + is the intersec
tion of Ix (;,;) with I + and has the form 

(2.4) 

Finally, by expanding Eq. (2.3) we obtain 

aG= - GA, (2.5 ) 

the Sparling equation. 

III. THE SINGLE-INSTANTON SOLUTION 

Before studying the solutions of the Sparling equations, 
we introduce some notation. A useful representation of I a 

(;,;) is 

la=_1 (1, ;+t, i(;-;), -1+;;), (3.1) 
{i 1 + ;; 1 + ;; 1 + ;; 

and the related vectors5 
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ma = ala, 

rna = ala, 

na = la + aala. 

(3.2) 

(3.3 ) 

(3.4 ) 

The set la, ma, rna, na are closed under a and a since 

ama = ama = 0, ana = - ma, ana = - rna. (3.5) 
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For arbitrary but fixed (;,;), I a, ma, rna, and na form a stan
dard null tetrad field with all scalar products vanishing ex
cept 

(3.6) 

One easily sees that the Minkowski metric can be written for 
any (;,;) 

TJab = 2/(a nb) - 2m(a mb)' 

By mUltiplying (3.7) with x a we have 

xa = Ian + nal_ mam _ mam, 

where 

(3.7) 

(3.8 ) 

I=xala, n =xana, m =xama, m =xama. (3.9) 

We also introduce the Pauli matrices 

and ao = I. We then have 

aiaj = - oij + €ijkrJ', 

with € 123 = 1. 

- 1) (i o ' a 3 = 0 0.) , 
-/ 

(3.10) 

(3.11 ) 

We now consider solving the Sparling equation for the 
following characteristic data: 

A (u,;,;) = Ao(;,;)lu2
, (3.12) 

with u = I=xala (;,;) andAo a 2X2 trace-free matrix with 
the properties 

A6 =0 and aAo=O. (3.13) 

From the trace-free condition and (3.13), we have that 

(3.14 ) 

with ao a constant, and m' the spatial part of ma. 
Now using (3.14) in the Sparling equation with (3.13) 

it is easy to show that 

a2 (lG) = 0, (3.15) 

which implies that G has the form 

(3.16) 

where {J a is a 2 X 2 matrix-valued vector function of x a only, 
which can be written 

{Ja =(J~all' /1=0,1,2,3. 

The idea is now to substitute (3.16) back into the Sparling 
equation, obtaining an algebraic equation for the determina
tion of {J ~ . On the assumption that {J ~ is a nonsingular ma
trix, one can show that choosing (J ~ = x a is a unique gauge
fixing device and hence we can choose G to have the form 

G=I+{J~/aaJI, i=I,2,3. (3.17) 

Rather than directly substituting (3.17) into the Spar
ling equation, it turns out to be simpler to put (3.17) into a 
slightly different form and then use the Sparling equation 
itself to find the solution. 

We write 

(J ~/a=Goli + G_mi + G+mi, (3.18) 

with Ii, mi, mi the spatial parts of I a, ma, and rna, respective
ly. Substituting (3.17), with (3.18), into the Sparling equa-
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tion, and considering the coefficients of I, a) i, aimi, a)n
j
, 

We obtain four equations. From this list of these equations, 
one has immediately that 

G+ = O. (3.19) 

This identically satisfies the last equation. The second and 
third equations become 

3Go - (m//)Go = 0, (3.20) 

3G + Go _ m G = - ao + _,_. aoGo . 
- I - 1 ..[2 12 

Equation (3.20) is easily integrated as 

Go = </l(xa)xal a = </ll. 

Now by applying 3 to (3.21), we obtain 

32G_ = - 2 3Go = - 2</Jm, 
which integrates uniquely to 

G_ = </lxama = </lm. 

(3.21) 

(3.22) 

(3.23 ) 

(3.24) 

Finally, by substituting (3.22) and (3.24) into (3.21), we 
obtain an algebraic equation for the scalar function </lex), 
yielding 

</lex) = - 2aol(xaxa ..[2iao)' (3.25) 

Thus, from (3.17)-(3.19), (3.22), (3.24), and (3.25), we 
have 

G=I- l'+-m' aj. 200 
(" m ") 

(xaxa - ..[2iao) I 
(3.26) 

To conclude this section, we point out that the Yang
Mills field obtained from (3.26), using (1.3), is the analytic 
extension into Minkowski space of the R 4 instanton solu
tion 7 centered on x a = 0. This has been checked by taking 
the instanton solution (analytically extended) and examin
ing its asymptotic behavior, showing that its characteristic 
data is the same as (3.12) and (3.13). 

IV. THE MULTI·INSTANTON SOLUTIONS 

In this section, we will first consider the problem of solv
ing the Sparling equation for (what appears to be) the dou
ble-instanton solution, parallel in isospace. (Our lack of cer
tainty is based on the fact that we have not checked our 
results with the literature but have simply assumed that the 
linear superposition of characteristic data for two single in
stantons centered at different points, x~ and x;, is the data 
for the two-instanton field.) Following this, we will indicate 
how the parallel two-instanton solution can be generalized 
to the n-parallel instanton case. Though the n 2 case is 
more difficult than the n = 1 case, the generalization to arbi
trary n is readily apparent. 

We generalize the characteristic data (3.12) and (3.13) 
to 

A = (a1/L i + a2/L ~ )mjaj> 

where 

La = (xa - x~ )la' a = 1,2, 

(4.1 ) 

and the aa are constants. Using (4.1) in the Sparling equa
tion, it is easy to show that 

2045 J. Math. Phys., Vol. 27, No.8, August 1986 

(4.2) 

a generalization of (3.15). Its solution is 

G(xa,t,t) = (/3~blalb/LIL2)a/L' f..t =0,1,2,3, (4.3) 

where the/3 ~b are functions only ofxa. Ifwe now impose the 
gauge condition that 

/3 ~b = (xa - Xal ) (xb - Xb2 ), 

Eq. (4.3) can be written as 

G 1+ (Gol j + G_mj + G+mi)a;lLIL2' (4.4) 

(We could have taken this as the starting ansatz.) The Go, 
G _, and G + are to be determined from the Sparling equation 
with help from the derived equation (4.2), which now takes 
the form 

(4.5) 

Once again, from the Sparling equation we have immediate
ly 

G+ =0, 

which, when used in (4.5), yields 

33GO = 0, 

33G _ = - 3 32Go. 

Equation (4.7) integrates to 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

with (Jab symmetric and a function only of xa. The coefficient 
of I jaj in the Sparling equation can be written as 

(4.10) 

where y~ = xa 
- x~. The algebraic solution is 

(Jab = (Yiay~) !Y~Y2c1Jab)¢'(xa), (4.11) 

where ¢'(xa) is a scalar function to be determined. 
Now using (4.9), with (4.11) in (4.8), we have 

33G_ = - 6¢,Yfy~mamb' (4.12) 

with a general solution 

G_ =Yfy~¢'lamb + 2aabllamb J' (4.13) 

with aab = - aba an arbitrary function of xa. The first term 
is a particular solution of (4.12) while the second term is the 
general solution of the homogeneous equation. 

We now make the ansatz for aab that 

aab = 2a(x)¢'(x)y\aY~21 , (4.14) 

and are left with the problem of determining a (x) and ¢,(x). 
Equation (4.4), using (4.6), (4.9), (4.11), (4.13), and 
(4.14), becomes 

(4.15 ) 

(with Ala = 3La, a = 1,2), which, when substituted into 
the Sparling equation, yields an algebraic equation, which, 
after a bit of manipulation, can be solved uniquely in the 
form 

(4.16 ) 
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alY~ 
a=-----

a2 yi + a 1 y~ 

We then finally have 

G=1 

with 

__ U_(-,-x_) _ (I j 

1 - -!if). (x) 

a1 a2 ).(x) =-+-. 
yi y~ 

(4.17 ) 

(4.18 ) 

( 4.19) 

The procedure used here to obtain the two-(parallel-) 
instanton solution is easily generalized to the n-(parallel-) 
instanton solution. If 

( 
n a j ) i 

A = I-2 mO'j> 
a La 

with 

La = (xa - x~)fa y~la, 

one can show that the ansatz 

leads to 

2046 J. Math. Phys., Vol. 27, No.8, August 1986 

( 4.20) 

(4.21 ) 

(4.22) 

u [. 1 (~ aa Ma ) ;] G=I- 1'+- "",-- m 0';, 
1 - jia ). a y~ La 

(4.23 ) 

where). = Laaaly~. 
The fields can now be directly calculated from (4.23) 

and (1.3). 
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A generic Lagrangian based classical field theory is formulated for any space-time manifold in 
which certain postulated conditions remain valid. The choice of a specific field Lagrangian leads 
to a nonlinear model theory that admits a rigorous closed-form particlelike solution in isotropic 
homogeneous space-time of positive spatial curvature. This metastable solution, of finite positive 
energy, is discussed in relation to its counterpart in isotropic homogeneous space-time of negative 
spatial curvature. 

I. INTRODUCTION 

In isotropic homogeneous space-time of negative spatial 
curvature, a classical nonlinear model scalar field theory has 
been constructed for which a rigorous, closed-form, nonsin
gular, spatially localized solution exists. 1 With this theory is 
associated a field equation closely resembling the Heisen
berg-Klein-Gordon equation.2 However, due to coupling 
coefficient dependence on an arbitrary spatial scale factor,3 
covariance of the former field equation under general coor
dinate transformations is not evident. 

The preceding theory is given a manifestly covariant 
generalization in Sec. II of the present work. There, we intro
duce a generic Lagrangian-based scalar field theory featur
ing a scalar coupling coefficient that is identified with the 
trace of a symmetric tensor field. This tensor field is con
strained by postulated conditions that preclude any space
time manifold that does not admit a Ricci tensor having a 
timelike eigenvector associated with an eigenvalue of a cer
tain type, namely, an eigenvalue specifically expressed in 
terms of the coupling coefficient. 

In the third section of this paper, we confine our atten
tion to the isotropic homogeneous space-time of positive spa
tial curvature, and we specialize the field Lagrangian to a 
form suggested by the Heisenberg-Klein-Gordon equation. 
For such conditions, the present theory admits an exact par
ticlelike4 solution resulting in a finite positive field energy 
(particle rest mass). A well-defined flat space-time limit, 
together with dynamical instability, are salient properties of 
the latter particlelike solution. 

In the final section of this paper, the coupling coefficient 
is found to remain form-invariant under a group of confor
mal transformations that generate a restricted class of space
time geometries, including isotropic homogeneous space
time of negative spatial curvature. As evidenced in the 
remainder of this section, the aforementioned conformal in
variance provides the principal connection between the field 
theory of Ref. 1 and its counterpart in the present report. 

II. A MODEL FIELD THEORY 

With prescribed metric tensor components gl'v' and an 
arbitrary real scalar t having no variational degrees of free
dom, the generic field Lagrangian 

.Y = ~ I'V '11.1' 'II.v + /t / f(\II) (2.1) 

leads to the field equation 

gl'V 'II'I';V = /t /f'('II) , (2.2) 

for the admissible real scalar field'll. 
To further specialize our theory, we postulate the exis

tence of a real scalar field T such that its gradient compo
nents T.I' form a timelike5 vector field subject to the equa
tions 

T.I';v = j (gl'v - T.I' T.v )!t'{:JT.a;/3 

and 

gI'VT'I'T,v = I. 

Next, we introduce the tensor field 

tl'v=j(gl'v - T,/l T.v)t, 

and we postulate the conservation law 

(tl'V - ~ g I'vt);v = a . 

(2.3 ) 

(2.4 ) 

(2.5) 

(2.6) 

Observe that the coupling coefficient t is the trace of tl'V' 

t=gl'vtl'v' (2.7) 

In consequence of (2.4) and (2.5), Eqs. (2.6) are equi
valent to the relations 

(2.8) 

and 

(2.9) 

A noteworthy feature of both (2.9) and (2.3) is covariance 
with respect to the transformation 

gl'v-h2gl'v' T'I'-hT.I" t-h-2t, (2.10) 

for any differentiable, real-valued function h = h (T) =1-0. 
Moreover, when (2.10) leaves \II unaffected, we have the 
necessary and sufficient condition for covariance of (2.2) 
under (2.10): 

(2.11) 

Because the validity of (2.11) can be maintained only if 'II 
and T are functionally independent, we do not regard (2.11) 
as a general restriction on solutions of (2.2). 

For any prescribed space-time manifold that admits sca
lars T and t according to (2.3 )-(2.6), the Ricci tensor com
ponents R I'V satisfy the equations 

R I'VT.v = A(T)gI'VT.v , 

A(T)==R I'vT.I'T.v = _ 3/t /1/2 :; /t /-1/2. 

(2.12) 

(2.13) 
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These equations arise from the identity 

(g Jla7 . Jl;v);a - (g Jla7 . Jl;a) .v-7 .Jl R Jl v • (2.14) 

Inspection of (2.12) shows that the matrix IIRJl vII has an 
eigenvalue A (7) belonging to an eigenvector with compo
nents 7,v' 

Suppose that in addition to 7 and S, a space-time mani
fold admits real scalars 7* and S *, which differ from 7 and S, 
respectively, but otherwise satisfy (2.3), (2.4), (2.8), and 
(2.9). Then (2.12) and (2.13), together with the corre
sponding equations for 7* and S *, imply 

d 2 1s *1- 1/2 
A( 7) = A*( 7*)=R JlV7* ~ = - 311- *11/2 --=----'-:--

,Jl ,v !> d7*2 

(2.15 ) 

In view of (2.12), (2.13), and (2.15), we construct the de
terminant 

(2.16 ) 

where Q denotes any real nonzero scalar having dimensions6 

of (length) - 2. For a given space-time manifold with D # ° at 
each point, the scalar 7 is unique to within a linear transfor
mation 

7 -+ 7* = ± 7 + const ; ( 2.17) 

consequently, Eq. (2.9) ensures uniqueness of S to within an 
arbitrary multiplicative constant. 

In flat space-time, whereD vanishes identically, S can be 
unambiguously determined by choosing 7 so that 7, Jl;V = 0. 
Thus, for flat space-time, the scalar S exists as an arbitrary 
constant quantity, and, relative to an arbitrary Lorentz 
frame, we have 

( 0 I 2 3) Jl + 7 = 7 X ,x ,x ,x = nJlx 70 , 

70=7(0,0,0,0) , (2.18 ) 

with any constant timelike vector nJl of unit magnitude. 

III. A SOLVABLE NONLINEAR FIELD THEORY 

In isotropic homogeneous space-time characterized by 
the line elemene 

ds2 = dt 2 - a2[dx2 + sin2 X(d0 2 + sin2 Od¢i)] , 

a=a(t), (3.1) 

the scalar field 7 is given by 

7= t + const. 

Hence, Eqs. (2.5) and (2.9) produce the tensor field 

Soo=O, SII=S/=S/= ±~(aola)2, 

(3.2) 

SJlv=O, f..l#v, (3.3) 

where the arbitrary positive constant ao has dimensions of 
length. According to (2.7) and (3.3) we have the coupling 
coefficient 

(3.4 ) 

by reason of which the field equation (2.2), relative to the 
coordinates (t,X,O,(/J), takes the form 
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a-\a3'11 ) - a-2 CSC2X[ ('II sin2X) 
,I ,I 'x 'x 

+ csc 0('11,1/ sin 0),1/ + '11,4>4> csc20] 
= (aola)2 f' ('II) . (3.5) 

Notice that (3.4) does not preclude the existence of nontri
vial, time-independent solutions to (3.5). 

When'll is spherically symmetric, Eq. (3.5) reduces to 

a- 3 (a3'11 ) - a- 2 CSC2X('II sin2X) 
,I .t ,x.x 

= (aola)2 f' ('II) . (3.6) 

This equation can be derived from the field Lagrangian 

!/ = ~('II )2 _ _ 1_('11 )2 + (ao)2f('II) . (3.7) 
2 ,I 2a2 ,x a ' 

therefore, the field energy associated with a static solution to 
(3.6) is obtained by evaluating the functional 

E ['II] = 41Ta 1'T {~ ('II'X)2 - a~f('II)} sin2 X dX (3.8) 

at such a solution. 
For a theory based on the field Lagrangian (2.1) and the 

field potential term 

f('II)=P'0'll2 + P'I'II4 + iA2'116, (3.9) 

in which the positive constants Ao, A I' and A2 all have dimen
sions of (length) -2, Eq. (3.6) becomes 

a- 3 (a 3'11 ) - a-2 csc2X('II sin2x) 
.1 .1 .x.x 

= (aola)2(Ao'll + A 1'11
3 +A2'115

) • (3.10) 

The nonlinear field equation (3.10) admits the static, singu
larity-free, spatially localized solution 

'IIo(X) = [(A I /U2) (1 - 0') ]1/2(tan2 X + 0') -1/2, 

0<X<1T/2, (3.11) 

'IIo(X) = 0, 1T/2<X<1T, 

where 

(3.12 ) 

Since the scalar field (3.11) must be real valued, we immedi
ately conclude that the dimensionless "size parameter" 0' 
satisfies the inequality 

0<0'< 1, (3.13) 

which restricts the values of Ao, AI' and A2 according to ° <Aoa~ < 3, and 0< (A laO)2 < IU2• 

Using (3.11)-(3.13) to evaluate the functional (3.8) 
results in a positive field energy or "particle rest mass" 

E = r (!:.)(~)I12 (1 + 20'1/2) (1 _ 0'1/2)2 , (3.14) 
4 ao A2 

with 

JE = E < ~ (] )112 . (3.15) 
Ja a 4ao \12 

On account of (3.15), we impose the condition (A2a~) 112> 1, 
in order to secure the relation 

JE = E <1, 
Ja a 

(3.16) 

for all admissible values of 0'. The requirement (3.16) is ne
cessitated by our tacit assumption that the scalar field'll does 
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not significantly alter the prescribed space-time geometry. 
In the limiting case of small particle sizes (0 < a < 1), the 
field energy 

(3.17 ) 

exists as a quantity independent of A I' 
We make the coordinate transformation 

X = sin-I (r/ao) , O<r<ao , (3.18) 

whereby the line element (3.1) and the nonzero part of 
(3.11) are brought to the respective forms 

ds
2 = dt

2 
- (:J2

[ (1 -~) -I dr 

+ r(d(j2 + sin2 () d¢2) ] , (3.19) 

and 

A [Ala~ (1 - a) ] 112 
\IIo(r) = 

U 2 

X (1 - ~yI2[ (1-a)r + aa~] -1/2. 

(3.20) 

By taking the limits Ae-+<>, ao-ClJ, and a/ao-l in such a 
way that r/ao-o for all r;:>O, while the positive dimension
less constant z==A.la~ remains finite but arbitrary, we obtain 
the fiat space-time limits of (3.19), (3.20), and (3.14), re
spectively, 

and 

(3.21) 

(3.22) 

(3.23 ) 

The scalar field (3.22) is a time-independent, particlelike 
solution of the equation 

(3.24) 

in conformity with a previously investigated, Lorentz-covar
iant classical field theory. 8.9 

Let us now consider the dynamical stability of (3.11) 
when the perturbed solution is given by 

\II(X,t) = \IIo(X) + s.<X) 1](t) , 
SlDX 

SeX) = 0, 1T/2<X<1T, 

where the function 1](t) satisfies the equation1o 

~ + 3(a/a)~ + (k 2/a2) 1] = 0, 

as well as the initial conditions 

1](to) = 1, ~(to) = 0 . 

(3.25 ) 

(3.26) 

(3.27) 

The dimensionless constant k appearing in (3.26) may be 
either purely real or purely imaginary. For an initially small 
perturbation 

Is(x) /I(sin X) < I \110 (X) I, O<X <1T/2 , (3.28 ) 
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we substitute (3.25) into (3.10) and retain only terms linear 
in S to derive the eigenvalue equation 

s"(X) +F(X)s(X) + (1 +3a+k 2 )s(X) =0, (3.29) 

in which 

F(X) = 18a(1 - a) + 15a(1 - a)2 . (3.30) 
(tan2 X + a) (tan2 X + a)2 

Equation (3.29) must be supplemented with the appropriate 
boundary conditions for a singularity-free, localized pertur
bation 

s(O) = lim sex) = 0 . (3.31 ) 
X-1T/2 

As a direct consequence of (3.29)-(3.31), the negative 
quantity II - 15/a is a lower bound of k 2. That the mini
mum value of k 2 has a negative upper bound 3 (a - 1) fol
lows from considerations based on the relation II 

G(X) 2(1-a)(7a-l) + 8a(1-a)2 < F(X) , 
(tan2 X + a) (tan2 X + a)2 

(3.32) 

in combination with the differential equation 

utI (X) + G(X)u(X) + 2(3a - 1)u(X) = 0, (3.33) 

which admits the solution 

u(X) = (tan2 X + a)-I tan X , 0<X<1T/2, (3.34) 

corresponding to the boundary conditions 

u(O) = lim u(X) = O. (3.35) 
X-1T/2 

Because k is purely imaginary, the perturbation term in 
(3.25) increases with time in a dynamically unstable man
ner.12 

To calculate the approximate minimum value of k 2, we 
employ a Rayleigh-Ritz procedure. For this purpose, it is 
convenient to introduce the new independent and dependent 
variables 

p==tan- l (a- 1/2 tan X) , 0<p<1T/2, 

w(p)=(cos2 p + a/(1 -a»)1/2s (X) . (3.36) 

By means of (3.36), we transform (3.29) to the equation 

12aw(p) w" (p) + k 2aw (p) 
[(1 - a)cos2 p + aF 

+ 16w(p) =0, 
[(1 - a)cos2 p + a] 

( 3.37) 

which leads to the variational principle 

ar=O, 
r= (1T/2 {W'(p)2 + 12aw(p)2 

Jo [(1 - a)cos2 p + a] 

- 16w(P)2} dp, 

with w subject to the normalization condition 

[
12 W(p)2 dp _ I 

o [(1 -a)cos2 p + a]2 - , 

and the boundary conditions 

w(O) = w(1T/2) = O. 

J. A. Okolowski 
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Next, we select a trial function of the form 

w(p) = (4hr)I/2[(1-a)cos2p+a) 

X (a sin 2p + P sin 4p) , (3.41) 

where a and P are variational parameters constrained by 
(3.39) to satisfy a 2 + p2 = 1. By minimizing the result of 
combining (3.41) with the definition part of (3.38), and 
using 

r==k 2a, (3.42) 

we establish an approximate functional relation between a 
and the minimum value of k 2: 

k 2a~ - H[3( 1 + a)2 + ~(1 - a)2j2 + 9( 1 - a)4}l/2 

+ ~(1 + a)2 + 1(1- a)2 - 3(1 -~) . (3.43) 

From (3.43) we infer that (- k 2a)1/2 is a monotonically 
decreasing function of a with 

(3.44) 

and 

lime - k 2a) 1/2 O. (3.45) 
,,~I 

IV. CONFORMAL INVARIANCE OF THE COUPLING 
COEFFICIENT AND RELATED CONSIDERATIONS 

By virtue of the coordinate transformation 

x= In (tan X + sec X) , O<X<1T12, (4.1) 

the nonzero part of (3.11) and the line element (3.1) are 
transformed, respectively, as follows: 

- - 2 2 'IIo(X) = 'IIo(X;Atao.A2aO) 

=[~(1 _ A ra~ )J 112(Sinb2 X + A ra~) 112 

2.4.2 12.4.2 12.4.2 
(4.2) 

and 
2 

ds'- = dt 2 a 2 [dr + sinh2 X(d0 2 + sin2 0 dt,62») . 
cosh X 

(4.3) 

It is easily verified that (3.2)-(3.4) satisfy (2.3)-(2.6) for 
any space-time metric generated from (4.3) by means of the 
conformal transformation 

2 

dI2=~[dr + sinh2x(d02 + sin2 Odt,62)] 
cos2 X 

-+ K(X,O,t,6 )d1 2 
, (4.4 ) 

where the function K is positive valued and differentiable, but 
otherwise arbitrary. Therefore, the coupling coefficient 
(3.4) remains form invariant under (4.4). We choose 

- 2-K(X,O,t,6) = cosh X (4.5) 

to obtain the line element associated with isotropic homo
geneous space-time of negative spatial curvature 

ds'-=dt2-a2[dr+sinh2X(d0 2 +sin2 0dt,62)]. (4.6) 

Let (4.6) specify the space-time geometry for a field 
theory of the type described in Sec. II when the field poten-
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tial term is given by (3.9). Then, with the aid of (3.2) and 
the ensuing conformal invariance of (3.4), the field equation 
(2.2) acquires the form featured in Ref. 1, 

a- 3 (a3'11 ) -a-2 csch2 X-[('II- sinh2 x-)-.t .t ,x.x 

+ csc 0('11,9 sin 0).9 + '11,# csc2 0] 

= (aola)2(Ao'll + A 1'11
3 +A2'115

) • (4.7) 

Equation (4.7) admits the nonsingular, time-independent, 
spherically symmetric solution 

X sinh2 X + 1 + __ 2_ ,( 4.8) ( 
- [ 4A J -I) -112 

3A fa~ 

provided that AoO~ = 1. Here, Ao is independent of both AI 
and A2 in contrast to the relation Ao = A r 14A2, which fol
lows from (3.12). 

In terms of the dimensionless "size parameter" 

0==0 + 4A2/3A ia~) -I , (4.9) 

we write 

(4.10) 

The particlelike scalar field (4.10) has the flat space-time 
limit 

eo(r)=(~Jl/2(,z + :~) 1/2 = 3- 1/2ct>0(;). 
(4.11 ) 

Furthermore, (4.11) satisfies the field equation (3.24), 
which, under time-independent conditions, is invariant with 
respect to the scale transformation 

ct>(r) -+ E1/2ct>(E r) , (4.12) 

for all real E> O. Finally, analysis reveals 1 that iJlo(X) exists 
as a dynamically unstable field associated with non-negative 
energy only ifO<u<uo~O.142. 
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Theorems are proved that establish the unitary equivalence of the extended and reduced phase 
space quantizations of a constrained classical system with symmetry. Several examples are 
presented. 

I. INTRODUCTION 

Among classical dynamical systems, those which are 
"constrained" are often the most important and interesting. 
Typically, constraints arise when the equations of motion 
are overdetermined or when symmetries are present. In the 
first circumstance the constraints take the form of restric
tions on the admissible initial data for the evolution equa
tions of the system. The divergence constraints of elec
tromagnetism and Yang-Mills theory and the super
Hamiltonian and supermomentum constraints of general 
relativity are standard examples. In the second case the con
straints consist of a posteriori specifications of the constants 
of motion associated with the invariances of the system. The 
mass and charge constraints in the Kaluza-Klein formalism 
for a relativistic charged particle are of this type, as is, for 
example, fixing the angular momentum of a rotationally in
variant system. 

All constrained systems can be described naturally in 
terms of symplectic geometry.I.2 Beyond this, however, 
many such systems have a rich group-theoretical structure. 
It is an amazing fact that the constraints are usually given by 
J = const, whereJ is a momentum mapping for an appropri
ately chosen group action.3 These observations lead us to 
model a constrained dynamical system as follows. 

Let (X,w) be a symplectic manifold that represents the 
"extended" phase space of a system. Suppose that G is a Lie 
group which acts symplectically on (X,w) and that J: X -?* 
is a momentum mapping for this action, where? is the Lie 
algebra of G. We interpret G as a "symmetry" or "gauge" 
group; J is the corresponding conserved quantity. A con
strained classical system with symmetry is given by 
(X,w,G,.!) along with a fixed choice ofp.E?*. The constraints 
are then J = P. and J -I (p.) ex is the constraint set. 

One may reduce the number of degrees of freedom of a 
constrained system by factoring out the symmetries of the 
constraint set. SUbject to certain technical assumptions, 
Marsden and Weinstein4 showed that the resulting orbit 
space Xit is a quotient manifold of J -I (p.) and inherits a 
symplectic ~tructure wit from that on X. The symplectic 
manifold (Xit ,wit) is the reduced phase space of invariant 
states of the system. 

There are thus two symplectic manifolds associated to 
each constrained system: the extended and reduced phase 
spaces (X,w) and (Xit ,wit)' respectively. Classically, there is 
no formal distinction between working on (X,w) while car
rying along the constraints versus solving the constraints, 
reducing the system and working on (Xit ,wit)' But these two 
approaches are not necessarily equivalent on the quantum 

level. This was recently emphasized by Ashtekar and Horo
witz,S who showed that these two classical formalisms may 
engender real and significant physical differences in the 
quantum behavior of the system. 

Recall that quantization associates to a phase space 
(X,w) a Hilbert space 7t' of quantum states and to some 
class of smooth functions f on X quantum operators f!) f on 
7t'. For a constrained classical system one may, as indicated 
above, quantize either the extended or the reduced phase 
space. The purpose of this paper is to determine under what 
conditions and in what sense these two quantizations will be 
equivalent. 

We first consider the extended phase space quantization 
following Dirac.6 The essential idea is that as the constraints 
have not been eliminated classically, they must be enforced 
quantum mechanically. This is possible if quantization pro
vides a representation of ? on 7t'. Since the constraints are 
given classically by J = p., it follows that the physically ad
missible quantum states are those which belong to the sub
space 7t'1t of 7t' defined by 

7t'1t = {'11e7t'/ .@J['I1]=p.'I1}. 

The situation is somewhat simpler for the reduced phase 
space (Xit ,wit) as the constraints have already been solved 
and the symmetries divided out. There are no restrictions to 
be imposed on the quantum system and so, by construction, 
the associated Hilbert space ~It consists of all the physical
ly admissible states of the system. 

These two quantizations each yield spaces of "physical
ly admissible quantum states" which in general will not coin
cide. We may thus phase our question as follows: When will 
7t'1t and ~It be unitarily isomorphic? There are three sets of 
obstructions to the existence of such an isomorphism, in
volving (i) the naturality of the extended phase space quan
tization, (ii) the compatibility of the extended and reduced 
phase space quantizations, and (iii) the unitary relatedness 
of the Hilbert space structures on 7t'1t and ~It • 

The first impediment is whether in fact the quantization 
of the extended phase space gives rise to a representation of 
the Lie algebra? of G on 7t'. A necessary condition is that 
J - 1 (/1-) be a coisotropic submanifold of (X,w ). This ensures 
the internal consistency of the quantization and effectively 
restricts the allowable values of P.E?*. 

The next difficulty is to properly correlate the quantiza
tions ofthe extended and reduced phase spaces. This can be 
accomplished by requiring that the auxiliary structures on 
(X,w) necessary for quantization be G-invariant-provided 
this is possible-for they will then project to compatible 
quantization structures on (Xit ,wit)' 
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Physically, the above obstructions take the form of 
"quantization conditions" and/or "superselection rules" 
and place restrictions on the topology of G as well as the 
choice of quantization structures. Once they have been over
come, one obtains "smooth" quantizations of (X,w) and 
(XI' ,wl')' i.e., linear spaces of Coo wave functions JY and 
7/1" respectively. The final obstructions appear when one 
introduces the quantum inner products on these spaces. It 
may happen that JY I' does not inherit an inner product from 
JY and, when it does, it must be checked that an equivalence 
of the underlying smooth quantizations extends to a unitary 
isomorphism of the corresponding Hilbert spaces. 

Substantial progress towards answering this question 
has already been made by Gotay and Sniatycki,7 Guillemin 
and Sternberg,S Puta,9 Sniatycki,1O Vaisman,ll and Wood
house. 12 Because of the intricacy of the problem and the 
vagaries of the quantization process, however, it is difficult 
to obtain results in a completely general setting that provide 
explicit information about concrete systems. 

To rectify this, we concentrate in this paper on one spe
cific class of constrained systems-those whose phase spaces 
are cotangent bundles and whose groups act by point trans
formations. There are numerous reasons for considering 
such systems. 

( 1) They are the most common and hence the most 
important physically. Indeed, all of the examples cited ear
lier-with the exception of the mass constraint in the Ka
luza-Klein theory-fall into this class. 

(2) Cotangent bundles, along with Kahler manifolds, 
are exceptional examples of symplectic manifolds as they 
have naturally defined polarizations (the vertical and anti
holomorphic ones, respectively); this is a crucial advantage 
insofar as quantization is concerned. Guillemin and Stern
bergS have studied the Kahler case and so the results we 
present here are, to some extent, complementary to theirs. 

(3) Reduction keeps us within the cotangent bundle 
category: subject to certain assumptions (which are in any 
case necessary for quantization), the reduced phase space 
will also be a cotangent bundle. We may therefore quantize 
both the extended and reduced phase spaces using the corre
sponding vertical polarizations. This means, in physicists' 
terminology, that we always quantize in the "Schrodinger 
representation.' , 

(4) We are able to obtain relatively "hard" results. 
Namely, we can explicitly identify and construct the mo
mentum mapping, the reduced phase space, and all of the 
required quantization structures. The formalism we develop 
will also enable us to detail precisely the various obstructions 
discussed earlier as well as verify directly whether the as
sumptions we impose are satisfied in specific cases. Thus our 
general problem is reduced to a conceptually and computa
tionally much simpler one. 

The plan of attack is as follows. We consider systems of 
the form (T *Q,w,G,J,f.l), where G acts on T *Q by pullback 
andf.l is Ad*-invariant. Applying the reduction technique of 
Kummer,13 Satzer, 14 and Abraham and Marsden, 15 we show 
that the reduced phase space is symplectomorphic to 
T*(Q /G) (with a possibly noncanonical symplectic struc
ture). These results are summarized in Sec. II. 
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Sections III and IV form the heart of the paper. After 
discussing some generalities on the quantization of con
strained systems we quantize both the extended and reduced 
phase spaces. In particular, we show that quantization does 
indeed yield a representation of the symmetry algebra 9" 

In the next section we construct a canonical unitary iso
morphism between the two quantizations obtained in Sec. 
III. We also prove that it is possible to quantize invariant 
polarization-preserving functions in either formalism with 
equivalent results. 

The following section presents several examples and we 
conclude with a discussion of possible generalizations of our 
results. 

II. CONSTRAINED CLASSICAL SYSTEMS 

We begin by reviewing some basic facts about group 
actions, momentum mappings, and reduction. The main ref
erences for what follows are Refs. 4, 15, and 16. 

A. Hamiltonian G-spaces 

Let G be a connected Lie group with Lie algebra 9' and 
let <1>: G X Q-Q be a smooth action of G on a manifold Q. 
For each ;E9" we denote bY;Q the corresponding infinitesi
mal generator on Q. The orbit of a point qEQ is written G·q. 
Recall that when <I> is free and proper the orbit space Q 
= Q /G is a Hausdorff quotient manifold of Q and, further
more, 1T Q : Q-Q is a left principal G-bundle. 

Now suppose (X,w) is a symplectic manifold on which 
G acts symplectically. A momentum mapping for this action 
is a map J: X-9'* such that, for each ;E9" the associated 
function J~ (x) = (l(x),;) satisfies 

;x J w = - dJ~ . (2.1) 

Then J is Ad*-equivariant provided 

(2.2) 

for all gEG, where Ad* is the coadjoint action of G on 9'*. If 
an Ad*-equivariant momentum map J exists for the action 
<1>, we call (X,w,G,J) a Hamiltonian G-space. 

Letf.lE9'* be a weakly regular value of J, so that the level 
set J - 1 (f.l) is a manifold with T J - 1 (f.l) = ker T J. The fol
lowing result relates the geometry of J - I (f.l) with that of the 
orbits of G and GI-" where GI-' is the isotropy group of f.l 
under the coadjoint action. 

Proposition (2.1): For xEl- 1 (f.l), 
(i) Tx(GI-"x) = T,,(G·x) n TJ-1(f.l), 

and 
(ii) Tx (J -I (f.l W = T" ( G·x) . 

Here "1" denotes the w-orthogonal complement. 
By equivariance, J - 1 (f.l) is stable under the action of G I' 

so that the orbit space XI-' = J -I (f.l )/GI-' is well defin~d. Let 
jl-': J-I(f.l)-Xbe the inclusion and 1T1-': J-I(f.l)-XI-' the 
projection. The next result, due to Marsden and Weinstein,4 
is central to the theory. 

Theorem (Marsden-Weinstein reduction): Let 
(X,w,G,J) be a Hamiltonian G-space. If f.lE9'* is a weakly 
regular value of J and the action of G I-' on J - 1 (f.l) is free and 
proper, then there exists a unique symplectic structure wI-' on 
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the manifold XI' such that tr!wl' = J;w. 
Remark: If the Marsden-Weinstein reduction proce

dure fails [e.g., I" is not weakly regular or (XI' ,wI' ) does not 
exist as a smooth symplectic manifold, as is the case in a 
number of important examples], one can still reduceJ -I (I") 
on the level of Poisson algebras. 17 

B. The cotangent category 

For the reasons cited in the Introduction, we restrict 
attention to constrained classical systems that belong to the 
"cotangent bundle category." Reduction in this category 
was first carried out by Satzerl4 for I" = 0 and then extended 
to 1";60 by Abraham and Marsden 15 and Marsden. 16 Subse
quently, Kummer13 improved upon these results and put the 
theory into its present form. Our presentation is drawn from 
both Refs. 13 and 15. 

Suppose that the system has configuration space Q and 
symmetry group G. We assume that G carries a bi-invariant 
metric and that <Il is a free and proper left action of G on Q. 
Let the extended phase space be X = T *Q, where 'T Q is the 
cotangent bundle projection and wand e denote the canoni
cal two- and one-forms on T*Q, respectively, with w = de. 
TheinducedsymplecticactionT*<Il: G X T*Q-+T*Q,given 
by 

T*<Il(g,/3) = <Ilg - 1*(3, 

is also free and proper. There is a natural Ad*-equivariant 
momentum map for T *<Il defined by 

(J«(3),;) = el;ToQ«(3») =(3(;Q) . (2.3) 

We refer to the Hamiltonian G-space (T*Q,w,G,J) so 
defined, along with a fixed choice of I"E?*, as a constrained 
cotangent system. 

Regarding reduction, one of the main advantages of our 
formalism is the following proposition. 

Proposition (2.2): Every I"E?* is a regular value of J. 
Proof Suppose that TpJ was not sU1jective for some 

(3ET*Q, in which case there exists ;E? such that 
(TpJ(v),;> =0 for all vETp(T*Q). Then (2.1) yields 
wl;T"Q «(3) ,v) = 0 for all v and nondegeneracy implies that 
;ToQ «(3) = 0, contradicting the fact that T*<Il is free. • 

Each level set J -I (I") is therefore an imbedded subman
ifold of T *Q. Furthermore, since T *<Il is free and proper and 
G I' is closed in G, the action of G I' on J - I (I") is also free and 
proper. This observation, combined with Proposition (2.2) 
and the Marsden-Weinstein Theorem, give the following 
proposition. 

Proposition (2.3): J - I (I") is reducible for every I"E?*. 
Insofar as the quantization of these systems is con

cerned, however, it is not necessary to consider general 
I"E?*. We will see in Sec. III B that only those I" which are 
"invariant" are relevant. 

Definition: I"E?* is invariant if Ad: (I") = I" for all gEG. 
Equivalently, I" is invariant iff G I' = G. For such I" the 

reduction of J - I (I") is particularly simple and elegant. We 
first reduce J -1 (0) and then transform the case 1t;6 0 to this; 
note that It = 0 is always invariant. 

Let w = de be the canonical symplectic structure on 
T*Q, where Q = Q /G. 

Proposition (2.4): The reduced phase space ( T*Q o,wo) 

2053 J. Math. Phys., Vol. 27, No.8, August 1986 

is symplectomorphic to (T*Q,w). 
Proof First note that the pullback bundle 

~(T*Q) =J-I(O), (2.4) 

where 1T Q: Q-+Q is the canonical submersion. Indeed0ince 
T1TQ (;Q) = 0, a I-form (3 on Q belongs to ~(T*Q) iff 
(3(;Q) = 0 iff (3El -1(0) by (2.3). Quotienting by Gin 

(2.4) then gives T*Q:::::: T*Q o' 

It remains to show that the reduced symplectic form Wo 

on T*Q o can be identified withwon T*Q. Using (2.4) and 
the induced commutative diagram 

jo 
J-I(O»---- T*Q 

l 'To J 
T*Q • Q 

a straightforward computation establishes TTte = j~e and 
consequently TTtw = J'?fw. The result now follows from the 
uniqueness of the reduced symplectic structure in the Mars
den-Weinstein Theorem. • 

When It is nonzero but invariant, we first choose.,! left 
connection a on the left principal G-bundle 1T Q: Q-+Q. Set 
a =I"0a. Thenal' isG-invariantand, viewed as a one-form 
o~ Q, takes values in J -I (It). Construct the invariant sym
plectic form!l = w + ~ dal' on T*Q. The key step in the 

I' . . .. 
transition from I" = 0 to It ;6 0 IS the followmg propOSItIon. 

Proposition (2.5): There exists a G-equivariant presym
plectomorphism of IJ -I (O),J'?f!lI') with IJ -I (It ),J!w). 

Proof Define a diffeomorphism 01' of T*Q by 

01'«(3) =(3 +al'l'TQ«(3»)· (2.5) 

Since a is invariant 01' is equivariant and, as J(al' ) = It, ° ind:ces a diffeomorphism J -I (0) -+J -1 (1"), which we 
I' 

also denote by oil' 
Now 01' is just translation along the fibers, so 

o:e = e + ~al' 
and hence o*w =!l. But this and the relation 

I' I' . • 
j 00 = ° 0 jo imply that 81' is a presymplectomorphlsm. 
I' I' I' . 'f h Propositions (2.4) and (2.5) enable us to IdentI y t e 

reduced manifolds T*Q I' for I-" invariant with T*Q. To 
complete the reduction we have only to compute the reduced 
symplectic forms wI" _ 

Lemma (2.6): There exists a closed two-form FI' on Q 
such that ~FI' = dal' . 

Proof We first claim that dal' = I"0Da, whereDa is the 
curvature of the connection a. To prove this, take the I" com
ponent of the Cartan structure equation 

da(u,v) = [a(u),a(v)] + Da(u,v) 

and observe that 

1-"0 [a(u ),a(v)] = I-"(ada<u) a(v») 

= (ad!<u)l-") (a(v») 

vanishes as I" is invariant. Thus dal' is horizontal. Since in 
addition da is invariant and 1TQ is a submersion, dal' pro~ 
jects to a t:O-form FI' on Q with the required propeE!i~ .• 

The reduction of(J -I (O),J'?f!l1' ) is clearly (T*Q,!l1' ), 
where 
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(2.6) 

Taking Proposition (2.5) into account and noting that, by 
equivariance,6ft passes to the quotient, we have proven the 
following theorem. 

Theorem (Kummer-Marsden-Satzer reduction): Con
sider the constrained cotangent system (T *Q,UJ,G,J,J.l). If 
J.lE?* is invariant then each choice of connection on Q de
fines a symplectomorphism between the reduced phase 

~ace ( T*Q ft,mft) and (T*Q'0ft)' where Q = Q/G and 
Oft is defined by (2.6). 

In essence, the reduction of a cotangent bundle is again a 
cotangent bundle. This fact will be of paramount importance 
in the sequel. 

Remarks: (1) It is crucial here that J.l be invariant. 

When Gft eG, T*Q ft can only be identified with a sym
plectic subbundle of T*(Q IGft) (cf. Refs. 13 and 15). In 
other words, the invariance of J.l is necessary as well as suffi
cient for the reduced manifold to be a cotangent bundle. 

(2) In generalthesymplectic structure Oft on T*Qwill 
not be canonical due to the presence of the curvature term 
Fft . This "extra" term has been used as a means of introduc
ing Yang-Mills-type interactions (see, e.g., Refs. 18 and 19 
and the references contained therein for the details of this; 
we shall encounter an instance of this phenomenon in our 
study of the Kaluza-Klein theory in Sec. V C). However, 
when Q carries a flat connection we may take Oft to be exact. 

(3) Although the proof of the Kummer-Marsden
Satzer Theorem required choosing a connection, this choice 
is irrelevant. Other such choices simply lead to different, but 

nonetheless symplectomorphic, realizations of ( T*Q ft' 
mft ). It is also possible to derive this theorem using a Rie
mannian metric to obtain the required invariant J - I (J.l)
valued one-form aft (cf. Refs. 14 and 15). This approach 
seems more cumbersome and less "physical" than the one 
employed here, which is due to Kummer. 13 

( 4) Montgomery20 has recently shown, subject to cer
tain additional assumptions, that the Kummer-Marsden
Satzer reduction procedure may be extended to the case 
when <I> is not free. 

We close this section by noting that we may also reduce 
observables: if fEG "" (T *Q) is invariant, then it projects to 

T*Q ft' To describe this function on T*Q, setfft = fO 6ft 
and define fft EG "" (T *Q)_ by fft 01T 0 = fft' Since 
fft 0 jo = fO jft' it follows that fft represents the reduced ob
servable. In particular, if h is a Hamiltonian on (T *Q,UJ ) 
then hft is the "amended" Hamiltonian on (T*Q'0ft) (cf. 
Refs. 14-16). 

III. QUANTIZATION 

To properly address the subtleties and complexities of 
the transition from the classical to the quantal domain it is 
essential to use a well-defined quantization technique. We 
choose the geometric quantization framework of Kostant 
and Souriau because it is formulated in terms of symplectic 
geometry. In Sec. III A we briefly outline those elements of 
this theory that are needed here, referring the reader to Snia
tyckf l and Woodhouse l2 for comprehensive expositions. 
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A. Quantization structures 

Let (X,UJ) be a 2n-dimensional symplectic manifold. 
The supplementary structures needed for the geometric 
quantization of (X,UJ) are a polarization, a prequantization 
line bundle, and a metalinear frame bundle. 

A (real) polarization of (X,UJ) is an involutive n-dimen
sional distribution P on X such that P 1 P. 

A prequantization of (X,UJ) consists of a complex line 
bundle I: L-X with a connection V such that 

curvature V = - (1/h) I *UJ , (3.1 ) 

where h is Planck's constant. A prequantization of (X,UJ) 
exists iff the de Rham class of UJlh in H2(X,R) is integral 
and, if nonempty, the set of all prequantizations is parame
trized up to equivalence by a principal homogeneous space 
for the character group of 1T I (X). 

Remark: We make no distinction between L and its as
sociated principal C*-bundle. 

Fix a polarization P of (X,UJ) and let FP be the linear 
frame bundle of P. It is a right principal GL(n,R)-bundle 
over X. Let ML( n,R) be the n X n metalinear group, that is, 
the set of all matrices of the form 

M=(~ ~), 
where MEGL(n,R) and Z2 = det M. A metalinear frame 
bundle for P is a right principal ML( n,R)-bundle FP over X 
along with a 2: 1 projection p: FP-FPsuch that the diagram 

FPXML(n,R)---•• FP I pXu - I p 

FP X GL(n,R) .. FP 

commutes, where the horizontal arrows are the group ac
tions and U: ML(n,R)-GL(n,R) is the twofold projection 
Mf--+M. 

The existence of a metalinear frame bundle is equivalent 
to the vanishing of a class in H 2(X,Z2) characteristic of FP 
and, if nonempty, the set of all such is parametrized up to 
equivalence by HI (X,Z2)' 

Remark' We need not consider the more general meta
plectic structures here since we will not be moving polariza
tions. 

Let A: ML(n,R)-C be the unique holomorphic square 
root of the determinant function on GL(n,R) such that 
A(1) = 1, where 1 is the identity. The bundle 11 1\ n P of 
half-forms relative to P is the bundle associated to FP with 
typical fiber C on which ML(n,lR) acts by mUltiplication by 
A. This bundle has a canonically defined partial flat connec
tion covering P. Denote by r( 11 1\ n P) the space of all 
smooth sections of 11 1\ n P. Each VEr (11 1\ n P) can be iden
tified with a function v# : FP_C satisfying 

v#([M) = ~(M)-1'V#0 (3.2) 

for all metaframesjeFP and MEML(n,R). 
Consider the bundle L ® 11 1\ n P. It carries a partial flat 

connection covering P induced from those on Land 11 1\ n P. 
A section 'l'Er (L ® 11 1\ n P) is said to be polarized if it is 
covariantly constant along P. Let JY' be the subspace of 
r(L ® 11 1\ n P) consisting of polarized sections. Elements of 
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K are interpreted as smooth quantum wave functions, i.e., 
K is the smooth quantum state space associated to (X,w) by 
the geometric quantization procedure in the representation 
defined by the polarization P. 

We now tum to the quantization of classical observables 
/eC "" (X). Suppose / preserves P in the sense that 
T¢/ (P) = P forallteR, where~t is the flow of (the Hamilto
nian vector field of) f, which we assume is complete. Then/ 
is quantizable as a first-order linear differential operator ~/ 
on K. The mechanics of this are as follows. The flow ~t has 
a natural lift to L consisting of connection-preserving auto
morphisms. On the other hand, ~t operates on FP by push 
forward offrames-this is well defined since/is polarization 
preserving-and this flow automatically lifts to FPbecause p 
is a 2: 1 submersion. Assembling these, we obtain a one-pa
rameter group of automorphisms of L ® V 1\ np that in tum 
induces a one-parameter group of linear isomorphisms of 
K, which we also denote by ~t • Setting Ii = h 121T, the quan
tum observable ~ / is then defined by 

~/[\II] = iii :t (~t\ll)lt=o' (3.3) 

for all \IIeK. 
Remark: This technique is not applicable if the observa

bles to be quantized do not preserve the polarization. One 
must use the Blattner-Kostant-Sternberg kernels to quan
tize such functions and the corresponding quantum opera
tors-if they exist-will generally be more complicated. 

Of principal interest is when X is a cotangent bundle 
T*Q with the canonical symplectic structure w = de. We 
study this case in detail and present several formulas which 
will be useful later. 

Let (qi ,Pi ), i = l, ... ,n, be a canonical bundle chart on 
UCT*Q. Then 

n 

elU= I Pi dqi (3.4) 
;= 1 

and 
n 

wlU = I dpi I\dqi . (3.5) 
i=1 

A cotangent bundle carries a naturally defined polariza
tion: the vertical polarization V = ker Tr Q' Locally, 

V=span {~, ... ,~}. 
api aPn 

Since w is exact, T *Q is always prequantizable. Relative 
to a locally trivializing section A.: U-+L, the covariant differ
ential is given by 

VA. = (l/ili) e ®A. . (3.6) 
A metalinear structure on a cotangent bundle will al

ways mean a metalinear frame bundle for the vertical polar
ization. In this case the existence criterion is quite simple: a 
metalinear structure exists on T*Q iff W I (Q)2 = 0, where 
WI (Q) is the first Stiefel-Whitney class of Q (see Ref. 22). 

Let/= (alapl, ... ,alaPn) be a local frame field for V 
and 1 a lift ofl to FV. Define v[Er (v 1\ n V) according to 

vfol= 1. (3.7) 

Both A. and VI are covariantly constant along V and every 
section \II of L ® V 1\ n V may be written 
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\ll1U = f/!(q,p)A. ® vI' (3.8) 

for some smooth function f/! on U. Such a \II is polarized iff 
f/! = f/!( q) only. In particular, when L and V 1\ n V are trivial 
with global sections A. and v, respectively, the association 
f/!(q,p)A.®vt---+f/!(q,p) defines an isomorphism 
f(L ®v 1\ "V) :::::C""(T*Q,C). The space K of polarized 
sections may similarly be identified with C "" (Q,C). 

Now suppose g is an observable which preserves V. 
Then for \II given locally by (3.8), (3.3) reduces to 

~g[\II] IV = [{ - iii V x + g -! iii tr AlXg )}f/!A. ] ®11' 
• (3.9) 

where X is the Hamiltonian vector field of g and the compog 

nents aJ ofthe matrixA[(Xg) are found from 

[ a] " . a Xg ,- = Iaj-. 
api j= I api 

B. The quantization of constrained systems 

We wish to study the equivalence of the geometric quan
tizations of the extended and reduced phase spaces of a con
strained classical system with symmetry (X,w,G,J,p,). In 
this section we outline our strategy and delineate general 
criteria which must be met before we can proceed with the 
more technical aspects of the theory (which occupy the re
mainder of Secs. III and IV). 

Our main concerns here are obtaining a natural quanti
zation of the extended phase space and constructing a com
patible quantization of the reduced phase space. 

First of all, the extended phase space quantization must 
be "natural" in the sense that the classical symmetry algebra 
? also appears as a symmetry algebra on the quantum level. 
Hence the functions J, must all be quantizable and the asso
ciation J, t---+~ J, must be a Lie algebra homomorphism: 

[~J,,~J"I] = ili~J[""Il' (3.10) 

for all t,1]e? This enables us to express the constraints J = P 
as conditions 

(3.11 ) 

on the quantum wave functions \IIeK. 
Unfortunately, such a quantization will usually be in

consistent: the constraint operators !!1J, will have no non
zero eigenstates corresponding to the eigenvalues (P,t ). For 
suppose \II satisfied (3.11) so that 

[~J,,~J"I]\II= «P,1]) (P,t) - (P,t) (p,1]»\11 

vanishes. But then (3.10) yields 

~J[""II [\II] = (P,[t,1]])\11 =1= 0, 

which forces \II = O. Thus the space K,.. of physically admis
sible wave functions will be trivial. 

To obtain meaningful results the offending term 

(P,[t,1]]) = (adtP,1]) 

in the last equation must vanish for all t and 1], and this 
happens iff P is invariant. One can there/ore consistently 
quantize (X,w,G,J,p,) only ifp is invariant. 

This invariance condition can be expressed geometrical
ly. From Proposition (2.1) we have that p is invariant iff 
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G J.L = G iff J - I (j.t) is a coisotropic submanifold of (X,{U), 
i.e., 

The invariance of j.t thus plays two key roles in our for
malism: it is the primary obstruction to obtaining a consis
tent natural quantization of the system, and it guarantees 
that the reduction of a cotangent bundle is again a cotangent 
bundle. Henceforth we assume that j.t is invariant. 

We now return to the naturality question, viz., under 
what conditions will quantization produce a representation 
of 9' on:Jr'? Once the invariance of j.t ensures that no outright 
inconsistencies will occur, this reduces to a problem ofmak
ing suitable choices of the geometric quantization structures 
discussed in the previous section. We must choose these so 
that the J~ are all quantizable and moreover that the quan
tum operators fl2 J~ thus obtained satisfy (3.10). In general, 
this will be possible iff the polarization P is G-invariant for 
then the J~ are all polarization-preserving functions (see 
Ref. 21, §6.2). However, if Pis not invariant the fl2J~ need 
not exist and, even if they are defined, (3. 10) will not neces
sarily follow. 

Having obtained a natural quantization of the extended 
phase space we now turn to the quantization of the reduced 
phase space. Our task is to correlate these two quantizations. 
We first observe that, by construction, the quantization of 
(XJ.L ,wJ.L) is completely determined by the structure of the 
constraint set. Consequently, if there is to be any hope for an 
equivalence of the extended and reduced phase space quanti
zations, we must ensure that the extended phase space quan
tization has this same property. This translates into the re
quirement that the extended wave functions be uniquely 
determined by their restrictions to J -I (j.t), and effectively 
places a further restriction on the choice of polarization. 7 

It remains only to construct quantization structures on 
(XJ.L ,wJ.L ) that are compatible with those we already have on 
(X,{U). The basic idea is to project the quantization struc
tures on the latter down to the former. An invariant polar
ization P on (X,{U) will project to a polarization on (X J.L ,w J.L ) 
if, for example, P is transverse to T J - I (j.t ) 1. For the pre
quantization and metalinear structures, we accomplish this 
by first lifting the action of G on X to L IJ - I (j.t) and 
FP IJ -I (j.t) in a suitable manner. This is always possible in
finitesimally, and the obstruction to extending from 9' to Gis 
purely topological. In particular, there is no problem if G is 
simply connected; otherwise, one must choose Land FP ap
propriately-provided, of course, such "invariant" struc
tures exist. We then quotient by these G-actions, producing 
bundles which are the required quantization structures on 
(XJ.L ,wJ.L ). 

We have now laid the foundation for comparable quan
tizations of the extended and reduced phase spaces. The next 
step is to check the above criteria and to explicitly construct 
the appropriate quantization structures for constrained co
tangent systems (T *Q,{U,G,J,j.t), where j.t is invariant, 
dim Q = n, dim G = r, and dim Q = ii = n - r. In the re
mainder of this section we work out the details for the three 
geometric quantization structures. Then, in Sec. IV, we 
show that the conditions we have set forth here are sufficient 
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to guarantee the equivalence of the extended and reduced 
phase space quantizations. 

C. Polarization 

Let V = ker Tr Q an<!J' = ker T7Q be the vertical polar
izations on T*Q and T*Q, respectively. 

Lemma (3.1): Vn TJ -1(j.t)1 = {a}. 
PrOOF Let VEVp n TpJ -1(j.t)1. Since GJ.L = G, it follows 

from Proposition (2.1) that vETp (G·P), i.e., v = ; T"Q (P) 
for some ;E9'. But then TrQ (v) = ;Q(rQ (P» = 0, which 
implies that v = 0 because <I> is free. • 

Taking the symplectic orthogonal complement of 
Lemma (3.1) gives 

V + TJ-I(j.t) = TT*Q 

over J - I (j.t). Counting fiber dimensions, we have 

2n = dim(V + TJ-I(j.t») 

= dim V + dim TJ -I(j.t) - dim(Vn TJ -I(j.t»). 

By Proposition (2.2) j.t is a regular value of J, so 
dim J -I (j.t) = 2n - r.1t follows that V n TJ -I (j.t) is an in
volutive ii-dimensional distribution on J - I (j.t). Further
more, since rQ 01T J.L = 1T Q Or Q ' 
TrQ (T1TJ.L (Vn TJ-I(j.t») 

= T1TQ(TrQ(Vn TJ-I(j.t»)) = {O}, 

so that T1TJ.L(Vn TJ-I(j.t») is vertical on T*Q. We have 
therefore proven the following proposition. 

PropOSition (3.2): V= T1TJ.L(Vn TJ-I(j.t»). 
Clearly the action T *<1> leaves V invariant. It follows 

automatically-regardless of the choices of the prequantiza
tion and metalinear structures-that the quantization of 
(T *Q,{U,G,J,j.t) in the Schrodinger representation will be 
natural. 

Also note that every leaf of V intersects J - I (j.t). In
deed, since J -I (0) contains the zero section of T *Q this is 
certainly true for J - I (0). But J - I (j.t) is obtained from 
J -1(0) by translation along the leaves of V (cf. Sec. II B), so 
this holds for J - I (j.t) as well. As V-wave functions are co
variantly constant along V, they will be uniquely determined 
by their restrictions to J - I (j.t ) . 

These results, coupled with the fact that the vertical po
larization on T*Q projects to the vertical polarization on 
T *Q, imply that we may consistently and compatibly quan
tize both the extended and reduced phase spaces in the 
Schrodinger representation (which is the physicists' "ca
nonical" quantization). Moreover, since geometric quanti
zation is very sensitive to the choice of polarization, it is a 
definite advantage to have at our disposal concrete examples 
of polarizations that satisfy all the criteria of Sec. III B. 

D. Prequantlzatlon 

LetL be a prequantization line bundle for ( T *Q,{U ) with 
connection form y. We must construct a compatible pre
quantization line bundle for ( T *Q,0J.L ). Preliminary results 
along these lines have been obtained by Puta. 9 

The first step is to lift the action of 9' on T *Q to 
LJ.L = L IJ -I (j.t). For each ;E9' let;L =; ~.Q be the hori
zontallift of; T*Q to L/l-. 
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Proposition (3.3): ;t---+;L is a Lie algebra antihomomor
phism. 

Proof.' We have to verify that [;,11 h = - [;L ,11L ] and 
for this it suffices to prove that [;L ,11L ] is horizontal. The 
prequantization condition (3.1) gives 

Y([;L ,11L ]) = - dY(;L ,11L ) 

= (lIh) I· [m(;T"Q,11T"Q)) , 

which vanishes by virtue of Proposition (2.1) and the fact 
thatJ - 1 (,u) is coisotropic, since both; T"Q and 11 T"Q belong 
to TJ -I(,u)l r;;. TJ -I (,u). • 

Remarks: (1) The association ;t---+; L is an antihomo
morphism as the G-action is on the left. 

(2) Proposition (3.3) will fail if,u is not invariant, so 
that we cannot lift the ?-action to LI-' for arbitrary ,u. In 
particular, the action will generally not be defined on all of L 
(unless, e.g., G is Abelian), but, insofar as reduction is con
cerned, we need only obtain an action on LI-' . 

To extend this ?-action to a G-action is more difficult. 
There are two possible obstructions: the incompleteness of 
some of the vector fields;L and the nonsimple connectivity 
of G. The first of these presents no problem: since L is a line 
bundle and the; T"Q are complete the; L will be also. When 
17'1 (G) #0, however, some LI-' may admit G-actions while 
others will not. 

Fix an orbit G·{3r;;.J -J (,u). Since orbits are isotropic in 
T·Q [cf. Proposition (2.1)], the prequantization condition 
implies that L I (G·P) is flat. As the;L are horizontal the?
action on L I (G.{3) will integrate to a G-action iff the holon
omy of L I (G·{3) is trivial. The crucial observation is that the 
holonomyof L I (G·{3) is the same for all orbits in agiven level 
setJ-1(,u). 

To show this let c(t), O<t<T, be a loop in Gbased at the 
identity and let c{3 (t) = T·<I>e(t) ({3) be the corresponding 
loop in G.{3based at{3. From Ref. 12, §5.5.2, we find that the 
element in the holonomy group of I - J ({3) determined by c{3 

is 

Let;, be the curve in? defined by 

;, = TL ct,~ (c. (t)), 

(3.12) 

where LeU) is left translation by c(t). Then a short calcula
tion using (2.3) yields 

i 8= (J(C.B(t)), ;,>dt= (,u,;,)dt, (3.13) 
Cp Jo Jo 

which depends only upon,u and the homotopy class of c and 
not the partiCUlar orbit G·{3r;;.J-J(,u). It therefore makes 
sense to speak of "the holonomy" of LI-' . 

Proposition (3.4): The action of? onLI-' can be extended 
to a G-action iff LI-' has trivial holonomy. 

This proposition is essentially a "quantization condi
tion"; we will see it in operation in Sec. V. 

Assuming that LI-' has trivial holonomy, we are now 
able to construct the reduced prequantization line bundle. 
Since the ~-action on LI-' is necessarily free and proper we 
may form LI-' = LI-' IG, which is clearly a complex line bun-
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dIe over T*Q. Denote the projections LI-' -II-' and 
II-' _T*Q by 17'1-' and"" respectively. 

Set YI-' = fi,Y, where jft: Lft _L is the inclusion. By 
(3.1) and (2.1) 

.Y hL Y = - (lIh)I·(;T"Q J m) 

= (llh)l· dJh 

and so 

.Y hJI-' = (lIh)l·d (,u,;) = O. 

Consequently Yft projects to a complex-valued one-fonn r ft 
on II-' such that 

Yft =17'!rft · (3.14) 

Theorem (3.5): (II-' ,rl-') is a prequantization line bundle 
for (T·Q,0I-')' 

Proof.' It is straightforward to check that rl-' is indeed a 
connection fonn on II-' . 

To prove the Theorem we must verify the prequantiza
tion condition 

drl-' = - (llh) I!0l-' . 

Now drl-' = I!p for some two-fonnp on T·Q. By (3.14), 
(3.1), and the Kummer-Marsden-Satzer Theorem, 

(/1-' 017'1-' ).p = dyl-' 
- (lIh)j!I·m 

= - (lIh)l·f!m 

= - (lIh)I·tr!°ft 

Since 'I-' 017'1-' is a submersion, p = - (llhl!1. • 
Thus if Lft has trivial holonomy, (T ·Q'0ft ) is prequan

tizable. In particular, the de Rham class (lIh)[0ft ]T"Q 
= (lIh) [PI-']Q must be integral. We will have a nice phys

ical interpretation of this result in Sec. V C. 

E. Metalinear structures 

Let FV be a metalinear frame bundle for the vertical 
polarization V. Since V is invariant, G acts on PV by push 
forward of frames. Following the general technique of Ref. 
10, we will relate PVon T·Q to PVon T·Q and use this 
relation, along with a lift of the G-action on PV to FV, to 
induce a metalinear structure on T·Q from that on T·Q. 

We can substantially simplify matters by working on 
configuration spaces rather than cotangent bundles. To this 
end, let PQ and p.Q be the linear frame and coframe bundles 
of Q, respectively. There exist natural G-actions Fcf.> on PQ 
and p.<I> on p.Q again given by push forward offrames and 
coframes. Let Z: Q_T·Q be the zero section. 

Proposition (3.6): There exist canonical G-equivariant 
isomorphisms PQ,:::;Z· (PV) and PV ':::;~ (PQ). 

Proof.' There is a canonical equivariant identification of 
T·QwithZ * Vand hence of Vwith ~ (T*Q). These induce 
similar identifications of P *Q with Z * (PV) and PV with 
~(PQ). Moreover, associating to each basis its dual basis 
gives rise to a canonical isomorphism PQ,:::;P*Q which is 
equivariant with respect to the actions Fcf.> and P*<t>. Com
bining these isomorphisms establishes the Proposition. • 
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This result allows us to transform back and forth from 
T*Q to Q. Similarly, there are canonical isomorphisms 
FQ::::;Z * (Fn and Fv = ra (PQ). 

Now consider the subbundle B of FQ consisting of 
frames of the form ~ = (!!'~Q)' where ~ is a positively orient
ed orthonormal frame for ? with respect to the given bi
invariant metric on G. The space B is a right principal H
bundle over Q, where 

H = {c: ~) I NEGL(n,lR), RESO(r)} 

is the subgroup of GL(n,lR) that stabilizes B. 
Let K be the subgroup of H consisting of those matrices 

which leave invariant the projection of!! to FQ; explicitly, 

It is a normal subgroup of H andH IK ::::;GL(n,lR). We may 
therefore identify 

B IK ::::;1T~ (FQ) . (3.15 ) 

SinceF<l>g(~Q) = - (Adg-'~)QandthemetriconGis 
bi-invariant, Adg -, ~ is also a positively oriented orthonor
mal frame for ? It follows that the left action F$ on FQ 
induces an action on B that commutes with the right action 
of H. This allows us to quotient by G in (3.15), thereby 
obtaining a natural isomorphism 

G\(BIK)::::;FQ. (3.16) 

We next lift these constructions to the metabundles. Let 
p: FQ_FQ be a metalinear frame bundle for Q and set 
H = 0'-1 (H), where 0': ML(n,lR)-GL(n,lR) is the 2:1 pro
jection. ThenB = p-I (B) is a right principalH-bundle over 
Q. Since the determinant of any matrix inK is unity, 0'-1 (K) 

has two connected components. We identify K with the com
ponent of the identity in 0'- I (K). Then K is a normal sub
groupofH andH IK::::;ML(n,lR). The bundleB IK is there
fore a right principal ML(n,lR)-bundle on Q such that the 
diagram 

B IK XrL(n,lR)-----B fK 

BIKxGL(n,lR) -BIK 

(3.17) 

commutes, where the horizontal arrows are the right group 
actions and the vertical arrows are twofold projections. 

Suppose for the moment that the G-action F$ on FQ 
lifts to an action Fct> on FQ. Then F$ will preserve Band 
commute with the right H-action on B, and thus give rise to a 
left G-action on B I K that commutes with the right action of 
ML(n,lR). The space G \ (B IK) of G-orbits in B IK will 
therefore inherit the structure of a right principal ML (n,lR)
bundle over Q such that the projection G \ (B IK) 
-G \ (B I K) is 2: 1. Applying (3.17) and (3.16) it follows 
that G \ (B I K) will define a metalinear frame bundleFQ for 
Q. 

In summary, if Q is metalinear and the action of G on FQ 
lifts to FQ, then Q is metalinear. To complete the analysis we 
must determine whether in fact the group action lifts. 

Since p is a 2: 1 submersion, the action of ? on FQ ob
tained by differentiating F<I> lifts to an action on FQ by com
plete vector fields. Thus the only possible obstruction to lift-
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ing F<I> is the nonsimple connectivity of G. Now this raction 
defines an involutive distribution on FQ, and we may extend 
to a G-action iff this distribution has trivial holonomy when 
restricted to each orbit in FQ. 

To measure the holonomy, introduce the characteristic 
homomorphism 1T1(FQJ)-'l..2 ofFQ (see Ref. 23, §13) and 
consider the map - 1T1 (G)-1T1 (FQJ) defined by 
[c(t) ]~[F<I>C(t) (I)]· The above distribution has no ho
lonomy over G{ iff the composite homomorphism X G : 

1T I ( G) -'1..2 is trivial. Furthermore, since '1..2 has no nontrivial 
automorphisms, X G is independent of the choice of IEFQ. 
Thus if the ?-action extends over just one orbit, it extends 
over all of them. 

Proposition (3. 7): The action of G on FQ lifts to FQ iff the 
natural homomorphism X G : 1T I (G)-'l2 is trivial. 

There is another version of this result which is often 
useful. Note that the restriction of FQ to any orbit G·q in Q is 
trivial: each [EFq Q defines a global section $g (q)~F<I>g <D 
of FQ I(G·q). Proposition (3.7) then implies that we have 
lifting iff the restriction of FQ to any (and hence every) orbit 
in Q is trivial. 

It remains to pull our results back to T *Q and T *Q. We 
first observe that Proposition (3.6) holds on the metalinear 
level, i.e., if FV is a metalinear frame bundle for V then 
FQ = Z * (FV) is one for Q and, conversely, every metalinear 
frame bundle FV is 1'~ (FQ) for some metalinear structure 
on Q. Similar resutls are true for FV and FQ. Now, since the 
mechanics are the same in both cases, it is clear that the G
action on FQ lifts to FQ = Z * (FV) iff that on FV lifts to 
FV = ~ (FQ). It follows that these metalinear identifica
tions are G-equivariant. Denote by the same letter B the pull-

backbundle~(B) CFV, andsetBI' = B IJ -I (f.L). We have 
proven the following theorem. 

Theorem (3.8): If the action of G on FV lifts to FV, then 
there exists a compatible metalinear structure 

FV=G\(BI'IK) 

on T*Q. 
Remark: Similar results hold for metaplectic struc

tures.1O 

IV. EQUIVALENCE OF COMPATIBLE QUANTIZATIONS 

The stage is now set to prove the equivalence of the 
quantizations of the extended and reduced phase spaces. We 
have shown that quantization data on (T*Q,(j),G,J,f.L) con
sisting of the vertical polarization V, a prequantization line 
bundle (L,y) and a metalinear frame bundle FV induce 
quantization data V~ (II' ,Yp. ) and FVon (T*Q,Op. ), pro
vided both Lp. and FV have trivial holonomy. The corre
sponding quantizations of (T *Q,(j) and (T *Q,Op. ) are said 
to be compatible. Our main result is that compatible quanti
zations are equivalent. We will make this precise after dispos
ing of some preliminaries. 

A. Preliminaries 

Let 11 /\ n V and 11 /\ ii'jT be the bundles of half-forms 
relative to V and V, respectively. Set 
11 /\ n VI' = 11 /\ n V IJ - I (f.L ) . 
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Proposition (4.1): There exists a canonical isomorphism 

v' A n VI' -:::;tr:v' A "V. 
Proo!, Fix {3E.! -I (Il) and consider v pEv' A n Vp. As 

a(M) = 1 for all MEl(, (3.2) implies that v:(~M) 
=v:(~). Si~c~by Theorem (3.8) tr:FV=BI'IK, it fol

lows that for I}.EBp the equation 

v#([b]) = v#(b) (4.1) 
p - p -

defines an element vp of (tr:v' A iiV)p, where the brackets 
denote K-equivalence classes. Conversely, given vp 
E(tr:v' A "V)p, (4.1) defines an element VpEv' An Vp 
since, according to (3.2), any half-form is completely deter
mined by its restriction to B p. The association (4.1) is thus 
the desired complex line bundle isomorphism. • 

The action of G on FV gives rise to a left action of G on 
v' A n Vwhich commutes with the right action ofML(n,R) 
by multiplication by fl.. Since all our constructions are G
equivariant, Proposition ( 4.1) yields G \ v' A n VI' 
-:::; v' A "V. Combining this with the results of Sec. III D, we 
have the following corollary. 

Corollary (4.2): G \ (L ® v' A n V) I' -:::;LI' ® v' A "V. 
Our next task is to relate the two induced actions of rr on 

r (L ® v' A n V) 1" which we must be careful to distinguish. 
The first is that provided by the naturality of the extended 
phase space quantization (cf. Sec. III B) and is used to quan
tize the momentum map. The second is needed to construct 
compatible quantization structures on the reduced phase 
space (cf. Secs. III D and III E and the preceding discus
sion). These two actions agree on r (v' A n VI' ) but differ on 
r(LI')' We derive expressions for the generators of both 
actions. 

The first action on r (L ® v' A n V) I' is generated by the 
quantum constraint operators 22 Js' According to (3.9) 
these are given by 

22Jd'll] = ([ - iliV ST'Q + Js 
- ~ iii tr A[(S T-Q)] tP..i} ® v[' (4.2) 

for each local section'll of the form (3.8). Tracing through 
the derivation of this formula (cf. Ref. 21, §6.1), we find that 
the last term on the right-hand side of (4.2) arises from the 
action of rr on v' A n VI' while the first two terms are due to 
the action of rr on LI' by connection-preserving vector fields 

S T-.Q - ;J<lh , (4.3) 

where ;J Ih is the fundamental vector field on L defined by 
the function J s I h. On the other hand, the second action of rr 
on LI' is generated by just the horizontal vector fields S T-. Q • 

It is easy to see that removing the last term from (4.3) elimi
nates the second term from (4.2). Since both actions agree 
on v' A n VI" it follows from (4.2) that the generators ~ s of 
the second action are related to the 22 J s by 

22Jsl'll] = ~ sl'll] + Js'll, (4.4) 

for all 'IIEr (L ® v' A n V) I" 

B. Smooth equivalence 

We are finally ready to compare the extended and re
duced phase space quantizations. They are correlated by the 
following theorem. 

2059 J. Math. Phys., Vol. 27, No.8, August 1986 

Smooth Equivalence Theorem: If the quantizations of 
the extended phase space (T *Q,w,G ,J,Il) and the reduced 
phase space (T*Q,01' ) are co~patible, then there exists a 
canonical isomorphism /Jrl' -:::;/Jrl" 

Proo!, Let 'IIe:Jr1' . Equation (4.4) implies that 
~ s ['II] IJ - 1 (Il) = 0, so 'IIIJ - 1 (Il) is G-in~ari~t. By Cor_~
lary (4.2), 'II projects to a smooth section'll of LI' ®Y A n V. 
Since'll is polarized, Proposition (3.2) shows that'll is also. 
Thus ilieKl" _ _ 

For the converse, suppose 'IIe:Jr1" ~rollary (4.2), 
Proposition (3.2), and Eq. (4.4) imply that'll pulls back to a 
unique G-invariant section 'III' of (L ® v' A n V) I' which is 
covariantly constant along V n T J - 1 (Il) and satisfies 

22Js ['III'] = (P,S )'111' . (4.5) 

Since every leaf of V is simply connected and intersects 
J - 1 (Il), parallel transport along V produces a globally de
fined polarized section 'II of L ® v' A n V which agrees with 
'III' on J -I (Il). Now consider the polarized sections 

'lis = 22Js ['II] - (P,S)'II, 

for each sErr. Every'll s is uniquely determined by its restric
tion to J -I (Il). But 'lis IJ -I(Il) = 0 by virtue of (4.5), so 
'II s =0 and hence 'IIe:Jr1' . 

This establishes the existence of the required isomor-
phism. • 

Remarks: (1) We emphasize that this isomorphism is 
entirely canonical since our constructions of the reduced 
quantization data are. 

(2) When Il = 0 both of the rr-actions on /Jr 0 coincide. 
We may then restate the conclusion ofthis Theorem as fol
lows: There exists a canonical isomorphism between the 
space of gauge-invariant smooth polarized sections of 
L ® v' A n V and the space of smooth polarized sections of 
Lo ® v' A "V. This special case is due to Sniatycki. 10 

We now derive a local expression for the isomorphism 
/Jrl' -:::;7/1' which will be useful later. Let 

(ql, ... ,qn ) = Cql , ... ,qii,gl , ... ,g') 

be a chart on 1T Q - 1 (I1) C Q induced by a local trivialization 
1TQ -I(U) -:::; U XG, and let (qi ,Pi), i = 1, ... ,n, and (qi ,Pi)' 
i = 1, ... ,ii, be the corresponding canonical charts on T*Q 
and T*Q,respectively.Set/= (a lapI, ... ,a lapn) and define 
vtEr(v' A n V) by (3.7). It is convenient to construct an
other half-form Vb on T*Q as follows (cf. Sec. III E). Using 
the given bi-invanant metric g on G, fix a positively oriented 
orthonormal frame €. = (SI""'S,) for rr and set 

b = (~ , ... , ~ ,SI""'S,) . - aq aqn 
Then 

~ = (~I , ... , ~" ' a~1 , ... , a~ ) (~ ~), 
for some matrix C with det C = (det g) - 1/2. Applying 
Proposition (3.6) we find that under the isomorphism FV 
-:::;-rZ(FQ) the frame (alaq\ ... ,alaq",alagl, ... ,alag) 
maps onto/while b maps onto a frame in B which we also 
denote by h. Defin~ Vb by vfob = 1; from the above and 
(3.2) it foliOws that - --
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V~ = (detg) 1/4 VI' 

Then each \fIEK may be locally written as either 

II' = ~(q)A ® Vb 

or 

(4.6) 

(4.7) 

1I'=~(q) (detg)I/4A®vI' (4.8) 

Now suppose II'EKI' so that II' satisfies (3.11). Then 
using (4.7), (4.6), (4.2), (3.6), (2.3), and the fact that the 
components of 5Q are constant in this chart, we compute 

II' = k(q)exp (~ ± !lag-' \1 ®V~ , (4.9) 
lia=1 r" 

where k is arbitrary. 
On the other hand, both band / project to I 

.= (a /opl, ... ,a /OPn )EFV.Defining-iiEr(y7 t\ iiV) by (3.7)~ 
It follows from (4.1) that v~ ~rojects to ii' Simila,!ly, fr~m 
Sec. III D we find that A projects to the section A of L - - ~ I' 
defined by AI' 01T1' = 'I' oA. Since locally every ~EKI' takes 
the form 

(4.10) 

we have upon comparing (4.9) and (4.10) that the isomor
phism KI' -KI' is given by 

k(q)exp(~ ± !lag-') ~ k(q) . (4.11) 
Ii a = 1 

Compatible quantizations thus have canonically iso
morphic spaces of physically admissible wave functions. But 
compatibility should ensure more than this: it should also 
intertwine the quantizations of G-invariant observables. 
More precisely, let /EC oo (T*Q) be G-invariant in which 
case it reduces to II' EC oo (T *(2) as indicated in Sec. II B. 
Then the quantum operators !!2/ on K and PJII' on KI' 
should be such that 

f!2/ 
KI'----.. ,· KI' 

~. gil' ~ 
KI' .. KI' 

(4.12) 

commutes, where the vertical arrows are the isomorphisms 
provided by the Smooth Equivalence Theorem. This is actu
ally so, at least if/is polarization preserving. 

Theorem (4.3): Let/be a G-invariant polarization-pre
serving observable. Then diagram (4.12) commutes. 
_ Proof' First note that because/preserves V, II' preserves 
Vby Proposition (3.2). Consequently II' is quantizable. 

Let cPt and~~ be the flows of/andJ;. on T*Qand T*Q, 
respectively, with 

Since both/andll' are polarization preserving, these flows 
induce one-parameter groups of bundle automorphisms of 
L ® 11 t\ n Vand II' ® 11 t\ iiV, which we denote by the same 
symbols (cf. Sec. III A). Since/is invariant, a straightfor
ward calculation using the techniques of Sec. III E along 
with the ~ct that FcPt (~Q (q) ) = ~Q W (q») shows that cPt 
preserves B I' . Thus cPt is equivariant and it follows from Cor
ollary (4.2) that 
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(4.13) 

commutes, where the vertical arrows are projections. 
Now consider the corresponding one-parameter groups 

of linear isomorphisms cPt of K and ~~ of Kw From the 
definition of !!2 J s applied to cPtII' we have 
f!2 JdcPt \fII = cPt f!2 Js [\fII as cPt is equivariant. In particular, 
if \fIEKI" then so is cPt \fl. Thus (4.13) and the Smooth 
Equivalence Theorem imply that the induced diagram 

K f .JY ~ I' -t f I' (4.14) 
- cPl' -
KI' • KI' 

commutes. 
The quantum operators f!2/and gil' are defined by 

f!2f[\fI] = iii ~ (cPt 11') It=o 

and 

gll'[~] = iii ~ (~~~)It=o 
[cf. (3.3) I. If II'EKI' then cPtll'EKI' and consequently 
f!2f1 11'] EKI' . Thus diagram (4.12) is well defined and its 
commutativity now follows immediately from the above 
definitions and (4.14). • 

Roughly, this result states that one may quantize invar
iant observables in either formalism with equivalent results. 
However, the Theorem does not apply when/is not polariza
tion preserving. In such cases diagram (4.12) may not exist 
and, when it does, it will generally not commute. 

C. Unitary equivalence 

We now discuss the one facet of the equivalence problem 
that we have overlooked thus far-the Hilbert space struc
ture. The Theorems of Sec. IV B pertain only to smooth 
quantizations, i.e., the linear spaces K and K of COO I' I' 
wave functions. Do our results still apply when the quantum 
inner products are introduced? More precisely, does the lin
ear isomorphism KI' zKI' of the Smooth Equivalence 
Theorem extend to a unitary isomorphism of the corre
sponding quantum Hilbert spaces? 
_ For constrained cotangent systems, the spaces K and 
KI' of polarized states carry canonically defined inner prod-

t 1221U' th fh . . uc S.· smg e setup 0 t e prevIOus section, we may 
describe these as follows. The inner product of two wave 
functions 11', <l>EK of the form (4.7) with supports in 
1TQ I(ch is 

(4.15 ) 

~h~re .!,he star denotes complex conjugation. Similarly, for 
\fI,<I>EKI' of the form (4.10) with supports in U, 

(~,<i»Q = L ~(q)~*(q)diiq. (4.16) 
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We complete these spaces with respect to these inner prod
ucts thereby obtaining the quantum Hilbert spaces If and A:p , 

respectively. 
Although this procedure is in itself straightforward, a 

difficulty arises when considering the space 

Ifp = {'IIelf.lgJ,;['II] = (,u,g ) 'II} 

of physically admissible states. It may happen that Ifp will 
consist only of distributional wave functions. For instance, if 
Gis noncom pact some of the eigenvalues (,u,g ) will lie in the 
continuous spectra of the corresponding constraint opera
tors g Js' In such cases the inner product _on If will not 
induce one on Ifp so that, in general, Ifp and Ifp can only be 
compared as linear spaces. However, one may use the 
Smooth Equivalence Theorem and the inner product on A:p 

to induce one on Ifp in such a way that Ifp and lp will then be 
unitarily related. We will see an example of this phenomenon 
in Sec. V A. 

This problem cannot occur if G is compact, in which 
case Ifp is a genuine subspace of If. 

!!nitary Equivalence Theorem: If G is compact then Ifp 

and Ifp are unitarily equivalent. 
Proof Let 'II,<I>EA'p. Substituting (4.9) into (4.15) we 

obtain the induced inner product 

('11,<1» I' = iii '(U) k(q)h *(q) ~ det g d n q , 

where h is to <I> as k is to'll. Writing dn q = d' g d nq, this 
reduces to 

(1JI,<I»p = vol(G) L k(q)h *(q)dnq, 

where 

vol(G) = L ~detg d'g 

is finite since G is compact. 

( 4.17) 

The isomorphism Kp --Y?p of the Smooth Equiv
alence Theorem clearly extends to Ifp there~y ena~ling US!O 

project IJI and <I> on T *Q to wave functions'll and <I> on T *Q. 
Using the explicit form (4.11) of this projection in (4.16) 
yields 

(qi,<I»Q = Iv k(q)h *(q)dnq. (4.18) 

It follows from (4.17) that qi,<I>EA:p' The mapping ~: 
Ifp __ lp defined locally by 

k(q)exp(i.. ± /iat')A ® v~~ ~vol(G) k(q)Ap ® l[ 
fz a ~ I 

( 4.19) 

is therefore a vector space isomorphism, and a comparison of 
(4.17) with (4.18) shows that it is unitary. • 

Similarly, Theorem (4.3) carries over to the Hilbert 
space case when G is compact. Namely, if/is a G-invariant 
polarization-preserving observable, then the unitary isomor
phism ~ intertwines the quantum operators corresponding 
to/and its reductionlp : 

?!J]p = ~-I(gj)~. 

To summarize, if G is compact, then a smooth equiv
alence of the extended and reduced phase space quantiza-
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tions naturally extends to a unitary equivalence which inter
twines the quantizations of invariant observables. When Gis 
noncom pact no such natural unitary equivalence exists a 
priori, but the Smooth Equivalence Theorem may be used to 
induce one. 

V. EXAMPLES 

We present several examples which illustrate our tech
niques and theorems. In most cases we will explicitly verify 
our results by direct computation. 

A. Center of mass reduction In the N-body problem 

Our presentation follows that in § 10.4 of Abraham and 
Marsden 15; see also Robinson. 24 

Consider N masses ml,.oo,mN moving in Rk. Upon re
moving collisions we have 

Q = (Rk)N _ aN , 

where 

and 

aN = u aN. 
1<.iJ<N I) 

N { 1 N k N i '} aij = q = (q ,oo.,q )E(R ) Iq = q! . 

The translation group Rk acts freely and properly on Q ac
cording to 

<I>(8:,q) = (ql + 8:,.oo,qN + 8:) . 

To construct the orbit space introduce the diffeomor
phism 

c: Q __ {(R k )N-I _ a N - I }XRk 

given by 

(ql,oo.,qN) 

~(ml(ql - qN),oo.,mN_I (qN-l - qN), itl miqi), 

(5.1) 

where Rk = Rk - {oJ. The corresponding Rk-action 
Co <I> £ oC - I is just translation in the last factor by M£, where 
M = l:f~ Imi is the total mass of the system, so that 

Q:::::(Rk)N-I _aN-I. 

Thus Q = Q X Rk is trivial as a principal Rk -bundle. 
This result is useful for understanding the structure of Q 

which, in general, is quite complicated. More meaningful 
physically, however, is the representation of Q as the 
N( k - 1) -dimensional submanifold C -I (Q X {o} ) of Q ob
tained by fixing the center of mass of the system at the origin. 
Thus we view 

(5.2) 

The extended phase space is T*Q = Q X (Rk)N with 
symplectic form tU = de, where e = l:f= I l!.i .dqi . The co
tangent action is T*<I>{£,(q,p») = (<1>£ (q),p) with momen
tum map 

N 

J(q,p) = L l!.i . (5.3 ) 
;=1 
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Now Rk is Abelian so every J.LE~* Z Rk is invariant; for sim
plicity we consider only J.L = O. Taking (5.2) and (2.4) into 
account, we can identify T*Q with TQ I(Q) n J -1(Q), i.e., 

T*Q= {(q,P)ET*Q litl mill =Q, it/~i =Q}. 

(5.4 ) 

Although there may be various prequantizations of 
(T*Q,w) depending upon the topology of Q, we can always 
take L = T *Q X C with trivializing section 
A(q,p) = (q,p,l). Since Rk is simply connected, the action 
T*<I> lifts horizontally to all of L; Lo therefore exists. Using 
(5.4) to explicitly identify Lo with LIT *Q, it follows that 
Lo= T*QxC. 

Since T *Q is parallelizable one possibility for FV is sim
ply T*Q XML(Nk,R). The induced action ofRk on FVis 
trivial on the fibers and consequently lifts to FV. Thus the 
corresponding metalinear frame bundle FV for 

V = span{!ll'.!..- + ... + !IN' ~ I I !Ii = Q} 
JJ!..1 JJ!..N i = I 

is also a product. 
We now quantize the extended phase space. Setting 

[= (J IJJ!..I,. .. ,J IJJ!..N), we have from Sec. III A that every 
polarized 'l'Er(L ® V I\. Nk V) can be written 

'I'=!,b(q)A®vI' (5.5) 

From (4.2), (5.3), and (5.5) the quantum constraint opera
tors are 

!!lJ ['1'] = - Hi{V I + ... + V N )!,b(q)}A ® vi' 

where Vi is the ordinary gradient with respect to lJ.i . Thus the 
physically admissible quantum states are those that satisfy 

(VI+ ... +VN)!,b(q) =0. 

It follows that £'0 can be identified with the set of all 
!,bEC "" (Q,C) of the form, say, 

.1, .1,( 1 N N - 1 N) 'f'='f' q -q , ... ,q -q . (5.6) 

Similarly, quantizing the reduced phase space gives 
KozC""(Q,C). We have from (5.1) that every 
¢eC 00 (Q,C) is of the form 

¢=¢(m l (ri-lJ.N ), ... ,mN_ 1 (qN-l _lJ.N»). (5.7) 

A comparison of (5.6) with (5.7) yields the isomorphism 
£'o-Ko predicted by the Smooth Equivalence Theorem. 

From (4.15) and (4.16) it follows that the Hilbert 
spaces h and ~o are L2(Rk)N _AN) and 
L 2(JRk )N-l _ AN-I), respectively. Now Q is in the con
tinuous spectrum of !!l J and from (5.6) it is clear that none 
of the translationally invariant wave functions are square 
integrable. Thus ho and ~o can only be compared as linear 
spaces. 

Remark: For nonzero J.LERk , reduction fixes the center 
of mass as moving with velocity J.LI M. 

B. Angular momentum 

We study the system consisting of a single particle mov
ing in JR" = R" - {Q} with constant angular momentum. 
This example is interesting for two reasons. First, when 
n > 2, the action 
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<I>(A,q) = Aq (5.8) 

of SO (n) on JRn is not free so that the fundamental assump
tion underlying all our results is violated. Nonetheless, as we 
shall see, the conclusions of our theorems still hold. Second, 
the case n = 2 illustrates how the obstructions to lifting the 
group action to the various quantization structures give rise 
to "quantization conditions." 

Since the case n = 2 is exceptional, we first consider 
only n>2. 

The action (5.8) is always proper and effective. The 
orbits are concentric spheres and thus 

(5.9) 

Viewing '1. and J!.. as column vectors, the cotangent action 
on T*R" = JR" XRn becomes 

T*<I>(A,(lJ.,J!..» = (AlJ.,AJ!..) (5.10) 

and, upon identifying so(n)* and so(n) with I\. 2(Rn), the 
angular momentum map can be written 

J('1.,J!..) = ql\.J!.. . (5.11 ) 

The coadjoint action ofSO(n) on I\. 2(R") is 

Ad~ (lJ.I\.J!..) = A -1lJ.I\.A -IJ!.. ' 
from which it follows that 

SO(n),u zSO(2) XSO(n - 2) , 

for 1"'1=0. Consequently 0 is the only invariant element of 
so(n)*forn>2. 

Remark: With reference to the discussion in Sec. III B, 
it is not surprising that this system cannot be consistently 
quantized when f.l :;f0. Indeed, (3.11) would correspond to 
simultaneously specifying all the components of the angular 
momentum-a well-known quantum mechanical impossibi
lity. 

Now 0 is not a regular value of J, but it is weakly regular. 
Actually J has rank n - 1 on J -1 (0), so that J -1 (0) is an 
(n + l}-dimensionalsubmanifold ofJR" X Rn . From (5.11) 
we have 

( 5.12) 

which shows that J -1 (0) is a real line bundle over R" . This 
bundle has a global non vanishing section lJ. ~ ('1.'lJ.) so that in 
fact 

(5.13) 

To reduceJ -1 (0), first note that the action ofSO(n) on 
JRn XR induced by (5.13), (5.12), and (5.10) is just 
(lJ.,s)~(A'1.,s). Then (5.13) and (5.9) imply that 

J- 1(0)/SO(n) zR+ XR, 

with projection 'lTo(q,sCj) = (1I'1.1l,s1l'1.1l). N~w fix qEJRn with 
IIqll = 1. The map io: R+ XR_J-1(O) eRn XRn, defined 
by 

ioCr,s) = (rq,sq) , (5.14) 

is a section of'lTo. Then from (3.5) 

itw = l't Ctl dpi I\. dqi ) 

" = L d(d/) I\.d(sC/) 
;=1 
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= (~.~) drAds 

=drAds, 

which is the canonical symplectic structure on 
T *R + = lR + X R. We have therefore shown that the reduced 
phasespace(J -1(O)/SO(n),wo) isjust (T*(Rn ISO(n»),w), 
i.e., the conclusions of the Kummer-Marsden-Satzer 
Theorem hold despite the fact that <I> is not free (see also Ref. 
20). 

Tum now to prequantization. Since an is simply con
nected for n > 2, the prequantization line bundle is unique 
and trivial. But 1T1(SO(n») = Z2 for n > 2, so we must check 
the holonomy of Lo. Let (q,.e.)EJ -I (0) and consider the or
bit SO(nHq,.e.). As SO(nHq,.e.);:::::S" - 1 is simply con
nected for n > 2, it follows from Proposition (3.4) that T*<I> 
lifts horizontally to Lo. Thus Lo exists and, since the reduced 
phase space is contractible, Lo is also trivial. 

For the metalinear structure, the facts that an is orien
table and simply connected for n > 2 imply that FV exists 
and is unique. Since FV is trivial so is FV. By the remarks 
following Proposition (3.7) and Theorem (3.8), T*Qismet
alinear. Again, since lR+ xlR is contractible, FVis trivial. 

Quantizing this system, we have from Sec. III A that the 
extended wave functions are 

'I' = ,p(q)A. ® v[ (5.15) 

and from Sec. IV C that h = L 2(JRn). Using (4.2) and 
(5.11) we compute 

(
n (.a .a) ) 22Jd'l'] = - ifz L Sij q' -. - q' -i ,p(q) A. ® v[, 

ij= 1 aq' aq 
(5.16 ) 

for sEA 2(lRn ). Thus the rotationally invariant states look 
like 

'I' = ,p( Ilqll )A. ® v[ (5.17) 

and, in hyperspherical coordinates, the induced inner prod
uct on ho is 

('1',<1»0 = vol(S"-') Loo ,p(r)t/J*(r)r"-I dr (5.18) 

[compare (4.17)]. Hence ho = L 2(lR+ ,r" - 1 ). 

Similarly, the space ifo = L 2(lR+) consists of states 

(5.19) 

Since the group action is not free, we have no set technique as 
in Sec. IV for constructing an isomorphism ho-ifo. None
theless, it is clear from (5.17)-(5.19) that 

,p(r)A. ® ~ 1-+ ~vol(S" I) r(n - 1)/2 ,p(r)Jo ® Va/as 
(5.20) 

defines a unitary isomorphism W of L 2 (lR + ,r" - 1 ) with 
L 2 (R + ). Thus we have unitary equivalence. 

Now consider, for instance, the radial momentum 
Pr = (q~)/II!iII· It is SO(n)-invariant and the reduced ob
servable is i~p r = s. Since P r preserves V both P rand s are 
quantizable. From (3.9) and (3.4)-(3.6) we compute 

22pr['I'] = - (ifz{_l_ (!i.V) + n -I} ,p(q»)A.®v[, 
11!i11 211qll 
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for 'I' given by (5.15). On h o =L 2(R+,r"-I) in hyper
spherical coordinates, 22 Pr takes the form 

22pr [,p(r)] = - ifz - + -- ,p(r). (
d n - 1) 
dr 2r 

Likewise, on ifo = L 2(R+), 

,qJs[ft,(r)] = - ifz!!... ft,(r) . 
dr 

It is routine to verify that the unitary map (5.20) intertwines 
22 P rand ,qJ s according to 

-ifz(!!...+ n-I)= W-'(-ifz!!"') W. 
dr 2r dr 

Theorem (4.3) therefore holds when n > 2, at least for the 
radial momentum observable. 

When n = 2 the action <I> is free and we may apply all 
our previous results. Other than this, the main difference 
between the cases n = 2 and n > 2 is that, since SO ( 2) is 
Abelian, every ItEso(2)*;:::::lR is invariant. 

Consider the standard connection 

(5.21) 

on a 2 = SO(2) XR+. Since a is flat, Kummer-Marsden
Satzer reduction implies that the reduced phase space is 
(R+ XR,w) as before. Composing io: lR+ XlR-J -1(0) giv
en by (5.14) with the SO(2)-equivariant diffeomorphism 
8p.: J -I (O)_J -I (It) given by (2.5) defines a global section 

ip. (r,s) = (r~,s~ + Ita(r~») (5.22) 

of1Tp. =1Too8;;1. Hence 

J -I (It) = SO(2) XlR+ XlR 

is trivial as a principal SO(2)-bundle. 
Now,H 2(a2XlR2,Z) = Oso that again theprequantiza

tion line bundle is unique and trivial. Letting [c(t)] be the 
generatorof1TI (SO(2») = Zand using (3.12) and (3.13), we 
find that the holonomy of Lp. is exp(21Tilfz)It). Proposition 
(3.4) then gives rise to a quantization condition: Lp. is reduc
ible iff It = mfz for some integer m. When It = mfz, Lp. is 
trivial as before. 

We must also be careful with the metalinear structures. 
Since H I(R2XlR2,Z2) = Z2 there are two metalinear frame 
bundles for V. On the other hand, there is exactly one (neces
sarily trivial) metalinear structure on the reduced phase 
space. This indicates that one of the metalinear frame bun
dles on R2 X lR2 will not project to lR + X lR and hence will 
lead to a spurious quantization. 

To construct these metalinear structures, introduce po
lar coordinates (r,O) on JR2 and set 

U+ = {(r,O)10<O<21T}, U_ ={(r,O)I-1Tdk1T} 

and 

W+ = {(r,O)IO<O<1T}, W_ = {(r,O) 1-1T<O<O}. 

Since FV is trivial, the transition functions M ± : 

W ± XlR2_ML(2,lR) for the two FVare 

M+ =1, M_ =1, (5.23) 

corresponding to the identity of H 1 (R X lR2,Z2 ), and 

M+ =1, M_ =€, 

corresponding to its generator, where 
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The metalinear frame bundle defined by (5.23) is trivial 
and the SO(2)-action on FV lifts to this FV just as when 
n > 2. It is this metalinear structure which projects to the 
reduced phase space. For the second metalinear frame bun
dle, it is clear from (5.24) that both FV and the natural 
homomorphism XSO(2): ~Z2 are nontrivial. It follows 
from Proposition (3.7) thattheSO(2)-actiondoesnot liftto 
this FV which therefore does not project to R + X R. 

Let £ = (a lap "a I aPe ) be a global frame field for Vand 

fix a lift b of b to the trivial metalinear frame bundle. From 
( 4. 7) every polarized section 'I' of L ® V /\ 2 V can be written 

'I' = ¢(r,O)A. ®v~ . (5.25) 

Using (5.16) with S = 1, the quantum constraint 
!!1 J[ '1'] = mli'l' for fL = mli becomes 

- iii :0 ¢(r,O) = mli¢(r,O) . (5.26) 

Thus the physically admissible states take the form 
¢(r,O) = k(r)eim8 consistent with (4.9). 

The reduced phase space quantization proceeds exactly 
as before. The reduced wave functions are given by (5.19) 
and the isomorphism (4.11) becomes k(r)eim8 I--+k(r). 

When fL = 0 these results correlate exactly with those 
obtained earlier for n > 2. The only difference is that here we 
have used the half-form v~ rather than vl' which, according 
to (3.2), satisfies vl' = V r v~. Writing 'I' gtven by (5.25) in 
theform (5.15) we have that t/'(r,O) = Vrt/'(r,O). With this 
change of notation, (5.20) is just (4.19) and all our previous 
results immediately carry over to the case n = 2. 

Remarks: ( 1) It is interesting to see what happens when 
we quantize the extended phase space using the nontrivial 
metalinear structure. Let ~ ± be lifts of i2 to this FV over 
U ± XR2; then from (5.24), 

- 2 __ {£+' on W+XR, 
b_ - _ 
- b+E, on W _ XR2. 

(5.27) 

Defining loeal sections v ± of V /\ 2 V over U ± X R2 by 
v! (~± ) = 1, it follows from (5.27) and (3.2) that 
v _ = ± v + on W ± X R2, respectively. The quantum wave 
functions are now 

'l'1(U± XR2) =¢± (r,O)A.®v± ' 

where 

¢_(r,O) = ± ¢+(r,O) (5.28 ) 

on W ± . Such a 'I' satisfies the quantum constraint (5.26) iff 

¢ ± (r,O) = k ± (r)e im8 

and (5.28) then implies that k_(r) = ± k+(r) on W ±' 

which forces k ± (r) =0. Thus, when the nontrivial metalin
ear structure is used, dY'1t = {o} and we have a spurious 
quantization. 

(2) Earlier we showed that the extended and reduced 
phase space quantizations of the radial momentum p r were 
unitarily related. Of course, this is not really surprising and 
was in fact guaranteed by our theorems when n = 2. It is 
therefore very curious that the same is not true for a rotation
ally invariant Hamiltonian except when n = 3. 
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Set fL = 0 and let the Hamiltonian be 

h (q,.e) = ! 11.e1l 2 + V( IIqll) . 
The reduced Hamiltonian on R + X R is 

ho(r,s) = ! S2 + VCr) . 

Neither of these is polarization preserving but may nonethe
less be quantized using Blattner-Kostant-Sternberg kernels 
(cf. Chap. 6 of Ref. 21). 

On L 2(R" ) we compute 

!!1h ['1'] ={[ - (fi2/2) a + V(r)]t/'(q)}A.®"1" 

In hyperspherical coordinates this reduces to 

!!1h ['1'] = {[ _1i
2 

(~+ n -l!£) 
2 dr r dr 

+ VCr) ] t/'(r) } A. ® vl' ' 

for 'l'Eho. Similarly, 

__ - {[ 1i2 
d

2 
] - }-

!!1 ho['I'] = - '2 dr + VCr) t/'(r) ..1.0 ® Va/as 

onL 2 (R+). Using (5.20) it follows that 

~ -I(gho) ~ =!!1h -fi2(n - 1) (n - 3)/8r. 

Consequently, these two quantizations do not intertwine 
g ho and !!1 h unless n = 3. It would be nice to understand 
the underlying geometric reason for this. 

When n = 2 and fL = mfz, (5.22) and (5.21) imply that 
the amended Hamiltonian hit = I! h is 

hit =ho + fL2/2r. 

Since now 'I' = k (r) eim8 A. ® "1" the above expressions for the 
quantum Hamiltonians must be modified by replacing VCr) 
by VCr) + m2fi2/2r. But!!1 hand gh

lt 
are still not unitarily 

related. 
(3) We have punctured R" in order to avoid patholo

gies. If the origin is not excluded cI> is no longer even effec
tive, R" ISO(n) is not a manifold and J -I (0) will be singu
lar. Our entire formalism then fails to apply. For a discussion 
of this case, see Refs. 25 and 26. 

C. Kaluza-Klein electrodynamics 

The Kaluza-Klein theory of a relativistic charged parti
cle provides another nice illustration of our formalism. We 
present only a brief account here; for more details on this and 
related topics see Refs. 16, 18, 19,21, and 27. 

Let Q represent four-dimensional space-time. The con
figuration space for our charged particle is a left principal T
bundle 1T Q : Q~Q, T being the multiplicative group of com
plex numbers of modulus one. We identify the Lie algebra of 
T with lR by associating to each eER the one-parameter 
group 

zl--+exp(i(eolli)et)z, (5.29) 

where eo is a parameter which we interpret as the "elemen
tary" charge. 

Suppose Q carries a T-invariant metric g of signature 
( + + + - - ). Define a connection form a on Q by 

a(v) =g(1Q'v) , 

for all vETQ, where lQ is the fundamental vector field on Q 
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corresponding to IER. By Lemma (2.6) there exists a closed 
two-form F on Q such that 

~F=da. 

We construe F as the electromagnetic field. Since F is the 
curvature of a circle bundle, the de Rham class (eo/h) [F) Q 
must be integral. This condition may be viewed as a restric
tion on the allowable interactions of a particle of charge eo 
with the electromagnetic field F in the Kaluza-Klein for
malism. Finally we define the space-time metric g via 

horg=~g. 

The group action is by construction free and proper and 
every eeR is invariant. We fix the charge of our particle by 
imposing the charge constraint J = e on T *Q. Kummer
Marsden-Satzer reduction then identifies the reduced phase 
space (J-1(e)IT,me) with (T*Q,Oe); here 

Oe =m + eraF 

is just the charged symplectic structure on T *Q. 
Let the prequantization line bundle be L = T *Q xc. 

Mimicking the calculation in the previous example while 
taking the precise form of (5.29) into account, we find that 
the holonomy of Le is exp(211"i(eleo»). In the Kaluza-Klein 
framework, then, the lifting criteria become superselection 
rules: Le is reducible iff the particle's charge e is an integral 
multiple of the elementary charge eo. When e = neo, the in
duced line bundle "Ie is also trivial. As an aside, notice how 
the integrality condition on (eo/h) [F]Q and thesuperselec
tion rule e = neo combine to guarantee the integrality of 
(llh)[Oe lr.Q = (elh)[F]Q as required for the quantiza
bility of the reduced phase space. 

Now assume that Q, and hence Q, is orientable. Using 
Proposition (3.6) and the metricg, we reduce the structure 
group GL(5,R) of FV to SO(3,2). Now SO(3,2) is isomor
phic to the intersection of u-I(SO( 3,2») with the component 
of the identity in ML( 5,R). Thus the transition functions for 
FV, valued in SO(3,2), can be lifted to u- I (SO(3,2») 
c ML( 5,R) thereby defining a metalinear frame bundle FV. 
The characteristic homomorphism of FV so defined is obvi
ously trivial. This and the orientability of Q imply that the 
associated bundle 11 A 5 V of half-forms is trivial. 

Proposition (3.7) and Theorem (3.8) guarantee that 
FV projects to a metalinear frame bundle FVon T *Q, which 
is exactly that constructed in a similar fashion to FV by re
ducing the structure group GL( 4,R) of FV to SO (3,1) using 
the space-time metric g. The half-form bundle 11 A 4Vis like
wise trivial. 

Set \11 = ,pA ® vg , where Vg is defined as follows. Fix a 
positively oriented orthonormal frame b for FQ, where bs is 
tangent to the fibers of 11" Q' and denote-also by £ the corre
sponding frame in FV (cf. Sec. III E). Then let v g be such 
that v:(~) = 1. It follows from Sec. IV C and the triviality 
ofbothLand 11 A Sv thatA' = L 2(Q, ~detg). Similarly, we 
haveqi=¢Xe ®Vg forqieAe =L2(Q,~detg). 

In a chart (q,z) onQ, where theq are space-time coordi
nates and z is the T-coordinate, the quantum constraint 

£?J[II'] =neo\l1 

becomes 
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- ili~ ,p(q,z) = neo,p(q,z) . az 
Thus the Kaluza-Klein quantum state space for a particle 
with charge e = neo consists of wave functions 

\11 = k(q) e(illl)ne"z A ® Vg • 

Since T is compact, the Unitary Equivalence Theorem as
serts that the correspondence 

k(q)e(illl)ne"z A ® Vg 1---+ k(q)Xe ® Vg 

defines a unitary isomorphism of L 2 (Q, ~ det g) with 

L 2(Q, ~detg). 
Our theorems therefore guarantee that the quantiza

tions of a relativistic charged particle with e = neo in both 
the Kaluza-Klein formalism and the conventional space
time-based approach are unitarily equivalent. Since all ordi
nary polarization-preserving observables-viz., the posi
tion, linear and angular momenta-are T-invariant, 
Theorem (4.3) shows that they may be equally well quan
tized in either formalism. 

VI. DISCUSSION 

We have proven theorems to the effect that one can 
quantize either the extended or reduced phase space of a 
constrained cotangent system with unitarily equivalent re
sults. The examples in the previous section demonstrate the 
utility of our formalism. Here we briefly overview our con
structions and conclusions with an eye to possible general
izations and improvements. 

We begin by reexamining the conditions under which 
our formalism operates. These are (I) G must admit a bi
invariant metric and the action of G on Q must be free and 
proper, (2) IlE?* must be invariant, and (3) the geometric 
quantization structures must be G-invariant. 

Regarding (I), the only really severe restriction is that 
the action be free. In fact, virtually all our results are predi
cated upon this assumption although, as the n > 2 angular 
momentum example shows, our theorems may be valid with
out it. One might try to weaken this hypothesis as in Mont
gomery,20 but it is not clear to what extent this is workable. 

As noted earlier, condition (2) serves a dual purpose. It 
guarantees classically that the reduction of a cotangent bun
dle is again a cotangent bundle and quantum mechanically 
that one obtains a representation of? on.Yr. The possibility 
that the reduced phase space is not a cotangent bundle is not 
a problem in principle, although one then of course loses 
much of the structure that so simplified our formalism. On 
the quantum level the noninvariance of Il would not neces
sarily be a disaster either, since one can always find another 
extended phase space in which the constraint set is imbedded 
coisotropically.7 One can then consistently quantize this 
new constrained system, but the price is that one will lose 
both the group-theoretical and cotangent bundle structures 
in the process. 

Our last condition (3) on the invariance of the quantiza
tion structures is vital. As the examples show, one either 
cannot quantize or obtains spurious quantizations if the G
action does not lift appropriately to both the prequantization 
line and metalinear frame bundles. It would be interesting to 
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know if every such structure on the reduced phase space 
arises by projection from an invariant one on the extended 
phase space and, conversely, whether every invariant such 
structure on T *Qis the pullback ofa compatible one on T *Q. 

To what extent can our results be expected to carry over 
to more general settings? The simplest modification to our 
framework is to allow for other types of polarizations. This 
should not cause too much difficulty provided Pis G-invar
iant, has simply connected leaves and intersects J - 1 (/1-) suf
ficiently regularly. Two distinguished possibilities are polar
izations P which satisfy either 

Pn TJ- 1(/1-) = {a} 

or 

P IJ -1(/1-) c;;, TJ -1(/1-) . 

One could also consider nonreal polarizations. 
Of critical importance, however, is that the polarization 

be chosen in such a way that every quantum wave function is 
uniquely determined by its restriction to the constraint set. 
In essence, this means that the extended phase space quanti
zation must be totally insensitive to what happens "off" 
J -I (/1-). This requirement seems reasonable, since in princi
ple only those classical states contained in the constraint set 
are physically permissible and/or relevant. For further dis
cussion ofthese matters, see Ref. 7. In any case, this condi
tion played a key role in the proof of the Smooth Equivalence 
Theorem. Without it there is no effective way to properly 
correlate the extended and reduced phase space quantiza
tions which will then, in general, be wildly incompatible. An 
interesting-and physically meaningful-illustration of the 
consequences of violating this condition is given by Ashtekar 
and Horowitz.5 An even more bizarre example is studied in 
Gotay.28 

The next step is to consider arbitrary constrained sys
tems with or even without symmetry. The problem is now 
much more difficult since we cannot explicitly construct 
anything and no longer necessarily have at our disposal well
behaved polarizations. What is known in this general case is 
summarized in Refs. 7, 8, and 10-12. 
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A noncanonical quantum system, consisting of two nonrelativistic particles, interacting via a 
harmonic potential, is considered. The center-of-mass position and momentum operators obey 
the canonical commutation relations, whereas the internal variables are assumed to be the odd 
generators of the Lie superalgebra sl ( 1,2). This assumption implies a set of constraints in the 
phase space, which are explicitly written in the paper. All finite-dimensional irreducible 
representations of sl ( 1,2) are considered. Particular attention is paid to the physical 
representations, i.e., the representations corresponding to Hermitian position and momentum 
operators. The properties of the physical observables are investigated. In particular, the operators 
of the internal Hamiltonian, the relative distance, the internal momentum, and the orbital 
momentum commute with each other. The spectrum of these operators is finite. The distance 
between the constituents is preserved in time. It can take no more than three different values. For 
any non-negative integer or half-integer I there exists a representation, where the orbital 
momentum is I (in units of2-1i). The position of any one of the particles cannot be localized, since 
the operators of the coordinates do not commute with each other. The constituents are smeared 
with a certain probability within a finite surface, which moves with a constant velocity together 
with the center of mass. 

I. INTRODUCTION 

In the last years there seems to be slow but increasing 
interest in the study of noncanonical quantum systems main
ly in the frame of quantum mechanics. The interest in this 
field stems from the observations that it opens new, uninves
tigated-up-to-now possibilities for theoretical explanation of 
certain subnuclear phenomena, which have not been proper
ly understood so far. Yet, one has to acknowledge the results 
in this approach are still modest, more of a philosophical, 
purely theoretical interest. They have not reached the level 
to propose any convincing explanation, overcoming some of 
the difficulties in the contemporary high energy physics. 

A common feature of the various approaches to noncan
onical quantum mechanics is the assumption that the posi
tion and the momentum operators Xi' Pi' i = 1, ... ,n, of the 
particles do not satisfy the canonical commutation relations 
(CCR's) 

[xl'h] =ifl!jjk' [XOXj] = [POPj] =0. (Ll) 

The main ideas of the current approaches, which fall essen
tially into three groups, were first formulated and worked 
out by SchrOdinger,l Weyl,2 and Wigner.3 The SchrOdinger 
approach is intensively developed by Barnt and co-workers. 4 

Preserving the essence of the Schrodinger ideas, these auth
ors consider the Dirac electron as a composite system. The 
center of charge of the system x (t) does not necessarily coin
cide with the center of mass X (t). The vector 

a) Permanent address: Institute of Nuclear Research and Nuclear Energy, 
Boul. Lenin 72, 1184 Sofia, Bulgaria. 

Q (t) = x (t) - X (t) is describing the high oscillation of the 
charge around the center of mass (the Zitterbewegung). As
suming that Qi (t) and their conjugate momenta Pi (t), 
i = 1,2,3, are noncanonical operators and more precisely 
that they generate under commutation the four-dimensional 
spinorrepresentation of the Lie algebraso(3 + 2), theauth
ors derive the Dirac equation. The spin of the electron is 
interpreted as the angular momentum of the relative motion. 
Other representations or realizations ofso(3 + 2) or of its 
other real forms lead to systems like an H atom or a ha
dron.S

-
7 Enlargements of the algebra to so(n + 2) for n de

grees of freedom allow kinematical description of composite 
atoms or hadrons,5 relativistic oscillator or rotator,6 etc. 

The Weyl approach to quantization was discovered 
after putting the CCR's in a mathematically rigorous form. 8 

It is well known that the relations ( 1.1 ) have only one repre
sentation in the case of a finite or countable number of opera
tors. This is the infinite-dimensional Fock representation. 
Since, however, the (unbounded) operators XI' Pk are not 
defined everywhere in the Fock space, one concludes that 
[x J,h] Ci-li, i.e., the relations (Ll) do not hold in the strict 
sense. To be rigorous, Weyl replaced the CCR's with a new, 
equivalent (however, no difficulties with the domains) set of 
relations 

exp(~jpj)exp(~kqk) 

= exp( fz l3k )exp( ~kqk )exp( fz jP j ). ( 1.2) 
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It turned out, however, that the form (1.2) of the canonical 
variables meant more than a sole mathematical rigor. As 
Weylpointed out, one can satisfy Eqs. (1.2) (and this is now 
a definition for a representation of the position and the mo
mentum operators) with x j' P k acting as Hermitian opera
tors in finite-dimensional spaces. For each i the numbers ai' 
Pi run over a finite set. In the recent years the Weyl quantiza
tion has been successfully developed by Santhanam, Jagan
nathan, Tekumalla, and Vasudevan.9 Similar ideas are 
worked out in Refs. 10 and 11. 

The Wigner noncanonical approach originates from a 
remark of Ehrenfest, 12 who observed that (in the Heisenberg 
picture), if one assumes the CCR's ( 1.1 ) to be valid, then the 
Heisenberg equations of motion 

Pk = - (i/Ii) [Pk,H], ilk = - (i/Ii) [qk,H] (1.3) 

hold if and only if the Hamiltonian equations 

. aH. aH 
Pk = --, qk =- (1.4) 

aqk aPk 

are fulfilled. To come to the generalization, discussed by 
Wigner,3 let us formulate the result of Ehrenfest in the fol
lowing way. Consider the following statements. 

(1) The Heisenberg equations ( 1.3) hold. 
(2) The Hamiltonian equations (1.4) hold. 
(3) The canonical commutation relations (1.1) hold. 

Then (EhrenfestI2
) each one of the first two statements is a 

consequence of the other two. Observing this and noting that 
Eqs. ( 1.3) and ( 1.4) have a more immediate physical signifi
cance than the CCR's (1.1), Wigner asked the question3: Is 
each one from the above statements a consequence of the 
other two? In an example of a one-dimensional harmonic 
oscillator he has shown that the answer to the above question 
was negative. The CCR's are not a consequence of the Ham
iltonian and the Heisenberg equations. These equations are 
equivalent for a much larger class of position and momen
tum operators (and in particular, for those satisfying the 
CCR's). The quantum pictures corresponding to such oper
ators may turn out to be of interest also. The quantum sys
tems corresponding to such generalized position and mo
mentum qi' Pi' i = 1, ... ,n, will be called Wigner quantum 
systems. More precisely, by a Wigner quantum system 
(WQS) we understand a quantum system with qi ,Pi defined 
as self-adjoint operators in such a way that the Heisenberg 
and the Hamiltonian equations ( 1.3) and (1.4) ] are equiva
lent, they appear as different forms of one and the same equa
tion. As we shall also see in this paper, one can find a WQS 
with position and momentum operators, defined in a finite
dimensional state space, i.e., also in this case one can consid
er finite quantum systems. 

One way to construct a WQS is to use the correspon
dence principle. To this end consider a classical Hamiltonian 

" p~ 
H= 'L-+ U(ql' .. ·.q,,) 

i=12mi 

( 1.5) 

with an even potential U( - ql, .... - q" ) = U(ql ..... q" ). 
which we assume for simplicity to be a polynomial of the 
coordinates. Represent U(ql' .... qb) (in one of the several 
possible ways) as a function of anti commutators {qi. q). 
i,j = 1 ..... n. and replace all Pi' ql by operators. defined as 
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follows: 

qi = (1/.)2)(a/ + ai-). Pi = (i/.)2)(a/ - ai- ). 
( 1.6) 

where 

[{af,aj},ak] =c5ik (E-s)aj +c5 jk (E-1/)af. (1.7) 

Here and throughout the paper s.1/,E,c5 = ± or ± 1. 
[xV'] = xy - yx, and {xV'} = xy + yx. In this way one ob
tains a WQS. 

The operators ( 1.7) are known in quantum field theory. 
They were introduced by Green 13 as a possible generaliza
tion of the statistics of integer-spin fields and are called para
Bose operators. Their irreducible representations, corre
sponding to Hermitian position and momentum operators 
and a nondegenerate ground state 10>, are infinite dimen
sional and are labeled by one non-negative integer p, the 
order of the statistics. 14 Only for P = 1 the position and the 
momentum operators are canonical. For definiteness we call 
the WQS's with operators ( 1.6) para-Bose quantum systems 
(PBQS·s). 

The noncanonical one-dimensional oscillator. consid
ered by Wigner. was a PBQS with one q and one p. The 
infinite number of solutions he found gave different repre
sentations of the same operators. 15 In recent years some 
PBQS's were studied in Refs. 16 and 17. 

In the present paper. we consider a model of a Wigner 
quantum system. which is not a PBQS. In a two-dimensional 
space we study the behavior of two nonrelativistic point par
ticles interacting via a harmonic potential. Such a system in 
the more realistic three-dimensional space was introduced 
by one of the authors (T.D.P.) in Refs. 15 (hereafter re
ferred to as I) and (18). The physical properties of this sys
tem were investigated for a certain. in fact, very poor class of 
representations of the position and the momentum opera
tors. Here we simplify the model, going to a two-dimensional 
space. On the other hand, however, we investigate the phys
ical consequences for all irreducible representations of the 
underlying algebraic structure. 

Mathematically the problem reduces to the determina
tion of the so-called star representation 19 of the special linear 
Lie superalgebra (LS) sl( 1,2). This LS is generated from the 
internal position and momentum operators. It does not ap
pear as a result of some other physical assumptions. We pos
tulate it more on a logical background. To see where the idea 
comes from consider n pairs a,± , .... a,,± of Bose creation and 
annihilation operators (CAO's) or the corresponding to 
them [according to (1.6)] position and momentum opera
tors q;.Pi' i = l ..... n. Then (Ref. 15) the linear span of a/ 
and their anticommutators {aft aj}. i.j = 1 ..... n; ;.1/ = ±. 
give rise to one particular infinite-dimensional representa
tion of the orthosymplectic LS. which in the Kac notation20 

is B(O.n). Other representations of B(O.n) lead to different
order para-Bose operators.21 In the same way n pairs of Fer
mi or para-Fermi operators give rise to representations of the 
orthogonal Lie algebra B" (see Ref. 22). There exists a one
to-one correspondence between the representations of n 
pairs of para-Bose (resp. para-Fermi) operators and the rep
resentations of the LS B(O.n) [resp. of the Lie algebra Bn. 
which in the Kac classification belongs to the class of the 
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orthosymplectic LS's (see Ref. 23) ]. The understanding of 
the Lie algebraical structure of the canonical quantum the
ory and its generalization along a parastatistics line suggests 
immediately some new ideas. To this end we first observe 
that the orthosymplectic LS's constitute one of the (essen
tially) four infinite classes of basis Lie superalgebras 
A,B,C,D (see Ref. 23), namely the class B. The physicalstate 
spaces are representation spaces of LS's from B. The dynam
ical variables (in the canonical and parastatistical cases) are 
functions of the generators of LS's from the class B. This 
observation states in a natural way the question of whether 
one can construct quantum systems and in particular a WQS 
with dynamical variables, which are functions of other LS's 
and in particular of other basic LS's. In the frame of the 
quantum field theory (QFT) a positive answer to this ques
tion was given in Refs. 24, where it was shown that to every 
simple class of Lie algebras one can put in correspondence a 
field quantization. In case of proper LS's only the class A, 
consisting of the special linear LS's, was investigated. In the 
frame of the quantum mechanics (QM) we refer to Refs. 15 
and 18. The present paper is also an example of a WQS of the 
type A. The quantum systems considered in Refs. 4-7 are B
type quantum systems. In the finite-dimensional cases, they 
can be expressed as para-Fermi realizations. Also of this type 
is the generalization of the Heisenberg commutation rela
tions, which in the nonrelativistic limit reduces to the CCR's 
(see Ref. 25). Also interesting, although in a somewhat dif
ferent spirit, is the high-energy generalization of the CCR's, 
proposed recently by Saavedra and Utreras.26 

II. A TWO-PARTICLE OSCILLATOR AS A WIGNER 
QUANTUM SYSTEM 

A. Formulation of the problem 

We wish to define in a rigorous way a noncanonical 
Wigner quantum system in a two-dimensional space with a 
Hamiltonian 

2 2 2 p, P2 m(tJ 2 
H lot = --+ --+ --(r, - r2) . (2.1) 

2mj 2m2 2 

This Hamiltonian corresponds to two nonrelativistic point 
particles with masses m 1 and m2. interacting via a harmonic 
potential. The requirement that the oscillator is a quantum 
system puts certain restrictions on the operators involved. 
First of all the radius vectors of the particles r i = (Xi' Yi ). 

the corresponding momenta, and. more generally, any dyna
mical variable F have to be defined as self-adjoint operators 
in a Hilbert space, which is the physical state space. Second, 
the Hamiltonian and the total momentum P = PI + P2 
should be infinitesimal generators of the unitary groups of 
time and space translations 

U(t> = e - (i/II)Ht, U(x) = e(i/II)Px, (2.2) 

respectively. Therefore, in the Heisenberg picture (which we 
shall use) the time evolution of any observable Fis governed 
by the Heisenberg equation of motion 

F= -i.[F,H], F= dF. (2.3) 
Ii dt 
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In particular, 

Pk = ~ [Pk,H ] , i = 1,2. (2.4) 

We require, moreover, the oscillator to be a Wigner quantum 
system, i.e., the Hamiltonian equations should also hold: 

Pk = - aH, rk = aH. (2.5) 
axk apk 

Introduce the center-of-mass (CM) coordinates 

R = (mIr, + m 2f 2)/(m, + m 2 ), f f, - f2' (2.6) 

and let p, = m 1 + m2 and m be the total and the reduced 
masses, P = p, + P2 and P be the total and the internal (the 
conjugate tor) momentum,respectively, r = Ir, - r2 1. Then 
the Hamiltonian is a sum of the CM Hamiltonian HeM and 
the internal Hamiltonian H, 

H lot = HeM + H, (2.7) 

where 

HeM = P2/2p" H = p2/2m + m(tJ2r2/2. (2.8) 

Similarly, the angular momentum splits, M tot = M eM + M. 
In this notation one has Heisenberg equation, 

p= (illi) [P.HCM +H], R= - (illi) [R.HCM +H], 
(2.9) 

P= - (illi) [p, HCM +H), r= - (illi) [r,HCM +H]; 
(2.10) 

and Hamiltonian equations, 

P=O, R=P/p" (2.11) 

P = - m(tJ2r, r = p/m. (2.12) 

Following I, we assume first that the center-of-mass varia
bles R and P commute with the internal variables r and p. 
Second, we postulate that R and P satisfy the CCR's (1.1). 
Then we are left with the Heisenberg equations (2.13) and 
the Hamiltonian equations (2.14) for the internal rand p 

P= - (illi)[p.H], r= - (illi)[r,H], (2.13) 

P = - m(tJ2r, r = p/m. (2.14) 

Equations (2.13) and (2.14) are compatible if at any time 

[H,pd = ilimoirk' 

[H, rd = - (ililm)Pk, k = 1,2. (2.15) 

These equations have to be fulfilled, if one wants the oscilla
tor to be a Wigner quantum system. 

B. Ue superalgebralcal realization 

We now proceed to establish a realization of the internal 
variables in terms of the generators of the Lie superalgebra 
sl ( 1,2). This realization will satisfy the requirements (2.15 > 
for the system to be a WQS. It is, however. by no means the 
most general one. One can study realizations with generators 
of other Lie algebras or Lie superalgebras. Nevertheless, we 
shall see that the sl ( 1,2) realization leads to infinitely many 
nonequivalent Wigner quantum systems. 

To begin with we recall the definition of the special lin
ear Lie superalgebra sl(1.2). LeteA.B,A,B = 0.1,2. bea 3X3 
matrix with 1 on the A th row and B th column and 0 else-
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where. Then sl( 1,2) is the linear span ofthe odd generators are 

eOk' ekO' k = 1,2, (2.16 ) 

and all their anticommutators 

(2.17) 

The matrices Eij' i,j = 1,2, constitute a basis in the even 
subalgebra, which is isomorphic to the Lie algebra gl(2). 
The product [, ] on sl( 1,2) is defined in terms of commuta
tors or anticommutators 

[a,b] = ab - ( - 1 )afJba, (2.1S) 

where a and b are any two homogeneous elements of degree 
a and fl, respectively. Using the relation 

(2.19 ) 

and the defining relations (2.16) and (2.17), one easily de
rives the (anti) commutation relations in sl ( 1,2) 

[Eij' ekO ] = l)jke/O -l)ijekO ' 

[Eij,eod = -l);keOj +l)ijeOk ' 

[e/O,eOj ] = Eij' {e/O,ejO} = {eo;.eOj } = O. 

(2.20) 

We now give the following realization of the internal 
coordinates and momenta: 

r l = (1i/2mw) 1I2(elO + eOl + e20 + e02 )' 

PI = i(mwli/2) 112 ( - e lO + eOI - e20 + e02 )' 

r2 = i(Ii/2mw) 1I2(elO - eOI - e20 + e02 )' 

P2 = (mwli/2)1I2(elO + eOI - e20 - e02 )' 

The inverse relations read 

ekO = (mw/SIi) 112 [r l + i( - l)kr21 

+ i(Smwli) - 1/2[pl + i( - 1 )kP2], 

eOk = (mw/SIi)1I2[rl - i( - i)kr21 

+ i(Smwli) - 112 [ - PI + i( - 1 )kp2 1. 

(2.21 ) 

In terms of these generators one obtains the following ex
pressions for the internal Hamiltonian H and the compatibi
lity conditions (2.15): 

H = wli(EII + E 22 ), (2.22) 

[Ell +E22,ekO ] = -ekO' [Ell +E22,eOk] =eOk ' 

(2.23) 

From the sl( 1,2) (anti)commutation relations (2.20) one 
immediately concludes that Eqs. (2.23) hold. We recall, 
however, that our considerations are in the Heisenberg pic
ture. The position and the momentum operators and, hence, 
also the generators of sl ( 1,2) (considered as dynamical var
iables) depend on time. The Heisenberg equations (2.13) 
and the Hamiltonian equations (2.14) will be equivalent if 
the compatibility relations (2.22) hold at any time, i.e., if 
they are fulfilled as equal time commutation relations. One 
easily checks that this is the case. To show it we observe that 
in terms of the generators the Hamiltonian equations (2.14) 
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ekO (1) = - iwekO (1), eOk (1) = iweOk (1). (2.24) 

Hence 

ekO (t) = exp( - iwt)ekO (0), eOk (t) = exp(iwt)eOk (0). 

(2.25) 

Inserting this solution in (2.20) we see that the (anti)com
mutation relations of sl ( 1,2) can be considered as equal time 
relations. Hence, also Eqs. (2.23) hold at any time. Observe 
that the even generators and, therefore, all the gl (2) subalge
bras are time independent. In particular the Hamiltonian (as 
it should be) does not depend on time. 

To turn the two-particle oscillator into a quantum sys
tem it remains to determine the physical state space of the 
system as a Hilbert space Vand to represent the position and 
the momentum operators as self-adjoint operators in V. The 
relations between r; andp;, which have to hold in any state 
space, follow from (2.20). The three linear relations from 
(2.20) read 

[ {r;,rj },rk ] = (i1i/m
2
w

2
) (l);kP j + l)jkP; - 2l)ijPk)' 

[ {r;.rj}>Pk] = ili( -l);krj -l)jkr; + 2l)ijrk ), 

[ {r;,pj },rk ] = ili(l)jkr; -l);krj)' 

[{r;,pj},pd = ili(l)jkP; -l);kPj)' 

[(p;.pJ,rk ] = ili(l);kPj + l)}kP; - 2l)ijPk), 

(2.26) 

For the anticommutation relations in (2.20) one obtains 

{rk,Pk} = 0, k = 1,2, 

{r l ,P2} + {r2,PI} = 0, (2.27) 

(1/2m){PI,pj} - (mw2/2){rorj} = 0, i,j = 1,2. 

The relations (2.26) and (2.27) should not be considered as 
a minimal set. Some of them are dependent [in view of the 
third relation (2.27), for instance, the first two and the last 
two relations in (2.26) are equivalent]. Of particular inter
est is the last relation (2.27) if i = j = 1,2. Then 

In the classical case these equations have no bound state 
solutions. We shall see that in the quantum case the behavior 
of the particles is different. In view of all constraints (2.26) 
and (2.27) the spectrum of the internal oscillator is discrete 
and even finite. 

As in Refs. 4, 5, and 25, in our case the internal coordi
nates do not commute with each other: 

[r l ,r21 #0, [P1,P21 #0. 
Indeed, if [r l ,r21 = 0, then the right-hand side of (2.26a) 
would have been equal to zero. 

Eqs. (2.26) and (2.27) are equivalent to the (anti)com
mutation relations (2.20), defining the Lie superalgebra 
sl ( 1,2). Therefore, the problem of determining all operators 
P; and rl that satisfy (2.26) and (2.27) means that one has to 
consider all representations of sl ( 1,2). The requirement that 
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71 and PI are self-adjoint operators imposes certain limita- representation space for gl (2). Therefore, the space 
tions. To show this we observe that (A + denotes the adjoint 
to theA operator) the conditions V = Vo + eOI Vo + e02 VO + eOle02VO (2.36) 

p/ = Pi> 7/ = 71, i = 1,2, 

hold if and only if 

(ekO ) + = eOk ' k = 1,2. (2.28) 

As a consequence of (2.28) one has for the even generators 

(2.29) 

i.e., the representations of the real form U (2) have to be anti
Hermitian. As is well known all such irreducible representa
tions are finite dimensional. 

Let Vbe a physical state space of the (internal) oscilla
tor. For physical reasons we assume that the energy spec
trum is bounded from below. Let lEo) be a state correspond
ing to the ground energy Eo, 

H lEo) = EoIEo). (2.30) 

Then [see (2.23)] 

(2.31) 

and, therefore, 

ekO lEo) = 0, k = 1,2. (2.32) 

In order to proceed further we observe that the repre
sentations of sl(1,2) for which (2.28) holds are star repre
sentations.27 An important feature of the star representa
tions is that they are always completely reducible. Let V be 
an irreducible sl( 1,2) representation space and Ube the al
gebra of all polynomials of the sl ( 1,2) generators. Then the 
irreducibility of V implies that for any Ix)e Vand in particu
lar for IEo)e V, 

UIEo) = V. (2.33) 

Using the structure relations (2.20), one can represent any 
element ueU as a linear combination of ordered monomials 
of the sl(1,2) generators (Poincare-Birkhoff-Witt 
theorem23

) 

is also finite dimensional. We came to an important conclu
sion: the state space Vofthe internal variables of the oscilla
tor is a finite-dimensional irreducible representation space of 
the Lie superalgebra sl( 1,2). Hence, in order to determine 
the possible physical state spaces, it suffices to consider only 
the finite-dimensional irreducible representations of sl ( 1,2) 
and subsequently select those for which the star condition 
(2.28) holds. All finite-dimensional irreducible representa
tions of sl( 1,2) are known. They have been constructed in 
Ref. 28. In the next subsection we write them down in a 
Gel'fand-Zetlin basis. 29 

C. Finite-dimensional Irreducible representations of 
sl(1,2}21 

Everywhere in the rest of the paper by a representation 
we understand a finite-dimensional representation. The irre
ducible representations (IR's) of sl ( 1,2) are labeled with all 
complex pairs [m 13,m23 ] such that m 13 - m23 are non-nega
tive integers. An orthonormed basis in the sl( 1,2) represen
tation space [ = sl( 1,2) module] W( [m 13,m23 ]) is given 
with all possible Gel'fand-Zetlin patterns, i.e., with all possi
ble complex tables 

(2.37) 

such that (Z+ = all non-negative integers) 

(2) mi3 - m,2 = 0,1, i = 1,2; (2.38) 

(3) ifmk3 = k - 1, then m,'3 = m,2' i=/=k = 1,2. 

(2.34) Let 

Since (eOk)2 = HeOk,eOk} = ° and (ekO)2 = 0, in (2.34), 
(}1'(}2,'Y/H712 = 0,1, whereas'Y/ij are any non-negative integers, 
nijEZ+. In view of (2.32) from (2.34) one concludes that 

V= L (eol)6'(e02)6'&,/Eo), (2.35) 
6,.6, = 0,1 

where &' denotes all polynomials of the even generators. 
Clearly, &' lEo) = Vo is an irreducible finite-dimensional 
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{
I, for x,O, 

(}(x) = 0, 
for x <0. 

(2.39) 

The transformation of the Gel'fand-Zetlin basis (GZ basis) 
under the action of the generators reads (k = 1,2) 
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X 181k l3 - ;.2 + 82k l;2 - III - k 

113 -/23 

X I 8lk I3 -;,2 + 82k l i2 -/\1 + k - 11112 
113 -/23 

(2.40) 

m 13, m23) 
m 12, m 22 • 

m ll -l 

As in the case of the simple Lie algebras [the LS sl ( 1,3 ) 
is also simple], the rows labeling the GZ pattern (2.37) have 
well-defined meaning. The second row [m 12,mZ2] indicates 
that (2.37) is a vector from the gl (2) irreducible representa
tion subspace V( [ml z,mz21) C W( [m 13,m23 1) in the de
composition sl ( 1,2) :::> gl (2). The third row label mIl indi
cates that the pattern belongs to the gl ( 1) irreducible 
subspace of V( [mlz,mzz l) in the decomposition 
gl(2) :::>gl( 1). In view of the second condition in (2.38), the 
space W( [m13,mz31) decomposes into a direct sum of no 
more than four g1(2) irreducible subspaces V( [m12,m221). 
More precisely, 

W( [m I3,m23 1) 
= V( [m I3,m23 ]) $ V [(m 13 - l,m23 ]) 

Ell V( [m 13,m23 - 1]) $ V( [m l3 -1,m23 - 11). 
(2.41 ) 

The terms in the above sum that do not satisfy the conditions 
(2.38) have to be replaced by zero. For instance, if m 13 = 0, 
then according to the third condition in (2.38), m23 = m 22, 

and, therefore, V( [O,m 23 - 1]) = V( [ - l,m 23 - 1]) = 0, 
i.e., 

W( [O,m231) = V( [O,m231) $ V( [O,m 23 11)· (2.42) 

Similarly, 

W( [m 13,I]) = V( [m 13,l]) $ V( [m 13,O]). (2.43) 
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The representations (2.42) and (2.43), corresponding to 
m\3 = ° and m23 = 1, respectively, are exceptional in a cer
tain sense. Only for these two classes of representations the 
space W( [m 13,m23]) is always a sum of no more than two 
gl (2) irreducible subspaces. In the Kac terminology23 these 
representations are called nontypical; all other representa
tions are typical. 

D. Spectrum and elgenstates of the phYSical 
observables 

Denote by ( , ) the scalar product in W([m I3 ,m23 D 
corresponding to the orthonormed GZ basis. It is a simple 
task to check that for any two vectors xJlEW( [m 13,m23 ) 1 
the relation 

(x,ekoY) = (eOkx,y), k 1,2, (2.44) 

holds if and only if m23 is real and m23> 1. It is slightly more 
difficult to prove that one cannot enlarge this class of the star 
representations30 by a change of the metric in 
W( [m 13,m23] ). Thus, the internal position and the momen
tum operators (and hence also the initial r 1,r2,Pl,P2) are 
Hermitian operators31 only in those sl( 1,2) modules for 
which m 23> 1. In other words, the two-particle oscillator, 
corresponding to the Hamiltonian (2.1), is a Wigner quan
tum system only in the sl(1,2) irreducible representation 
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spaces 

W( [m 13,m23])' m23>1. (2.45) 

For definiteness we call the representations corresponding 
to (2.45) physical representations. This class resolves into 
three subclasses, describing essentially different physical 
systems: (A) nontypical representations with 
m13>m23 = 1, (B) typical representations with 
m 13 = m23 > 1, and (C) typical representations with 
m13 >m23> 1. 

We shall determine the spectrum of H, r,p2, and M in 
each of these cases. We have 

(2.46) 

The operator e is the central element ( = the first-order Ca
simir operator) of gl (2). On each gl (2) irreducible subspace 
V( [m I2,m22 ]) C W( [m 13,m23]) [as one can also see from 
(2.40)] it is a constant. The second operator 1 labels the GZ 
basis vectors within each V( [m I2,m23 ]). From (2.21) and 
(2.22) one easily derives that (we jut a caret over the opera
tors; A denotes an eigenvalue of A) 

iI = d, i 2 = (IiIm(J)e, 
(2.47) 2 A A Ii = m(J)/1e, M = 2N. 

Clearly, all operators commute. Moreover, in the GZ basis 
(2.37) they are diagonal [see (2.40)] 

(2.4S) 

(2.49) 

1. The class m13>m23 = 1 

According to (2.42), W( [m13,I]) isadirect sum of two 
gl(2) irreduciblesubspaces V( [m13,(~]),B = 0,1. Therefore, 

m13,I) m13,t) 
e ml3,B = (m 13 + B) m13,B , 

mil mil 

m 13,I) m 13. 1) 
1 m13,B = (mil - m132+ B) m 13,B . 

mil mil 

(2.50) 

The operators iI, r = (i2 ) 1/2,p = (1)2) 1/2 have two different 
eigenvalues 

H = am(m13 + B), , = (li(ml3 + B)lm(J))1/2, 
(2.51) 

The angular momentum takes simultaneously 2m 13 + 1 
different integer and half-integer values 

- m13/2<:.1<:.mI3/2 in V( [m13'O]), (2.52) 
- (m 13 -1)/2<:.1<:.(m 13 -l)/2 in V([m 13,l]). 

The sl ( 1,2) module from this class, corresponding to the 
minimal energy Hmin and, hence, to the minimal distance 
between the particles 'min, is W( [ 1,1 ] ). The corresponding 
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eigenvector 

1,1) 
1,0 

mn 
spans a basis in the two-dimensional gl (2) irreducible sub
space V( [l,OJ). Its eigenValUes are 

H min = (J)1i, 'min = (lilm(J) 112, M = -1i,1i. (2.53) 

2. The class m13 = m23> 1 

Each sl( 1,2) module W( [m I3,mll ]) is a direct sum of 
three gl(2) irreducible representation spaces 

W( [m 13,mI31) 

= V{ [m 13,m 13D ED V( [m 13,m 13 - 1]) 

ED V{ [m13 - l,ml3 - 1 D. (2.54) 

All these spaces are four dimensional (1 + 2 + 1). The op
erators iI, r, p have three different eigenvalues (k = 0,1,2) 

H = (J)1i(2m 13 - k), , = [1i{2m13 - k)/m(J)] 112, 

P = [m(J)Ii(2m 13 - k)] 112. (2.55) 

The eigenvalues I of / are 

1=0 on V( [m13,m13]) and V{ [mJ3 - 1, m13 - 1]), 

1= - !,! on V([m 13, ml3 - 1]). (2.56) 

The representation space from this class, carrying a minimal 
energy H min (resp. 'min andpmin) is W([2,2]). The state 
corresponding to them is 

2,2) 
1, 1 

1 

with eigenValues 

Hmin = ~Ii, 'min = (2Iilm(J)1/2, M min = O. (2.57) 

3. The class m13> m23> 1 

In this case every W( [m13,m23 ]) is a direct sum offour 
nonzero subspaces V( [m 12,m22 J) [see (2.41)J. The spec
trum of iI, r, and p consists of three different points 
(k = 0,1,2) 

H = am(m 13 + m23 - k), 

,= [1i{m 13 +m23- k )/m(J)]1I2, 

P = [m(J)li{m 13 + m23 - k) ]1/2. 

For lone has 

(2.5S) 

- !(m J3 m23 + 1 - k)<:.I<!(m J3 - m23 + 1 - k), 

k=0,1,2. 
(2.59) 

The spectrum of iI, r, p, and 1 is not simple. In all cases the 
eigenspaces of 1 are of dimension I or 2. The subspace 
V( [2,1 ] ) of W( [3,2] ) corresponds to the minimal values of 
H", andp 

Hmin = 3(J)1i, 'min = (3Iilm(J)1/2, 

Pmin = (3mam)I/2. 
(2.60) 

The angular momentum of the minimum energy states takes 
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values 

- !(m 13 - m23 )o;;;/·q(m13 - m23 ). (2.61) 

Comparing the expressions (2.53), (2.57), and (2.61), we 
conclude that the nearest allowed distance between the par
ticles is reached, if the state space is W( [ 1,1 ] ). The subspace 
V( [1,0]) C W( [1,1]) is an eigenspaceofH, r, andp, corre
sponding to the absolute minimum of H, r, and P 

Habo min = li)1i, r abo min = (iii mli) ) 1/2, 

Pabomin = (mli)li) 1/2. 
(2.62) 

We see that in all cases the particles are bound to each 
other. Since [il,fl] = 0, the distance' between them is pre
served in time. The position, however, of any one of the con
stituents cannot be localized, since the coordinates do not 
commute. The particles are moving in a plane as the ends of a 
stick. The latter is rotating around the center of the mass, 
however; its orientation in the plane cannot be localized. The 
particles are smeared with a certain probability on a circum
ference, which centrum is the CM of the system. In the limit 
11-0, also ,-0, H-o, and p-o. Therefore, in the classical 
limit the composite system collapses into a point, which 
moves as a free classical point particle with a mass m I + m2 

together with the center of the mass. 

III. CONCLUDING REMARKS 

Apart from the general axioms, which have to be satis
fied by any quantum system, following Wigner and having 
also in mind the canonical quantum mechanics, we have de
manded that (in the Heisenberg picture) the position and 
the momentum operators of the particles involved should 
satisfy the equations of motion of the classical mechanics. 
This is the point at which the main difference occurs between 
the Wigner approach, accepted in Refs. 15-17 and also in the 
present paper, and the other related noncanonical ap
proaches, mentioned in the Introduction. In a case of 
Wigner quantum systems one can consider the particles in
volved as real quantum objects, discuss their masses (the 
equation p = mr holds), the forces (mr = - aulat also 
holds), etc. At the same time, the compatibility equations 
(2.15) put strong limitations on the possible choice of the 
position and the momentum operators r; and p;, respective
ly. It may even happen that the Hamiltonian and the Heisen
berg equations are not compatible for certain potentials, i.e., 
the operators r; and p; do not exist. On the other hand, the 
example we have considered allows the existence of infinitely 
many nonequivalent WQS's. 

We have chosen the Lie superalgebra sl(1,2) =:;A (0,1) 
because in the Kac classification of the basic LS'S20 it is the 
nearest neighbor to the canonical LS of the oscillator, which 
is the orthosymplectic algebraB(0,2). Moreover, the repre
sentations of sl ( 1,2) are known. One may also construct 
Wigner quantum systems (in a two- or three-dimensional 
space) with internal variables generating basic LS's from the 
classes C and D or some of the exceptional LS's. One may go 
over to consider also some of the strange or the Cartan sim
ple LS's. Not much is known, however, about the represen
tations of these LS's and this is the main difficulty that one 
will encounter when dealing with them. 
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If one abandons the requirement of the system to be a 
Wigner one and goes to general quantum systems, the free
dom is much larger. Even in the frame ofsl( 1,2) [or sl( 1,3) 
in the three-dimensional space lS

] one can consider other in
teractions between the particles. Another approach is to as
sume that the coordinates and the momenta generate Lie 
algebras. In this way one considers relativistic models of 
composite systems,S relativistic oscillator and rotator, 6. 

7 etc. 
Our next step will be to come back to the two-particle 

oscillator in a three-dimensional space and to study its prop
erties in the frame of all finite-dimensional irreducible repre
sentations of the LS sl ( 1,3), which are by now known.32 As 
an important future problem it remains to develop a mani
festly covariant approach to the ideas ofWigner, considered 
in I and in this paper. 
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The lower semicontinuities of the entropy and the mutual entropy of a state for C *-dynamical 
systems are proved with respect to the set of all KMS states and the set of all a-invariant states. 

I. INTRODUCTION 

We have several different types of entropies in quantum 
mechanical systems, which are fundamental tools to discuss 
the properties of physical systems. 1.2 The entropy of a state 
and the mutual entropy with respect to a state and a channel 
in C *-dynamical systems were introduced and their dynami
cal properties were studied in Refs. 3-5. We here consider 
the continuity of these two C *-entropies with respect to the 
set of certain states. In Sec. II, we briefly review the defini
tions of the C *-entropies used throughout this paper. The 
lower semicontinuity of the entropy of a KMS state is stud
ied in Sec. III, and the lower semicontinuity of the mutual 
entropy with respect to a KMS state and a channel is studied 
in Sec. IV. Finally, the lower semicontinuities of the entropy 
and the mutual entropy for stationary states are discussed in 
Sec. V under some ergodic conditions. 

II. PRELIMINARIES 

Let .21 be a C *-algebra with unity I, ® be the set of all 
states on .21, and a(R) be a one-parameter automorphism 
group on .21. We call a triple (.21, ®,a(R») a C *-dynamical 
system and denote the GNS representation by 
{JYtp' 'TTli" xII'} for each state cP E ®. Further, let Y be a 
weak* compact convex subset of® and ex Y be the set of all 
extreme points in Y. 

For each state cp E Y, there exists a maximal measure J.L 
pseudosupported on ex Y such that 

cP = Jy W dJ.L (= LxY)W dJ.L). (2.1) 

This measure J.L is not always unique, so we denote the set of 
such measures by Mil' (Y). TakeDtp (Y) = {jL EMil' (Y); 
3 Uk} C R + and {CPk} C ex Y S.t. l:kAk = I and J.L 
= l:kAk8(CPk) with delta measure 8(CPk )}, and put 

H(J.L) = - l:kAk log Ak for J.L E Dtp (Y). Then the entropy 
of a state rp w.r.t. Y is defined by3 

y {inf{H(J.L); ,u E Dip (Y)}, 
S (cp) = . + 00 (If Dtp (Y) = 0). 

(2.2) 

This entropy is an extension of von Neumann's entropy and 
depends on the set Y chosen. Hence it represents the uncer
tainty of the state cP measured from the coordinate system 
Y. In particular, three cases, (1) Y = ®, (2) Y = I(a) 
(the set of all a-invariant states), and (3) Y = K(a) (the 
set of all KMS states w.r.t. a), are important to analyze 
physical systems. Consult Ref. 3 for dynamical properties of 
this entropy. 

The dynamical behavior of physical systems is described 
by the dynamical change of states. The transformation pro-

viding the state change is called a channel generally defined 
asfollows6

,7: Let (d',®, a(R») be another C *-dynamicalsys
tem. Then a channel A * is a mapping from ® to ® such that 
its dual map A is completely positive from d' to .21. If both 
.21 and d' are von Neumann algebras acting on Hilbert 
spaces JY and ff/, respectively, then we require the mapping 
A to be normal. When a state cP E Y changes to another state 
-;p = A *cP E J" through a channel A *, there exists a correla
tion between cP and -;p, and this correlation is expressed by the 
so-called compound state. The compound state w.r.t. Yand 
a decomposition measure J.L of (2.1) is given as 

<1>: = Jy W ® A *w dJ.L, (2.3 ) 

which is a state on the tensor product C *-algebra .21 ® d' 
(see Refs. 4 and 8). When.21 is an Abelian C *-algebra, (2.3) 
is reduced to the usual compound measure for classical sys
tems.s 

When an initial state cP E Y goes to a final state 
-;p = A *cP through a channel A *, it is natural for us to ask 
how much information carried by cP can be transmitted to the 
output system. It is the mutual entropy that represents this 
amount of information transmitted from cP to-;P. 

In order to formulate this mutual entropy, we need the 
relative entropy of two states first introduced by Umegaki9 

and extended by Araki10 and Uhlmann. 11 We here review 
Araki's definition of the relative entropy. Let!n be au-finite 
von Neumann algebra acting on a Hilbert space % and cP, t/J 
be normal states on !n given by cp(.) = (x,.x), 
t/J( . ) = (y,.y) with x,y E %. Then the operator Sx,y is de
fined by 

SX,y (Ay + z) =?I( y)A *x, A E!n, ?I' (y)z = 0, 

on the domain !ny+(/-?l'(y»)%, where ?I(y) is the 
projection from % to {!n'y} -I. For this SX,y, the relative 
modular operator Ax,y is defined as Ax,y = (Sx,y )*SX,y and 
the relative entropy S( t/Jlcp) is given by 

S(t/Jlcp) = {- (y, (log Ax,y)Y) (t/J<rp) , . (2.4) 
+ 00 ( otherwise) , 

where t/J<lP means that lP(A *A) = 0 implies tP(A *A) = 0 
for A E!n. If t/J and cp are states in a C *-system, then the 
relative entropy S( t/JllP) has been defined by Uhlmann, 
which_is, however, identical to S(ifrlqi) of Araki, 12 where;P 
and tP are the canonical extensions of lP and t/J to 
'TTli' +",(.21)". 

The mutual entropy for lP E Y and A· is given by4,5 
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(2.6) 

where \II q1 ® A*q1 and the set F; (Y) is 

{

{P e D", (Y); 

F;(Y) = SY(q1) <.R(p) <SY(q1) +E< + oc}, 

M",(Y), if SY(q1) = + oc. 

Our quantum mechanical mutual entropy so defined is in
deed an extension of the mutual information in measure 
theorestic formulation given by Gel'fand-Yaglom. 13 

Remarks: (1) When SY(q1) =H(p) holds for some 
measure p, F; (Y) is equal to the set {P ED", (Y); 
SY(q1) =H(p)}. 

(2) The mutual entropy I,.. can be expressed as 

I;(q1:A*) = f y S(A*mIA*q1)dp, (2.7) 

for some dynamical systems.5 

III. LOWER SEMICONTINUITY OF ENTROPY FOR KMS 
STATES 

Let Y be K (a) in this section. The next lemma is rather 
well known and easy to prove. 

Lemma 3.1.: Let sf be a von Neumann algebra and q1, "" 

be normal states on sf. We have (1) if q1 and"" are in 
ex K(a) and q1 =1="", then s(q1)ls("")[s(q1) is the support of 
q1]; and (2) 1Iq1-",,1I = 1I1q1- ",,111· 

lt is known l4 that for each q1 E K(a), there exists a 
unique maximal measurep of the decomposition (1.1) of q1. 

Therefore D",(K(a») = {P} or 0. In the sequel, let 
q1 (II) (n = 1,2, ... ) be a sequence of states converging tOq1 in 
norm (i.e., 1Iq1(II) - q1I1-+O) and p (II) , P be the decomposi
tion measures of q1(II) , q1, respectively. 

Theorem 3.2 [Lower semicontinuity of SK(a)(<p)]: If 

1Iq1 (II) - q1I1-+o, then SK(a)(q1)< lim inf SK(al(q1 (n». 

and 

II~OQ 

Proof The proof of this theorem consists of three cases: 

(1) p(n) eD",(n) (K(a» and p eD",(K(a»), 

(2) p(lI) ED",(n)(K(a») and pEtD",(K(a»), 

(3) p(n)EtD (n)(K(a». 

'" Case (1): Put 

m (n) = 1:.A ~1I)m (II) 
T ] ] TJ 

q1 = 1: jA jq1 j 

with 

{q1 ;n)}, {q1j} C exK(a) 

and 

Al");;;'A in);;;. .•• , AI ;;;.A2 ;;;. .... 

For a state 

1 1 
m= '" ~(II) +_q1 
~ 2"+t 2' 

Let {if"'"" 1T"" x"', U;'} be the GNS representation of sf 
induced by m. Further let wand at be the canonical exten
sions of m and at to 1T '" (sf) N 
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[i.e., w(Q) = (x"" Qx,), 

a;'= U;'QU;'·, QE 17'., (sf)"]. 

Then there exist some constants a(n>, ain);;;.O for each 
q1 (II) E K(a), q1 i") e ex K(a) satisfying q1 (1I)<a(lI)m, q1 f") 
<afn)m. Hence there existl4 positive operators T(n), Tf') 
E 1T", (sf)" n 17'., (sf)' for q1 (n), q1 fn

) such that 

q1(n)(A) = (x"" T(n)17'w(A)x",), 

q1 f") (A) = (x ... , T f")17' '" (A )x,,,,) , A E sf, so that the 
canonical extensions ip (II), ip ?), to 1T", (sf)" are expressed 
by 

ip (n)(Q) = (x"" T(n)Qxw)' 

ip in)(Q) = (xw' nn)Qx",), 

QE1T.,(sf)". 

Thus ip (II), ip i") are normal KMS states w.r.t. a;', and 
ip i") E exK(aW

) for every i. Therefore the factor decomposi
tions ofip (n) and ip are written as 

0; (It) - "', (It)o; (II) 0; - "', 0; 
T - ~/I.. i T'i , T - £./t.iTi' 

i j 

with {ip ilt)}, {ipJ C ex K(a"'), 

which imply that the entropies S K(a~) (ip (II» and S K(a~) (ip) 
are equal to SK(a)(q1 (It» and SK(a)(q1), respectively. Fur
thermore we have /lq1(II) - q1I1-+o iffllip (n) - ip 11-+0, which 
can be proved from the fact IS that for any Q E 17' W (sf), there 
exists A E sf with 17'(» (A) = Q and IIA II = IIQ II. Hence the 
proof becomes complete if we can show the inequality 

In the sequel discussion, put q1 = ip, q1 (II) = ip (II), and 
a = aW for notational simplicity. From the polar decomposi
tion of states, we have 

q1 (n)<Iq1 (n) _ q11 + q1, 

q1<Iq1 (II) _ q11 + q1 (II). 

(3.1 ) 

(3.2) 

Put E ~ = 1:7= 1 S(q1 j"» for each kEN. Then we have the 
following inequalities by (3.1) and (1) of Lemma 3.1: 

k 

LA?) = q1 (n) (E ~) < 1q1 (nl - q11 (E ~) + q1(E ~) 
i= 1 

k 

<1I1q1 (n) - q1111 + L Ai' (3.3) 
i=1 

PuttingEk = 1:7= IS(fPi), we have the following by the same 
way as above: 

k k 

LAi<IIIq1<n) -q1111 + LAfn). (3.4 ) 
;=1 i=l 

From (3.3), (3.4), and (2) of Lemma 3.1, it follows that 

I it! (A f") - Ai ) 1-+0· 

This implies A fnl-+Ai for every i because k is chosen arbi
trarily. For a fixed k, we have 

itlAi log Ai = !~n.! ( - itt A fn) log A }"»). 
which implies 
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SK(a)(cp) = S~p{ - itl A; log Ai } 

= S~p !~~ { - ;tlA in) log A in) } 

= s~p !~ inf { - itlA in) log A in)} 

<!~ infs~p{ - itlA in) log A in)} 

= lim inf sK(a)(cp (n». 

n~oo 

Case (2): In this case the entropy S K(a) (cp (n» is always 
+ 00, so that the lower semicontinuity holds evidently. 

Case (3): In this case the entropy SK(a)(cp) is always 

+ 00. If lim inf S K(a) (cp (n» is finite so that the lower semi-
n~oo 

continuity of SK(a)(cp) does not hold, then we shall show 
below that cp (n) does not converge to cp in norm. Let 
cp (n) = l:jAjCp in) be the discrete factor decomposition of 
cp(n) and/n be the set {cpjn)}. Since lL(n) EDq>(n>lK(a») 

from the assumption, / n is a countable set. Put 
/~ = exK(a)\/n' ThenlL(n)(/~) = o for each n. Sup
pose that Ilcp (n) - cp 11-0. Then I III (n) -IL 11-0 because of 
Ilcp (n) - cp II = 111L(n) -ILII (See Ref. 15). It follows that 

IIL(n)(/~) -IL(/~)I = IIL(/~)I-o, 

so that for any E> 0 there exists no such that for all n>no 

IL(/n»l-E. (3.5) 

Now let Q be the support of IL [Le., IL(Q) = I] and let 

Q ~ = Q \/n for n>no' Then 

1 =IL(Q)<IL(Q~) +IL(/n)<l, 

hence 

(3.6) 

for n>no' SincelL is not inDq> (K(a»), there exist an uncount
able subset P C Q and I) > 0 such that for every n>no 

PCQ~ and I)=IL(P). (3.7) 

On the other hand, applying (3.5) and (3.6) to the above I), 
we have 

IL(Q ~) <I), 

which contradicts (3.7). Q.E.D. 

IV. LOWER SEMICONTINUITY OF I Y (cp:A *) FOR KMS 
STATES 

In this section, take .Y = K (a) again and assume for 
simplicity that both d, it are u-finite von Neumann alge
bras acting on Hilbert spaces K, K, respectively. Let cp(n) 
(n = 1,2, ... ), cp be normal states on d, where the decompo
sition measures are denoted by lL(n) ,IL and let A * be a (nor
mal) channel. For the compound states'll = cp ® A *cp and 

<I>!(a) = i 0) ® A *0) dlL 
K(a) 

introduced in Refs. 4 and 5, we have the following. 
Lemma 4.1: When Ilcp (n) - cp 11-0, we have 

(1) 11'II(n) - '1111-0 

and 

(2) 1I<I>:i.~) - <I>!(a) 11-0. 

Proof: (1) This convergence can be observed as follows: 

11'II(n) - '1111 

= sup {I(cp (n) ® A*cp (n) - CP® A*cp) (X) I; 

XE (d®it)I}' 

where 

(d®it)I=={QEd®it, IIQII<l}· 

Since 

d®it={A®B; AEd, BEit}" 

and IIA(B) II<IIB II for any B E it, 

11'II(n) - '1111 = sup{1 (cp (n) ® A *cp (n) - cp ® A *cp)(A ®B) I; A E d l, BE it I} 

<sup{lcp (n) (A)cp (n) (B) - cp(A )cp(B) I; A, B E d l } 

<sup{lcp (n) (A) II (cp (n) - cp)(B) I; A, B E d l } + sup{lcp(B) II (cp (n) - cp)(A) I; A, B E d l } 

<llcp (n) - cp II + Ilcp (n) - cp 11-0. 
(2) Put v = lL(n) -IL and let v = v + - v_be the Jordan decomposition of v. Then we obtain 

<sup{1 r O)(A)O)(B)dlL(n)- r O)(A)O)(B)dlLl; A,BEd!} 
JK(a) JK(a) 

= sup{ I r 0) (A )O)(B)dv + - r 0) (A )O)(B)dv _ \; A, BEd!} 
~(a) ~(a) 
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< r dv+ + r dv_ 
JK(a) JK(a) 

=llvll 
= IIp(n) - pil 
= 1Iq? (n) - q? 11-0. 

The following theorem follows from the above lemma 
and the lower semicontinuity of the relative entropy S( ·1· ). 

Theorem 4.2 [lower semicontinuity of [K(a) (fJ;A *)]: If 
1Iq?(n) - q? 11-00, then 

n~oo 

PrOOF Since q?(n) and q? are KMS states, the orthogonal 
maximal measures p(n) for q?(n) and p for q? are unique, 
respectively. Therefore 

S(K(a)I(q?(n» =H(p(n», SK(a)(q?) =H(p) 

and 

F~(") (K(a» = {pen)}, F;(K(a») = {pl. 
Hence 

[K(a) (q?;A*) = lim sup{I~(a)(q?;A*): v EF; (K(a»} 
E->O 

= I !(a) (q?;A *) 

= S(4)!(a) 1'1') 

and 

[K(a)(q? (n);A*) = S(4):i~)I'I'(n)). 

From Lemma 3.1 and the lower semicontinuity of the rela
tive entropy, 10 we have 

lK(a)(q?;A*)< lim inf l(q? (n);A*). Q.E.D. 
n~ao 

V. LOWER SEMICONTINUITY OF ~ (cp) AND JY (cp;A *) 
FOR STATIONARY STATES 

In this section, we consider the case .Y = / (a). Let (.sf, 

a(R») be G-Abelian [i.e., 1T 'P (.sf)' n CJ'P (R)' is Abelian for 
any q? E l(a) ]. Then an orthogonal maximal measure p for 
each q?El(a) is unique,14 and two states q?, t/J, E/(a) are 
orthogonal (i.e., if w is a positive linear functional on .sf 
satisfying w<q? and w<t/J, then w = 0) iff the supports s(qi) 

and s("') of the canonical extensions qi and '" of q? and t/J to 
1T 'P + r/J (.sf)" are orthogonal. 16 By using the above facts, we 
have the following two theorems. 

Theorem 5.1: Let (.sf, a(R») be G-Abelian and q?(n) 
(n = 1,2, ... ), q? be elements ofl(a). Ifl/q?(n) - q? 1/-0, then 

SI(a)(tp)< lim inf SI(a)(tp (n». 
n~oo 

Proof: We will show that the supports s(tp), s( t/J) of tp, 

f/J E ex lea) (tp = f/J) are orthogonal. Take w = All' 
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Q.E.D. 

+ (1-A)f/Jforanytp, f/JEexl(a), where l>A>O. Thenw 
is an a-invariant state and w = All' + (1 - A) t/J is an ergodic 
decomposition of w. Moreover this decomposition is unique 
and orthogonal because (.sf, a (R ) ) is G-Abelian. Hence the 
supports s(tp) and s(f/J) are orthogonal, and this theorem 
can be proved by the same way as the case of KMS sta
~ QRU 

Let .sf, .fit be CT-finite von Neumann algebras and tp(n) 

(n = 1,2, ... ), tp be normal states on.sf. 
Theorem 4.2: Let (.sf,a(R») and (A, a(R») be G-Abe

lian. If IItp(n) - tp 11-0, then 

[I(a)(q?;A*» lim inf lI(a)(tp (n);A*). 
n~oo 

Proof As shown above, thesupportss(tp) ands(f/J) oftp, 

f/J E ex 1 (a) (tp =1= f/J) are orthogonal. This theorem can also 
be proved by the same way as the case ofKMS states. Q.E.D. 

The definitions (3.1) and (2.5) of our entropies might 
be possible to extend to arbitrary convex and compact sub
sets in locally convex spaces along the line of the Refs. 17 and 
18. 

ACKNOWLEDGMENTS 

The authors wish to express their gratitude to Professor 
H. Umegaki for his critical reading and comments. They 
thank the referee for his useful suggestions to possible exten
sions of the present work. 

'H. Umegaki and M. Ohya, Quantum Mechanical Entropies (Kyorisu 
Shuppan, 1983) (in Japanese). 

2A. Wehrl, Rev. Mod. Phys. 50, 21 (1978). 
3M. Ohya, J. Math. Anal. Appl. 100, 222 (1984). 
4M. Ohya, IEEE Inform. Theory 29, 770 (1983). 
SM. Ohya, Springer Leet. Notes Math. 1136, 397 (1985). 
6H. Umegaki, J. Math. Anal. Appl. 25, 41 (1969). 
7M. Ohya, J. Math. Anal. Appl. 84, 318 (1981). 
8M. Ohya, Lett. Nuovo Cimento 38, 402 (1983). 
9H. Umegaki, Kodai Sem. Rep. 14,59 (1962). 
IOH. Araki, Publ. RIMS Kyoto Univ. 13,173 (1977). 
II A. Uhlmann, Commun. Math. Phys. 54, 21 (1977). 
12F. Hiai, M. Ohya, and M. Tsukada, Pac. J. Math. 107, 117 (1983). 
131. M. Gel'fand and A. M. Yagiom, Am. Math. Soc. Transl. 12, 199 

(1959). 
14M. Takesaki, Theory of Operator Algebras I (Springer, New York, 1979). 
ISR. B. Israel, Convexity in the Theory of Lattice Gases (Princeton U. P., 

Princeton, NJ, 1979). 
16F. Hiai, J. Oper. Theory 11, 319 (1984). 
I7H. Uhlmann, Rep. Math. Phys. 1, 147 (1970). 
18W. Pusz and S. L. Woronowicz, Rep. Math. Phys. 8,159 (1975). 

M. Ohya and T. Matsuoka 2079 



                                                                                                                                    

Green's function for motion in Coulomb-modified separable nonlocal 
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A closed form expression is derived for the outgoing wave radial Green's function ~) + > (r,r') for 
motion in the Coulomb plus rank one separable nonlocal potential with form factor VI (r) = 2- 1 

X (l!) -I re - (3[T. Some possible applications of the result are discussed. 

I. INTRODUCTION 

At a center of mass energy E = k 2 + i€ the outgoing 
wave Coulomb Green's function Gg> (r,r') and the 
Green's function :1) + > (r,r') for motion in the Coulomb
distorted rank-one separable nonlocal potential satisfy the 
inhomogeneous differential equations 

[ _ ;; + /(/; 1) + 2~k -k 2 ]Gg>(r,r') 

= -o(r-r') (1) 

and 

[ _ ;; + /(/; 1) + 2~k -k 2 ]:1)+>(r,r') 

- Al VI (r) fO VI (r"):1) + > (r,r" )dr" = - oCr - r'). 

(2) 

Here 1] is the Sommerfeld parameter. For k1] < ° we have 
attraction and for k1] > 0, repulsion. The quantities - AI 
and VI (r) stand for the state-dependent coupling constant 
and form factor of the nonlocal potential. The solution ofEq. 
( 1) is known in the literature 1 and G g > (r,r') is expressed 
in terms of regular and irregular confluent hypergeometric 
functions. In the present paper we are concerned with the 
solution ofEq. (2). We derive a closed form expression for 
:1) + >(r,r') when2 

Clearly, the quantities to be evaluated in Eq. (5) involve the 
single and double transforms of :1 g > (r,r') by v/s. 

The Coulomb Green's function is given by 

G g >(r,r") 

=i( _1)/(2k)2/+I(rr")/+leik(T+Tn > r(l+ 1 +i1J} 
(21 + I)! 

X <11(1 + 1 + i1],21 + 2; - 2ikr < ) 

X '11(/ + 1 + i1],21 + 2; - 2ikr> ), (6) 

where r> and r < are the larger and smaller values of rand 

(3) 

and examine the usefulness of the result in the study of quan
tum mechanical scattering by additive interactions. 

In Sec. II we convert Eq. (2) into an integral equation 
and obtain a solution of the latter. The result for :1) + > (r,r') 
comes out in terms of certain nontrivial integrals involving 
G ~t > (r,r'). We devote Sec. III to develop a differential 
equation method for evaluating them. In Sec. IV we look for 
some applications of the expression for :1) + >(r,r') with par
ticular emphasis on the outgoing wave solution, scattering 
phase shifts, etc. for scattering by the Coulomb-distorted 
separable nuclear potentials. Finally, we present some con
cluding remarks in Sec. V. 

II. SOLUTION OF EQ. (2) 

Equation (2) can be solved by converting it into an inte
gral equation. From Eqs. (1) and (2) we write 

:1) + >(r,r') 

= G~t>(r,r') +,.1,1 L"" Gg>(r,r")vl(r")dr" 

xl"" :1J+ > (r''',r')vI(r'")dr"'. (4) 

Since the kernel in Eq. (4) is degenerate it can be solved 
easily to get 

(5) 

r" . Here <I> and 'II stand for the regular and irregular conflu
ent hypergeometric functions. For our future use we shall 
discuss very soon some important properties of <II and 'II 
functions. Meanwhile, we note that certain indefinite inte
grals are implied in 

1"0 dr" V I (r" ) G ~t > (r,r" ) 

and 
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Buchholz3 has considered these indefinite integrals in some 
detail. Use of his results and their concomitant reduction, 
however, do not reduce 

100 

dr" vl(r")Gg)(r,r") 

and 

i
OO 

iCC> drdr"vI(r)vl(r")Gg)(r,rlt ) 

to compact analytical forms.4 van HaeringenS has found that 
the Sturmian representation of G ~t ) (r,r') can be used to a 
good advantage to write 

i
oo 

iCC> drdrlt vl(r)vl(rlt)Gg)(r,r lt ) 

in terms of Gaussian hypergeometric functions. Although 
the result for the double transform is remarkably simple and 
elegant, a similar approach does not appear to work for 

iCC> drlt vl(rlt)Gg)(r,r"). 

In the following, to evaluate 

iCC> dr" vl(r")G~t)(r,r") 

and 

iCC> ioo 

drdrlt vl(r)vl(r")Gg)(r,r"), 

we take recourse to a method, different from those described 
in Refs. 4 and 5, and see that both results can be related to 
particular solutions of certain differential equations well 
known in the theories of mathematical physics. 

III. RESULTS FOR fodr" v,(r1G<ct l(r,r1 AND 
fo fodr dr" v,(r)v,(r")G<ct l(r,r1 

To derive closed form results for these integrals we be
gin by introducing two lemmas. 

Lemma 1: Let the functions FI (r,r") and sr[ (r,rlt) be 
related to G g ) (r,r") by 

(7) 

and 

(8) 

Th~ the single Laplace transform .2' [ F[ (r,r" ) ; PI ] 
= FI (r, 131) satisfies a nonhomogeneous confluent hyper

geometric equation while the double Laplace transform 

.2' 2 [sri (r,r"); 13[; 13;] 
= {.2' [.2' {sr[ (r,r" );r--+l3[};r" --+I3;J} 
=Y[(p[,p[) 

satisfies the differential equation for the Gaussian hypergeo
metric function. 

Proofi From Eqs. (1) and (7) we have 
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{ 
a2 a 

r-=:2 + [(21 + 2) + 2ikr]
a, ar 

+ [2ik(/ + 1) - 21Jk ] }FI (r,r") 

= (r" Ir)[e-ikr~(r _ r"). (9) 

Taking the single Laplace transform (r" --+131) of Eq. (9) 
and substituting 

Z= - 2ikr, (10) 

we get 

{z d22 + [(2/+2) -Z]~- (/+ 1 + i1J)}FI (Z, 131) 
dZ dZ 

ePZ 

= - 2ik' 

where 

p = (131 + ik)/2ik. 

From Eqs. (1) and (8) we obtain 

(11 ) 

(12) 

[
a

2 
21 a 21Jk k2] CT ( ") 2( ")/~( ") -------+ J' [r,r = rr u r-r . 

a,z r ar r 
(13 ) 

We now take the double Laplace transform of Eq. (13), 
substitute 

YI(p[,p[) = (2/+ 1)!YI (p[,p[), (14) 

YI(p[,p[) = (-1)[[21J2k(p[ +p[)] -2/-2 

X (5 - 1).t; (5), (15) 

with 

5 = (13; + ik) (PI + ik)/(p; - ik) (PI - ik) (16) 

and differentiate the resulting equation with respect to 5 to 
get 

[5(1 - 5) ~22 + {(/ + 2 + i1J) 

- (2 - 1+ i1J)5} ~ + (/- i1J)JrI (5) = O. (17) 
d5 

Equations (11) and ( 17) prove the lemma. 
Lemma 2: The solutions of the differential equations for 

FI (r, PI ) and Y I (131,/3 ;) can be related to 

L'" dr" VI (r")G g) (r,r") 

and 

(18) 

1'''' Loodr dr" V[ (r)v[ (r")G g )(r,r"). (19) 

Proof.' From Eqs. (3), (7), (8), (18), and (19) we have 

Loo dr" VI (r")G ~t ) (r,r") 
= 2 -[(l!) -1-,1 + leikip[ (r,/3l) 

and 

Loo loodrdr" v[(r)vl(r")Gg)(r,r") 

= 2 - 2l(/!) -2 Y I (13[,/3;). 

Talukdar, Laha, and Sasakawa 
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TABLE l. Phase shifts Dy (k) and Dcy (k) for Yamaguchi and Coulomb and 
plus Yamaguchi potentials with parameters given in the text. 

<i>(a,e;Z) = Z 1 - cct>(a - e + 1,2 - e;Z) , (23) 
Phase shifts in degrees 

E 1ab in MeV Dy (k) Dcy (k) 

5 58.8599 52.9830 
10 55.2433 52.8467 
15 51.6416 50.3942 
20 48.4509 47.7474 
25 45.6413 45.2420 
30 43.1509 42.9388 
35 40.9255 40.8360 
40 38.9218 38.9159 

with 

a = I + 1 + ;17, e = 21 + 2. (24) 

Note that for e = 2/ + 2, Eq. (23) is not an acceptable solu
tion. However, <i>(a,c;Z) tends towards a solution6 when e 
approaches 21 + 2. In our subsequent discussion we always 
mean that limit. This is no loss of generalization. See, for 
example, the treatment of the Coulomb field by Newton. 1 

Another solution of Eq. (11), defined within the framework 
of the same limiting procedure, is 

r(1-c) 
I{I (a,e; Z) = ct>(a,e; Z) 

Equations (20) and (21) prove the lemma. rca -e+ 1) 

To solve Eq. (11) we note that two independent solu
tions of the associated homogeneous equation are given by 

r(c-l) -
+ ct>(a,c; Z). 

rca) 
(25) 

ct>(a,c;Z) = r(e) :t rea + n) Z" 
rca) "=0 r(e+n) n! 

(22) Given ct>(a,c; Z) and <i>(a,c; Z), we have obtained a particu
lar solution of Eq. (11) in the form 7 

(26) 

with 

eu(a,e; Z) = 1 [ct>(a,e; z)!Ze- Z'ZIUH- 2<i>(a,c; Z')dZ' - <i>(a,c; z)!Ze Z'Z'(HC- 2ct>(a,c; Z')dZ'] 
(e - I) 

= [zu/O'(O' + c - 1)] 2F2(1,C + a; 0' + 1,0' + e; Z). (27) 

The complete primitive is 

F I (r,{3l) =Act>(l + 1 + i17, 21 + 2; - 2ikr) + B<i>(l + 1 + i17, 21 + 2; - 2ikr) 

1 ao . . p" - -.- L en + I (l + 1 + 117, 21 + 2; - 2lkr) " 
21k "=0 n. 

(28) 

where A and B are arbitrary constants. To determine A and B we proceed as follows. 
Substituting Eq. (6) in Eq. (7) and taking the Laplace transform we get 

F (r,/3 ) = i( - 1)/(2k)2/+ 1 r(l + 1 + i17) [1{I(l + 1 + i'Yl, 21 + 2' - 2ikr) 
I I (2/+1)!'f' 

X f r"ZI + 1 e - ({3t ik) ct>(l + 1 + i17, 21 + 2; - 2ikr" )dr" 

+ ct>(l + 1 + i17, 21 + 2; 2ikr) lao r"ZI + Ie - ({3t- ik)r" 1{I(l + 1 + i17, 21 + 2; - 2ikr" )dr"]' (29) 

Comparing the values ofFI (r,/3l) from Eqs. (28) and (29) for r = 0 and r = 00 we obtain B = 0 and 

A = i( - 1 )1(2k)21+ 1/[ (l + 1 + i17)(PI - ik)21 + 2]zFI(1 + 1 + i17, 21 + 2; 1+2 + i17; (PI + ik)/(PI - ik»). (30) 

Thus from Eqs. (20), (28), and (30) we have 

lao dr" VI (r")G ~t ) (r,r") 
= [i( -1)/2- 1(l!)-1(2k)21+I/{l+ 1 +i17)(PI-ik)21+2] 

X 2F,(1 + 1 + i17, 2/ + 2; 1+2 + i1]; (PI + ik)/(P, ik»)r'+ le
ikr 

ao p" 
X ct>(l + 1 + i1], 21 + 2; - 2ikr) - [2 -I(l!) 1/2ik]r' + leikr L en+ I (l + 1 + i17, 21 + 2; - 2ikr) -, (31) 

"=0 n! 

We note that Maleki and Macek8 have derived the result for Sodr" VI (r")G ~t ) (r,r" ) in a different way. In our notations 
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their result is given by 

1"0 dr" VI (r")G g) (r,r") = - 2 -/(I!)-I[r'+ leikr/({3, - ik)] f (/ + 1 +;1/ + n)-l ( - 2ikrp)n 
n=O n! 

X ~1(1, i1/ -I; 1 + 2 + i1/ + n; ({31 + ik)/({31 - ik»). (32) 

Equivalence of Eqs. (31) and (32) is not immediately clear. In Appendix A we show that by straightforward algebraic 
manipulations one can go from Eq. (32) to Eq. (31). Two of us have given the solution of Eq. (17) elsewhere.9 Using this 
solution in Eq. (21) we get 

1"0 fOdrdr" vI(r)vI(r")G~t)(r,r") 

= [2 - 21(/1) -1(21 + 1 )({3{ + {3 n 2/- 1/(1 + 1 + i1/)({3 i - ik)({31 ik)] 

X 2F1(1, i1/ -I; 1 + 2 + i1/; ({3; + ik)({31 + ik)/({3; - ik)({31 - ik»). (33) 

This represents the result of van Haeringen5 obtained by using the Sturmian representation of G ~t ) (r,r'). Equations (5), 
(6), (31), and (33) taken together give our desired solution for Eq. (2). 

IV. APPLICATIONS OF THE CLOSED FORM EXPRESSIONS FOR [?~ + >( r. r) 
The outgoing wave Green's function for motion in a potential VCr) is given by 

[§ ~ +) (r,r') = - k -) e - il1rl2t/l} + ) (k,r < )}; (k,r > ), 

where t/lJ +) and}; stand for the physical and Jost solutions for VCr). As r tends to infinity, 1 

(34) 

[§} + ) (r,r') - - k -Ie ihrl2t/li +) (k,r')/jas) (k,r). (35) 

The asymptotic value/}as) (k,r) is prescribed both for short-range and Coulomb potentials. In particular, for the Coulomb 
and Coulomb-like potentials, 10 

(36) 

In view of Eqs. (35) and (36), our closed form expression for [§ f + )(r,r') derived in Sec. III yields the physical solution 
t/lJ + ) (k,r) for scattering on Coulomb plus the nonlocal potential under consideration and we have 

t/lf + ) (k,r) = t/lg) (k,r) - AI (ik 12 -1- 1 r(l + 1 + i1/)/[r(l + 1) ]2({37 + k 2)1+ ID i +) (k>] ({31 - ik /{31 + ik)iTJ 

Xe - mJ/2 r' + 1 eikr[ {(2ik)21 + 21(1 + 1 + i1/) ({31 _ ik)21+ 2} 

X 2FI (I + 1 + i1/, 21 + 2; 1 + 2 + i1/; {31 + ik 1{31 - ik)ip(l + 1 + ;1/, 21 + 2; - 2ikr) 

- ntoBn+ 1 (I + 1 + i1/, 21 + 2; - 2ikr) ::J. 
with the Coulomb physical wave function written as 

t/lg )(k,r) = [(2k)l+ le- 1TTJ/
2r(l + 1 + i1/)/2(21 + 1)!]r'+ leikrip(l + 1 + i1/, 21 + 2; - 2ikr). 

In writing Eq. (38) we had to use 

lim roo dr" VI (r")G ~t) (r,r") r-aJJo 
= - [( - i)lklr(l + 1 + i1/)II!({37 + k 2 )1+ IJ ({31 - ikl{3J + ik )iTJe-mJ/2ei(kr-TJln2kr). 

(37) 

(38) 

(39) 

Derivation ofEq. (39) is rather tricky. In Appendix B we deal with this and reproduce Eq. (39) from our result in Eq. (31). 

Unfortunately, we were unable to obtain the asymptotic value of S;dr" VI (r") G ~t) (r,r") straightaway from the result of 
Maleki and Macek. 8 The quantity D f + ) (k) stands for the Fredholm determinant associated with t/lJ + ) (k,r) and is given by 

D i + )(k) 1 -AI [2 -2/(1!) -1(21 + 1)({31 + {3 D -21- 1/(1 + 1 + i1/)({3; - ik)({31 - ik>] 

X ~1(1, i1/ -I; 1 + 2 + i1/; ({3; + ik) ({31 + ik)/({3; - ik) ({31 - ik»). (40) 

For a local potential the Fredholm determinant D } + ) (k) is equal to the J ost function}; (k). For a nonlocal or combination of 
local and nonlocal potentials D f + )(k) and}; (k) are not identically equal; rather, they are related II by 

II(k) = D f + )(k)/D,(k), (41) 

where the Fredholm determinant D/ (k) associated with the regular solution is always a real! quantity. Naturally, the phase of 
}; (k) is equal to the phase of D 1 + )(k). Further, the phase ofthe Jost function is the negative of the scattering phase shift 
/jl (k). Therefore, Eq. (40) provides a convenient expression for calculating /jJ (k). 
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For 1 = 0 the form factor in Eq. (3) coincides with that of Yamaguchi. 12 For the p-p scattering in the uncoupled ISO 

channel one has 13 ..to = 2.405 fm- 3 and,8o = 1.1 fm-I. We have chosen to work in units in which fz2/2m is equal to unity. We 
take (2kll) - I = 28.80 fm. This is the proton Bohr radius. As 11-0 (also 1 = 0) Eq. (40) gives the well-known expression for 
the Yamaguchi-Fredholm determinant. 14 

Based on Eqs. (40) and ( 41 ) we have calculated the phase shifts Dy (k) and Dcy (k) for the pure Yamaguchi as well as for 
Coulomb plus Yamaguchi potentials for E lab between 5 to 40 Me V in steps of 5 MeV. The results are shown in Table I. We note 
that the values of Oy (k) and Dcy (k) differ significantly only at low energies and the difference practically vanishes beyond 
E lab = 40 MeV. This is physically understandable since the Coulomb potential is expected to playa role in nuclear scattering 
at relatively low energies. 

V. CONCLUDING REMARKS 

We have derived a closed form expression for the Green's function for motion in a Coulomb-distorted separable nuclear 
potential and demonstrated some of its applications. Our result refers to a specific choice for the form factors ofthe nucleon
nucleon interaction. The method used by us can be generalized in many ways. For example, our approach can easily be 
extended to deal with potentials of higher rank and restriction to symmetric form factors is not compelling. We have seen that 
within the framework of our approach we can treat the nonsymmetric nonlocal potential of Saito, 15 which arises in the context 
of the orthogonality condition model. Further, the wave function obtained by us can be used to generate the half-shell
transition matrix element for Coulomb plus separable potentials. 
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APPENDIX A: EQUIVALENCE OF EQS. (31) AND (32) 

We write Eq. (32) in the form 

fer) = 100 

dr" VI (r")G ~t) (r,r") 

= - 2 -I(/!) -I [r + leikr 1(,81 - ik)] [ (/ + 1 + ill) -I )"dl, ill -I; 1 + 2 + ill; (,81 + ik)/(,81 - ik») 

+ n~1 (/ + 1+ ill + n)-I( - 2ikrp)nln! 2FI(I,ill- l ; 1 + 2 + ill + n; (,81 + ik)/(,81 - ik»)], 

and transform the hypergeometric functions in the first and second terms by means of the recurrence relations 

and 

)"1 (a,b;c;Z) = (I - Z) - a 2FI(a,c - b; c; Z I(Z - 1»), 

respectively. This yields 

fer) = _2-1(l!)-I[r+leikrl(.BI-ik>] (/+ 1 +ill)-1 - ---[ ( 
2ik )21+ 1 

,81 - ik 

X 2FI(l + 1 + ;11,21 + 2; 1 + 2 + ;11; (,81 + ik)/(,81 - ;k») 

_(,8I- ik ) ~ (/+ 1 +ill+ n )-1 (-2ikrp)n )"1(1,2/+2+n;I+2+ill +n;,81 ~;k)]. 
2ik n~1 n! 21k 

(AI) 

(A2) 

(A3) 

(A4) 

We now write the sum in Eq. (A4) explicitly and make an appropriate iterative use of the three-term recurrence relation6 

(A5) 

to get 
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I(r) = - 2 -I(I!) -I [,.t+ leikrl(/31 _ ik)] {(l + 1 + hJ} -I( _ 2ik. )21+. 
/31 -lk 

xcFJ(l + 1 + i7J, 21 + 2; 1+ 2 + i7J; (/31 + ik)/(/31 - ik») 

- (/312~ik)[ cF.(l,21 + 2; 1+2 + i7J;(/31 + ik)/2ik) 

{ 
( - 2ikr) (/ + 2 + i7J) ( - 2ikr) 2 + (I + 2 + i7J) (/ + 3 + i7J) (- 2ikr) 3 + } 

X + ... 
(21 + 2) (21 + 2)(21 + 3) 2! (21 + 2)(21 + 3)(21 + 4) 3! 

_ (- 2ikr) {I + (I + 2 + i7J) (- 2ikr) + (I + 2 + i7J) (I + 3 + i7J) (- 2ikr) 2 + ... } 
(21 + 2) (21 + 3) 2 (21 + 3) (21 + 4) 6 

(-2ikr)2{1+ (/+3+i7J) (-2ikr) + (/+3+i7J)(/+4+i7J) (-2ikr)2 + ... }.e. 
2(21 + 3) (21 + 4) 3 (21 + 4)(21 + 5) 12 l! 

( - 2ikr) 
3 
{I + (I + 4 + i7J) (- 2ikr) + (/ + 4 + i7J) (/ + 5 + i7J) (- 2ikr) 

2 + ... } p2 _ ... ]}. (A6) 
3 (21 + 4) (21 + 5) 4 (21 + 5) (21 + 6) 20 2! 

From Eqs. (27), (A3), (A6), and 

<I>(a,c; Z) = r(c) i: rca + n) zn, 
rea) n=O rcc + n) n! 

we obtain 

I(r) = 2 -/(I!)-.,.t+ ·eikr{ [i( - 1)/(2k)2/+ 11(/31 - ik)21+2(/ + 1 + i7J)] 

XcF.(1 + 1 + i7J, 21 + 2; 1+ 2 + i7J; (/31 + ik)/(/31 - ik»<1>(/ + 1 + i7J, 21 + 2; - 2ikr) 

1 '" n} - -.- L On+ 1 (I + 1 + i7J, 21 + 2; - 2ikr) P, ' 
2,k n =0 n. 

which is the desired expression Eq. (31). 

APPENDIX B: DERIVATION OF Ea. (39) 

To calculate the asymptotic limit of Eq. (31) we rewrite it as 

I(r) = i'" dr" VI (r")G g) (r,r") 

= 2 -I(I!) -I,.t+ leikr [ {i( - 1 )/(2k)2/+ 1/(/31 - ik)21+ 2(/ + 1 + i7J)} 

X 2FJ(1 + 1 + i7J, 21 + 2; 1+2 + i7J; (/31 + ik)/(/31 - ik»)<I> (I + 1 + i7J, 21 + 2; - 2ikr) 

1 '" n] - -. L On+ 1 (I + 1 + i7J, 21 + 2; - 2ikr) P, 
2lk n =0 n. 

=2- 1(l!)-l r l+leikr[{;( _I)/(2k)2/+lr(/+ 1 + i7J)/(21 + 1)!}<I>(/+ 1 +i7J,2/+2; -2ikr) 

(A7) 

(AS) 

X ("'rl2l + le- ({3t-
ik )"'I'(l + 1 + i7J, 21 + 2; - 2ikr')dr' - _1_. i: On+ 1 (I + 1 + i7J, 21 + 2; _ 2ikr) pn]. (BI) 

Jo 2lk n =0 n! 

InEq. (Bl) wehaveused l6 

2FI(b,S; 1 +S+b -d; 1-/-lla) = [asr(1 +b+S-d)/r(1 +S-d)rcs>Ji"'e-axxs-I'I'(b,d;/-lX)dX, 

ReS>O, 1 + ReS>Red. 

With the help ofEqs. (25) and (27) we express Eq. (31) in the form 
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I(r) =2- I(I!)-lr(/+ 1 + i1])';+ leikrl(21+ 1)![i( _I)/(2k)2/+1 

X <1>(1 + 1 +ir/,2/+2; -2ikr)i"'r'2/+1 e -(p,-ik)r''I'(I+ 1 +i1],2/+2; -2ikr')dr' 

+ n~o :~ {<I>(I + 1 + i1], 21 + 2; - 2ikr) f dr' ( - 2ikr,)n + 2/+ 1 e2ikr''I'U + 1 + i1], 21 + 2; - 2ikr') 

- '1'(1 + 1 + i1], 21 + 2; - 2ikr) fdr'( - 2ikr,)n+2/+ 1 e2ikr'<I>(I + 1 + i1], 21 + 2; - 2ikr')}]' 

Carrying out the sum first we get 

I (r) = 2 - I (I ! ) - 1 ( 2ik ) 21 + I r (I + 1 + i1])'; + I eikr 1(21 + I)! 

X [<1>(/+ 1 +i1],2/+2; -2ikr)i'" r,2/+l e -(p,-ik)r''I'U+ 1 +i1],2/+2; -2ikr')dr' 

- {<I>(/ + 1 + i1], 21 + 2; - 2ikr) f',.21 + 1 e - (13,- ik)r' 'I' U + 1 + i1], 21 + 2; - 2ikr' ) dr' 

- '1'(1 + 1 + i1], 21 + 2; - 2ikr) f',.21 + Ie - (13,- ik)r' <1>(1 + 1 + i1], 21 + 2; - 2ikr')dr'}]' 

(B3) 

(B4) 

As r-+ 00 the first term cancels the second term in the square brackets of Eqs. (B4) to give the desired asymptotic value 

lim I(r) = lim ('" dr" vJ(r")G~t)(r,r") 
r-oo r-oo)o 

= - [( - ik)/r(l + 1 + i1])/l!(/3; + k 2)1 + I] (/31 - ik 1/31 + ik )i'l e - 1T'I/2 ei(kr- 'lIn 2kr). (B5) 

In deriving Eq. (B5) we have used I 

lim i(2kr)1 + I eik"l' (I + 1 + i1], 21 + 2; - 2ikr) = - (i)1 e - 1T'I/2 ei(kr - 'lIn 2kr) (B6) 

and the well-known integral 

1'" e-;'ZZV<I>(a,c;pZ)dZ = [rev + I)IA v+ I ]zFl (a,v + 1; c;pIA). (B7) 
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A method used to study the evolution of radiating anisotropic (principal stresses unequal) 
spheres is applied to the case in which the space-time (within the sphere) admits a one-parameter 
group of conformal motions. Two different kind of models are obtained, depending on the 
equation of state for the stresses. In one case the energy flux density at the boundary of the sphere 
(the luminosity) should be given as a function of the timelike coordinate in order to integrate the 
system of equations. In the other case the luminosity is inferred from the equation of state for the 
stresses. Both models are integrated numerically and their eventual applications to some 
astrophysical problems are discussed. 

I. INTRODUCTION 

In recent papers, 1--4 the assumption of the existence of a 
one-parameter group of conformal motions has been exploit
ed, with particular emphasis in spherically symmetric distri
butions of matter (as an additional hypothesis, we assume 
the orbits of the group to be orthogonal to the four-velocity 
of the matter). The main results emerging from these papers 
may be resumed as follows. 

( I) There is a link between the "stiff" equation of state 
(P = p) and the existence of a class of conformal motions 
(special conformal motions). I 

(2) The spherically symmetric static solutions (admit
ting a one-parameter group of conformal motions) may be 
matched with the Schwarzschild (vacuum) metric, only for 
a restricted class of conformal motions (which excludes the 
homothetic motions). 

(3) For the nonstatic (but nonradiating) spherically 
symmetric solutions, the matching with the Schwarzschild 
metric at the boundary of the matter may be accomplished 
only for anisotropic fluids. 2

,3 In this case we were able to find 
some analytical solutions representing expanding, contract
ing, and oscillating distributions of matter, respectively. 
Both the expanding and the contracting solutions tend as
ymptotically (t-.;.oo) to spheres with a surface potential 
equal to j (see Ref. 3). 

( 4) It was possible to find distributions of matter with 
vanishing gravitational mass (solutions that may be 
matched with the Minkowski space-time). 4 

In view of all these results, we feel it is worth exploring 
further the models and the consequences arising from the 
assumption of the existence of a one-parameter group of con
formal motions. 

In the present work we shall consider radiating spheri
cally symmetric distributions of matter such that the space
time within the sphere admits a one-parameter group of con
formal motions. The solutions will be constructed using a 
method introduced some years ag05 and which have been 

a) Postal address: Apartado 80793, Caracas 1080 A, Venezuela. 

successfully employed to describe spherically symmetric ra
diating systems.6-8 A brief resume of this method as well as 
the conventions and the field equations are given in Sec. II. 

In Sec. III, we include the specific symmetry of the 
problem (conformal motions). Two examples are worked 
out explicitly in Secs. IV and V. Finally the results are dis
cussed and speculations about the possible applications of 
the models to some astrophysical problems are presented. 

II. THE FIELD EQUATIONS AND CONVENTIONS 

Our starting point is Bondi's approach to study the evo
lution of gravitating spheres9 -the difference is that we shall 
consider anisotropic matter instead of perfect fluids. 

Thus let us consider a nonstatic distribution of matter 
that is spherically symmetric: In radiation coordinates, 10 

dS 2 = e2P« V /r)du 2 + 2 du dr) 

(1) 

where p and V are functions of u and r. Here u=xo is the 
timelike coordinate, r==x l is a null coordinate, and (), fjJ==x2

,3 

are the usual angle coordinates. In these coordinates the 
components of the energy momentqm tensor are distin
guished by a bar and differentiation with respect to u and r is 
denoted by suffixes 0 and I, respectively. 

Thus it can be shown5
,6,9 that the Einstein equations 

may be written as 

p + Pw
2 + € 

I-oi 

_ r -21fT, --e ()() 
V 

= 1 ( _ moe - 2fJ + 
41Tr(r - 2m) 

p - Pw _ _ 2/!Tr. _ ml -e 01---, 
1 + W 41T~ 

I-w V- 21fT --(p+P) =-e Til = 
I+w r 

r-2m 
(2) 

r 

(3) 

(4) 
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(5) 

where P, P,PI , and ware, respectively, the energy density, 
the radial pressure, the tangential pressure, and the radial 
velocity of matter, as measured by a locally Minkowski ob
server. Also the flux of radiation €, as measured by the same 
observer, is related to E by 

E=€' [(1 +w)/(1-w)]. 

The field equations may be integrated outside the matter to 
obtain 

/3 = 0 , V = r - 2m (u), E = - mol41Tr( 4 - 2m) , 

(6) 

where m is a function of integration depending on u. Inside 
the matter the function m ( u) is generalized to m ( u ,r) by 
putting everywhere 

V=e2P [r-2m(u,r)]. (7) 

Also note that the velocity of matter in the radiative coordi
nate is given by 

dr V w 
-=---
du r 1 - w 

Next, let us define the two auxiliary functions 

p==(p - wP)/(1 + w) , 

P=(P-wp)/(1 +w), 

(8) 

(9) 

(10) 

hereafter referred to as the effective density and the effective 
pressure, respectively. Observe that from the field equations 
(3) and (4), we have 

m = f41Tr2p dr, (11) 

1r 21Tr -
/3 = (p + P) dr , 

a r- 2m 
(12) 

where r = a(u) defines the boundary of the anisotropic flu
id. 

Now the algorithm to construct the solution goes as fol
lows (for details see Refs. 5 and 6). 

(1) Take a static interior solution of the Einstein equa
tions for anisotropic matter with spherical symmetry and 
with given 

Pst = p(r) , Pst = per) . 

(2) Assume that the r dependence of P and p is the same 
as of Pst and PsI' but being careful with the boundary condi
tion, which now reads, because of (10), 

Pa = - Wa Pa . 

(From now on the suffix a indicates that the quantity is 
evaluated at the surface. ) 

(3) With the r dependence of P and P and using (11) 
and ( 12), one gets m and /3 up to three functions of u, which 
will be specified below. 

(4) For these three functions one has two differential 
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equations, one of which is (8) evaluated at r = a and the 
other is 

[T'\JL]a =0. 
Another u-dependent equation can be obtained evaluating 
( 6) at r = a + O. Thus, 

E(u) = (41TrE)lr=a+O = [mol(1- 2m/r)Jr=a+o . 

Thus one has three differential equations for five unknown 
functions of u, which are the radius a, the velocity of the 
surface, and the functions m, E and PI evaluated at the sur
face [see Eqs. (15), (17), and (21)]. 

(5) Given one of the functions, and specifying the equa
tion of state relating the tangential pressure with the other 
dynamical variables, the system may be integrated for any 
particular initial data. 

(6) Feeding back the result of integration in the expres
sions for /3 and m, these two functions are completely deter
mined. 

(7) Using (2)-(5) and the equation of state for the 
tangential pressure, p, PI' P, w, and E may be found. 

In this paper we shall assume the existence of a one
parameter group of conformal motions plus the orthogona
lity between the four-velocity and the orbits of the group. We 
shall see in the next section that as a consequence of this 
additional symmetry it is possible, in some cases, to integrate 
the system of equations at the surface, without prescribing a 
priori the luminosity E. 

In other cases, both the luminosity and the equations of 
state for the stresses should be given to integrate the system. 

We would like to close this section with the following 
remark: In order to make the method outlined above com
pletely consistent it is necessary to match the interior solu
tion with the Vaidya metric at the boundary of the fluid 
distribution (Darmois or Lichnerowicz conditions). It is 
easy to check that these conditions are equivalent to the con
tinuity of the functions /3 and m across the boundary, and to 
the equation II 

-/3oa +(1- 2ma/a(u»)!3la -m la /2a(u) =0, (13) 

where, as before, we have defined the boundary by the equa
tion 

r=a(u) . 

Thus we shall demand the continuity of /3 and m across 
the boundary [see Eqs. (11) and (12) ] . On the other hand, 
condition (13) is completely equivalent to one of the equa
tions at the surface [see Eq. (13') below]. 

Finally, the vanishing of the radial pressure at the 
boundary (which is also assumed explicitly in this work) 
may be shown to be a direct consequence of ( 13), (8), (4), 
and the continuity of /3 across the boundary [Eq. (12)]. 

III. THE SURFACE EQUATIONS AND THE CONFORMAL 
MOTIONS 

A. The equations at the surface 

As should be clear from the previous section, the crucial 
point in the algorithm is the system of equations for the 
quantities evaluated at the surface (surface equations). Two 
of them are the same for any model with a spherically sym-
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metric distribution of matter. Thus, from Eqs. (6) and (8) 
we get 

a = (1 - 2m/a)wa/(1 - wa) , ( 13') 

with a=da/du, and where m=ma is the total mass. 
Scaling the radius a, the total mass m, and the timelike 

coordinate u by the initial mass m(u = O)==m(O), 

A =a/m(O), M=m/m(O), u/m(O)-+u, 

and defining 

F=1 - 2M /A, 0=11(1 - wa ) , 

we can write Eq. (13') as 

A = F(O- 1) , 

(14) 

(15) 

which is the first surface equation, and which, as we men
tioned in the previous section, is implied by the junction con
ditions. 

The second surface equation relates the total mass loss 
rate with the energy flux through the surface. This can be 
obtained by evaluating Eq. (6) for r = a + 0 and takes the 
form 

M= -FE. (16) 

Or, using (14) and (15), 

F /F= [2E + (1 - F)(O- 1))/A . (17) 

The third equation at the surface will be obtained from the 
conservation equation T tJl = 0 evaluated at the surface. 

Thus from 

(TtJl)a =0, 

we get 

[ (p + P) ] + (BP) 
(1 - 2m/r) Oa Br a 

+ { (p + !) [4trrp + ~]} = [J:.(Pi - P)] . 
(1 - 2mlr) r a r a 

(18) 

Or, after a lengthy and tedious calculation, 

_ Pa + F + 0 + (0 _ 1) [4trap (30 - 1) + OF Pla 
Po F 0 a 0 Pa 

_ (3 + F) + J:. ~F(Pi _ P)a] + 02:Ra = 0, 
2a a Pa Pa 

(19) 

where 

Ra (u) = { (p + P) (41Trp + ~) 
(1- 2m/r) r 

BP 2 } +---(Pi -P) . 
Br r a 

(20) 

If the effective density P is separable, Le., P = I( u) h (r), 
then Eq. (19) becomes 

FIF+ (O/O)(l-F) = G(F,O,A), (21) 

with 
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G ==(F - 1 )(0- 1) [41Tan (30- 1) + OEpla ,...a 0 -
Pa 

_ (3 +F) +K(a)F+ 2~F Pia] 
2a apa 

(1 - F)02FRa (U) 

Pa 
(22) 

where 

K(a)=~ln[l.[drr her) ]. 
du a 0 h(a) 

In the next part of this section we shall complement the 
system of equations (15), (17), and (21) with another sur
face equation obtained from the additional symmetry of the 
problem (conformal motion). 

B. The conformal motion 

As was already mentioned, we shall assume that the 
space-time within the sphere admits a one-parameter group 
of conformal motions, i.e., 

L gJlV = 1/I(u,r)gJlV' (23) 
s 

where the left-hand side defines the Lie derivative of the 
metric tensor, 1/I(u,r) is an arbitrary function of their argu
ments, and the vector field S a has the general form 

sa = u(u,r)6: + "t(u,r)6~. (24) 

We shall further assume that 

SaUa = 0, (25) 

where ua defines the four-velocity of matter. 
Now, from condition (25) we get at once 

U= (-r/V)(1-w)"t, (26) 

where we have used (24) and the fact that the components of 
the four-velocity read 

UJle 2P -- 1-- , [ _ (1 -W)1I2( 2m) - 112 
1 + W r 

w(1 - 2m/r) 1/2 ] 
2 1/2 ,0,0 

(1-w) 

or, in convariant components, 

(27) 

[ 2P( 1 - 2iiilr)1I2 (~)1I2( _ 2m) -112 ] UJl e 2' 1 ,0,0 . 
l-w l+w r 

(28) 

Next, we obtain from Eq. (23), after simple manipulations, 

2f3oU + (Plr - P1/l + r¢1/2 + Uo = 0 , (29) 

J 2f30 + Vo) + 1/I(Plr + VIr _ 2.) + lao + r 1/10 = 0, V\ V 2V 2 V 
(30) 

(31) 

(32) 

Feeding back (32) into (26), we can integrate (31), to ob
tain 

1/I=g(u)V/r(1-w) and U= -g(u)/2, (33) 
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whereg(u) is an arbitrary function of integration depending 
on u. Next, taking derivatives of (33), 

"'I = g(u) VI _ 2g(u) V + g(u) Vw l , (34) 
r(1 - w) r(1 - w) r(l - W)2 

"'0 = g(u) V g(u) Vo g(u) Vwo (35) 
'f' r(1-w) + r(1-w) + r(1-w)2 ' 

and feeding back (33 )-(35) into (29)-(30), we get 

-P~+ r(1V~W) 01r - ~) 
+ Vig + gVw I =..t, (36) 

2r(1 - w) 2r(1 - W)2 2 

-P~+ ~~G~:)+ (1~~)r0Ir- ~) 
+ Vig + w~ = _ gw 

2(l-w)r (1_W)2 (l-w) 
(37) 

Finally, multiplying (36) by2w/(1-w) and adding it 
to (37) we obtain 

_(l+W)po+[ l+w ]~(plr-~)+~ (1+w) 
1-w (1_W)2 r 2 2r (1_W)2 

Vo (1 + w) V WIW + Wo _ 0 +- +- - . 
2V (1-w) r (1-W)3 (1_W)2 

(38) 

Parenthetically, this last equation is equivalent to the condi
tion 

(39) 

which follows from the symmetry of the problem. 
We shall now evaluate Eq. (38) at the surface r = a (u). 

Recalling thatp(a,u) = 0 and using (7) we get 

[ 
(1 + W)] {2f31(1 _ 2m) _ ~(1 _ 2m) 
(1 - W)2 a r 2r r 

1(1 2-)} { mo (l+W)} +- - m l - --
2r a (r - 2m) 1 - W a 

+ {(12m) WW I + Wo } -0 (40) 
---;- (1-W)3 (1_W)2 a -

or, using Eq. (13), 

(1 + wa ) [2(1 __ 3 (1 _ 2m) + _1 ] 
(1-Wa )2 Oa 20 a 20 

1 + Wa mOa ---
I -Wa (a - 2m) 

(
2m) waw la WOa 0 + 1-- + = . 
a (1 - Wa )3 (1 - Wa )2 

Near the surface we may write 

m(r,u) -;::;m + m la (r - a) + "', 
w(u,r) -;::;w(a) + Wla (r - a) + ... , 

then, taking derivatives and using (13'), 

mOa =m -amla 
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(41) 

(42) 

=Wa - (1-2m/a)[wa/(1-Wa)]Wla' (43) 

Feeding back (42) and (43) in to (41) and evaluating 
Pia and m la from the field equations (3) and (4), we obtain 

{
3m I} (1-w~)m . 

(1 +wa ) --- - +wa =0. (44) 
a2 a a(l - 2m/a) 

Or, using the dimensionless variables introduced above, we 
obtain finally 

~(1-F)+Ail/n(2n-1)-1= -E/n. (45) 

Now the complete set of equations at the surface is 
formed by Eqs. (15), (17), (21), and (45). 

Two different models (at least) may be derived from 
these surface equations, depending on the equation of state 
for the stresses. We shall develop these models in the next 
two sections. 

IV. MODELl 

In this model we start with the static anisotropic solu
tion found in Ref. 1. Namely 

81Tp = -~C+ (~_ H)~ 
4 2 4 r' 

81TP=~C+ (3H +~)~ 
4 4 2 r' 
3C (H 1) 1 

81TP1 =7+ '4+2"?' 
with the constants C and H related to the radius a by 

a2 = - (2/3C) (1 + 3H /2) , 

with C <0 and - ~<,H<O. 

(46) 

(47) 

(48) 

Next, following the method outlined above we choose 

- _ f( u) [ (1 + 3H /2) (1 - H /2) ] 
P--2- a2 + r ' (49) 

where feu) is a function of u and the radius a is now a 
function of u too. And for the effective pressure, we take 

p = f~) [ (1 - Wa ) (1 + ~) 

_ (1 - H /2) _ (1 + 3H /2) r] 
2 202 ' 

(50) 

which satisfies the boundary condition 

(51) 

Now we can use (49) and (50) to integrate (11) and 
(12). We obtain 

m = f 41Trpdr 

Evaluating m at r = a, we obtain 

feu) = (3/161T)(1-F). 

For p, we obtain 
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_ 3(1 +H 12) In { 4Frla
2 

} 

P - 40[4 - 3(1-F)(1-H 12)] [4 - (1-F)(3(1-H 12) + (1 + 3H 12)rla2)] , 

and, taking derivatives of (54) and (52), 

o Q -13- _ 3(1 + H 12)( 1 - F) 
m( )10'1= 1- 20A [4- (l-F)(3(1-HI2) + (1 +3HI2)rla2)](rla) , 

2 _- _ 3(1+HI2)(1-F) 
m(O) Pll Pll - 20A 2[4 _ (1 _ F)(3(1 - H 12) + (1 + 3H 12)(rla2 )W(rla)2 

X { 3 (1 - F) [ (1 - ~) + ( 1 + 3~) ~] - 4} , 

2 _ - - [0 4£ ] 
m(O) POI ==/30 I = -PI 0 + (1-F)[4- (1-F){3(1-HI2) + (1 + 3HI2)(rla2))] 

-A(~I +(:)Pll)' 
ml = ~(I -F)[(1 + 3H 12)(rla)2 + (1-H 12)] , 

mllm(O)=ffi ll = [3(1- F)( 1 + 3H 12)/4A J(rla) . 

Next, using (49) and (50) it is a simple matter to obtain 

K(a) = 2/a (60) 

and 

m(O)G(F,O,A) 

- 3(1- F)2(0 - 1)(20 - 1)(1 + H 12) 

40A 
(1 - F)ffi(1 + 3H /2) (1 - F)2(3 - 20) 

+ A(1 +HI2) - 2A 

OF321TPIa A 
+ 3(1 +H/2) , 

(61) 

with PIa Plam (0)2, and where we have assumed the equa
tion of state 

(62) 

for the stresses, which generalizes in a simple way the corre
sponding equation of state of the static solution (46 )-( 48). 

From the boundary conditions it results that 

(63) 

so that 

(64) 

Now, using (61) in Eq. (21), we may express PIa in terms of 
F, E, A, and O. 

Next for a given E we can integrate the system 

A =F(O -1), 

£ 2E+(1-F)(0-1) 
-= 
F A 

(65) 

(66) 

(J) = 1 _ (I - 2mlr){31 
21T(rla)A [m I /41T(rla2)A 2 + P] , 

0.00eo.4te~----(\"""'.----------' 

. \ I . 
. \ I . 
. \ 
f \ 
I \ 
I \ .-', . I / 
, i // 
1/, '\./ 
. I \ .,/ 

0.0028111211 

0.00111288. 

II \ .-_ 
0.0001"'3- -.-.-)~--< ...... __ --- _ 

o 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

(71) 

n = (20 - 1) (I _ 2.(1 _ F) _ E) . 0.2 4.1 ••• 14.11 ".4 

n A 2 0 
(67) 

Then the physical variables P, P1 , p, (J), and € can be calculat
ed for any piece of material, from 

2091 J. Math. Phys., Vol. 27, No.8, August 1986 

FIG. I. The radiation flux as a function of the timelike coordinate for model 
I, with the initial data A(O) = 5, F(O) = 0.4, 0(0) = 0.9, and 
H = - 0.55. The solid line represents ria = I, the dashed line ria = 0.5, 
and the dot-dashed line ria = 0.25. 
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0 .• 27.775 

0.0Inl!4 

....... , 
-OJ!221"2 I----.-----,.----..-----~\ 

0.2 ".7 I.. 14.8 ..... 

FIG. 2. The velocity (drldu) as a function of the timelike coordinate for 
model I, with the same initial data and same value of Has in Fig. 1. The solid 
line, the dashed line, and the dot-<lashed line represent, respectively, the 
regions ria = 1,0.5, and 0.25. 

_ 2 1 { e- 2
{3 

E==Em(O) = 41rA 2(r/02) 8(1 - 2m/r) 

X [AF [(1 + 3H /2)(r/o)3 + 3(1 - H /2)(r/o)] 

+ 2F(1 - F)(O - 1) (1 + 3H /2)(r/o)3] 

l-(l) 
(72) 

0.0042812 

0.0084281 

0.0030093J -------./--',,'-- _ -- --- __ : \ \ I 
0.0009341 _ - "-

o ili---'" 
0.2 4.1 9. II 14.e 19.4 

FIG. 4. P1 ==P1 m(0)2 (modell), as a function of the timelike coordinate 
for the same initial data and H as Fig. 1. The solid line, the dashed line, and 
the dot-<lashed line represent, respectively, the regions ria = 0.9, 0.5, and 
0.25. 

section of a parabola), such that the total radiated mass is 
one tenth of the initial mass. Thus we take 

E = E.. A(u,)(l -F(u;»)[ (U2 _ U
I

)2 _ 4(u _ U)2] , 

20 2F(u2 - u l ) 

(73) 

with U2> u > U I , U = (u l + u2 )/2, and E(u) = 0, for u,;;;;u l 

and u>u2• 

As for the initial data, we have chosen 

In this model we have chosen FE to be a finite pulse (a F(u = 0) = 0.4, A (u = 0) = 5, O(u = 0) = 0.9. 

0.0027803 _.--.-......, 

"' \ 
\ 

0.0004e43 --.-~ ~ 

o+----~\==::i't~\:;:;:\ ,:o-..... --==--~-__ -__ -__ -_ 

-0.0007227 '-....- \ 
\ 

\ 
\ 
\ 
\ 

-0.0031794 
'-.../ 

0.2 47 9.6 11.4 

FIG. 3. P ==m (0) 2 P (model I) as a function ofthe timelike coordinate for 
the same initial data and H as in Fig. 1. The solid line represents the function 
(multiplied by 10) in the region ria = 0.9. The dashed line represents the 
function at ria = 0.5. The dot-<lashed line gives the function for rl 
0=0.25. 
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Figure 1 shows the flux of radiation for different regions 

0.01e298 

0.0I32!12 

0.003144 -------- .... , 

ODOI2 .. 

0.2 ".7 

- ------.. --...... 
....... -..... 

" , ---I.e 1.11 ... 4 

FIG. 5. p==m(0)2p (model I) as a function of the timelike coordinate for 
the same initial data and H as in Fig.!. As in Fig. 4, the regions rla==0.9, 
0.5, and 0.25 are represented, respectively, by the solid line, the dashed line, 
and the dot-<lashed line. 
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0.2 4.7 
I 

9.6 14.5 19.4 

FIG. 6. (Pi - P)IP (modeJI) as a function of the timelike coordinate for 
the same initial data and H as in Fig. I for the regions ,Ia = 0.9 and 0.5, 
represented, respectively, by the solid and the dashed line. 

of the sphere (included the surface). It is worth observing 
the appearance of a second pulse of radiation for the inner 
regions and the strong absorption in the outer layers. 

Figure 2 shows the profile of the velocity (here we mean 
dr/du, the velocity in radiative coordinates) for different 
pieces of the material. All regions except the inner ones (r/ 
ao;;;;O.25) expand after some time. 

The profiles of the radial and tangential pressure are 
displayed in Figs. 3 and 4. 

In Fig. 5 the evolution of the density is shown. Observe 
that as the second pulse starts in the region ria = ! 
(u Z 10,6) the density of this region begins to decrease, even 
though this piece of material is contracting (see Fig. 2). 

Finally the ratio (P1 - P)/P is displayed in Fig. 6. It 
shows clearly that all regions tend to configuration with, 
essentially, the same degree of anisotropy as the initial ones. 

We shall further discuss all these results in the last sec-
tion. 

v. MODEL II 

In this section we shall assume an equation of state more 
restrictive than (62). Doing so we shall be able to integrate 
the surface equations without prescribing a priori the lumi
nosity. In other words the energy flux at the surface will be 
obtained from the surface equations. 

We start with the same anisotropic solution as in the 
preceding section [Eqs. (46 )-( 48)]. Thus, as in model I we 
choose 

.0=/(;)[(1 +:~/2) + (1-;/2)J. (74) 

Also, we assume the equation of state 

P +.0 = [a(u)/r](1 +H /2), (75) 

witha(u) !(u)(l-wa ). Thus 
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p = f~) [ (1 - wa ) (1 + ~) 

_ (1 - H /2) _ (1 - 3H /2)r] (76) 
2 2a2 

and 

m = 2;:[ (1 + 3~ /2),-' + (1 _ ~) a2r] (77) 

withf(u) = (3/161T) (1 - F). Now, instead of (62) the fol
lowing equation of state 

P1 - P = a(u)/r - (.0 + p) (78) 

will be assumed, which generalizes the equation 

81T(P1 - P) = 1/r - 81T(p + P) , (79) 

valid for the static case. 
Evaluating (78) at the surface we get 

Hf(u)(l-wa ) 3H(1-F) 
P1a = - 2a2 = - 321Ta211 (80) 

or 

- - 3H(1-F) 
P1a ==m(0)2P1a = 2 

321TA 11 
(81) 

We can now calculate G from Eq. (22). 
Using (74), (76), (77), and (81) we obtain 

G=m(O)G= _ 3(1-F)2(11-1)(211-1)(1 +H/2) 
411A 

F(1 - F) 11 (1 + 3H /2) 
+ A(1 +H /2) 

F(I-F)H 
(1 +H /2)A' 

where we have also used the fact that 

K(a) = 2/a, 

as in model!. 

(82) 

Obviously, since the effective variables are the same as 
in model I, the expressions for /3, /31' /3ll' /301' ml' and mll 
will also be the same as in the previous model. 

Let us now turn to the surface equations (15), (17), 
(21), and (45). 

We may solve the system for E to obtain 

E= GA11 (1-F)11[3F(211 -1) - 1] 
F(211 - 1) + 1 2[F(211 - 1) + 1] 

Then the surface equations reduce to 

F = -=-2G~!A~11~-~(_1 _-_F.;...) {:....:.(_211_-_1..:....:)[=--F~(2_11_+~1 )~-----,1 ]~} 
F A [F(211 - 1) + 1] 

(211 -1)11 
F(211 + 1) - 1 - AG 

F(211 - 1) + 1 
A =F(11 -1). 

(83) 

(84) 

(85) 

(86) 

The integration of the system (84)-( 86) for given ini
tial data allows one to obtain/3,/3I,/3w/301> ml' m, and mll 
for any piece of the material. Then the physical variables p, 
w, P1 , and E are calculated from the expressions (68), (70), 
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FIG. 7. The radiation ftux as a function of the timelike coordinate for model 
II, with the initial data F(O) =0.6, A(O) =0.5, ncO) =0.83, and 
H = - 0.55. The three regions ria = I, 0.5, and 0.25 are represented, re
spectively, by the solid line, the dashed line, and the dot-dashed line. 

(71), and (72). To calculatePwe use (78), thus 

m(0)2p = P = Pi + 3H(1 - F)/321TO(rla2)A 2 • (87) 

Finally the luminosity is obtained from (83). 
As an specific example we have integrated numerically 

the system (84 )-( 86) for the initial data 

F(u=O) =0.6, A(u=0)=5, O(u=0)=0.83, 

for different values of the anisotropic constant H. 
The most striking feature of this model concerns the 

luminosity, which some time after the initial moment be-

0.22200 

0.05e'14 

0.02431100 

o+--------++-----+r----------------~ 

-OJ002aa 

-0.14'10 

o 4.75 '.5 14.2!1 It 

FIG. 8. drldu as a function of the timelike coordinate (model II), for the 
same initial data as in Fig. 7 and ria = 0.25. The solid line represents 
H = - 0.45, the dashed line H = - 0.55, and the dot-dashed line 
H= -1. 
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0.584!13 

0.43032 

0.31082 

0.O!l691 

O~----~-+~----------------------~ 

-0.116609 

o 4.711 '.a 14.2& It 

FIG. 9. drldu as a function of the timelike coordinate (model II) for the 
same initial data and H = asinFig. 7, for the three regions ria = 1,0.5, and 
0.25 represented, respectively, by the solid line, the dashed line, and the dot
dashed line. 

comes negative (the sphere is not emitting but absorbing 
radiation) (see Fig. 7). It also is interesting to note that the 
outer regions not only absorb but radiate inward, so that the 
incoming pulse across the inner regions (say ria = 0.25) is 
bigger than the incoming pulse at the surface. After attaining 
a peak, the pulse slowly tends to zero (see Fig. 7). 

As shown in Figs. 8 and 9, all regions of the sphere will 
expand after some time, but the velocity of the expansion will 
depend on the location of the region and the value of H. 

Figures 10 and 11 display the profile of the density and 

0.0213171 

,0.0163957 

/'" .' , ::':'/ 
0.0048130 

,-..(\ 
I ',\. 
" ! \ \ .'\ ,! \ \ I : ,. \ . 

" \,! \ \. 
/ ,(! \, 

.' " \ , '" ". 
.I I ·v' " " 
• I ... '. 

f I " " 
: I .... , " 

I,' ....... ", 
: I . ....... ......... 

I,' ......... :, ... 
.. ~' 

// 

O+-------~------,_------~------~ 
o 4.7!1 9.5 14.25 19 

FIG. 10. p==m (0) 2p as a function of the timelike coordinate (model II) for 
the same initial data as in Fig. 7. The solid line and the dashed line represent 
the function for H = - 0.55 and ria = 0.5 and 0.25, respectively. The dot
dashed line and the double dot-dashed line represent the function for 
H = - 1 and ria = 0.5 and 0.25, respectively. 
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FIG. 13. (PI - P)IP (model II) as a function of the timelike coordinate, 
for the same initial data and the same H as in Fig. 7. The two regions 
ria = 0.9 and 0.45 are represented by the solid line and the dot-dashed line, 
respectively. 

the tangential pressure for different values of H and different 
pieces of the material. 

Figure 12 shows the evolution ofthe radial pressure for 
H = - 0.45 and different regions of the sphere. The behav
ior of the radial pressure near u;::: 10 suggests the formation 
of a shock. Though it is not clear from the figure, a more 
detailed analysis shows that the shock moves inward. 

Finally Fig. 13 shows that the degree of anisotropy de
creases with time after some wild swings when the peak of 
the incoming pulse of radiation passes by. 

In the next section we shall try to relate the results of the 
precedent section with some astrophysical processes. 

VI. DISCUSSION 

The model I, considered in Sec. IV, shares some features 
that strongly remind us of the general pattern of a super
nova: An inner core which contracts (ria) ;:::!, and the ex
pansion, after a bounce, of the more external regions. It is 
worth stressing that even during a certain period of contrac
tion, the density of the inner region is decreasing, due to the 
appearance of the second pulse of radiation, which is charac
teristic for that region (see Fig. 1). 

A model for the collapse of a massive star, whose central 
core loses an important portion of it mass by emission of 
radiation (neutrino), was considered many years ago by Mi
chel. I2 The main advantage of that kind of model consists in 
the fact that the expansion of the envelope does not require 
extremely efficient transport mechanisms. 

The second model (Sec. V) presents the strange proper
ty that some time after the initial moment the sphere is no 
longer emitting but absorbing radiation, a situation that one 
does not expect to deal with in the realm of astrophysical 
processes. However, a few years ago a model was proposed 13 

to explain the origin of gas in quasars. According to this 
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model, red dwarf stars close to a quasar absorb the quasar 
radiation and reverse their evolution by expanding. 

Doing so, the stars would have lower surface gravities 
and could be ablated by radiation pressure, giving rise to the 
so-called "broad line clouds" in quasars. 

Our sphere in model II expands during the absorption 
period, with the peculiarity that the incoming flux grows up 
as we move inward into the sphere. Thus, the central regions 
are attained not only by the absorbed radiation at the surface 
but the radiation emitted (inward) by the outer regions dur
ing the expansion. 

We find encouraging the fact that relatively simple mod
els, such as the one presented here, could reproduce the gen
eral features of some astrophysical phenomena. It remains to 
be seen if the models could be specialized so as to describe 
those processes in finer detail. 

Finally we would like to mention that the perfect-fluid 
case (P1 = P) has been integrated also. However, in this 
case, the luminosity, which is inferred from the surface equa
tions, is negative, and its absolute value is a monotonically 
increasing function of the timelike coordinate. 

Thus the matching of perfect-fluid solutions with the 
Vaidya metric on the boundary of the fluid implies a rather 
unphysical flux of radiation across that boundary. This re-

2096 J. Math. Phys .• Vol. 27. No.8. August 1986 

suIt, in some sense, generalizes a previous resule [see point 
(3) in the Introduction] concerning the impossibility of 
matching a conformally symmetric perfect-fluid solution 
(with the additional restriction S au a = 0) with the vacuum 
Schwarzschild metric. 
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deviation from spherical symmetry 

L. Herreraa) and J. Jimenez 
Departamento de Fisica. Facultad de Ciencias. Universidad Central de Venezuela. Caracas. Venezuela 

(Received 4 December 1985; accepted for publication 6 March 1986) 

Axially (and reflection) symmetric space-times (Bondi metric) are studied in terms of scalar 
functions that measure the deviation of the system from spherical symmetry. The case of small 
departures from sphericity is considered, and the corresponding solution is completely specified 
up to the first order. Finally in discussing some aspects of the initial (characteristic) value 
problem, a very concise proof of a theorem by Papapetrou [A. Papapetrou, J. Math. Phys. 6, 1405 
( 1965)] is given. 

I. INTRODUCTION 

The problem of gravitational radiation emitted from an 
isolated source has been studied from many different points 
of view and by means of different approaches and tech
niques. One of the most interesting approaches to this prob
lem is, probably, the method first introduced by Bondi et al. I 
and later generalized by Sachs. 2 

The purpose of this paper is to present a partial restate
ment of the Bondi formalism in terms of scalar functions, 
which, we believe, may help us to gain a deeper insight into 
the nature of radiating systems. More specifically, these 
functions will measure the departure of a given system (as
ymptotically flat, axially and reflection symmetric) from 
sphericity and staticity. 

The motivation to undertake such a task arises from the 
simple fact that radiation (as it follows from the Birkhoff's 
theorem) is a process associated with deviations of spherical 
symmetry. Thus, functions measuring departures from 
sphericity and staticity are expected to contain all the essen
tial information of a radiating system. This is, by the way, the 
very idea underlying the multipole expansion approach. 

We shall display the expressions that give the metric 
explicitly in terms of those functions. 

Next, we shall consider small departures from spheri
city. Then the solution (up to first order) will be found. It 
will be seen up to this (first) order of approximation that the 
Bondi mass is constant although the metric is, in general, 
time dependent. Finally we shall consider systems that, on a 
given null hypersurface (u = const) , coincide with some 
static solution. As a "by-product" of this analysis, a theorem 
by Papapetrou is proved in a very simple way. 

II. THE METHOD 

Let us consider a nonstatic, axially and reflection sym
metric metric I that, in radiation coordinates, takes the form 

ds2 = (Vr- I e2b _ U 2re2g )du2 

+ 2e2b du dr + 2Ure2g du dB 

(1) 

where U, V, g, and b are functions of u, B, and r. Here u==x° is 
the timelike coordinate, r = Xl is a null coordinate, and B 

a) Postal address: L. Herrera, Apartado 80793, Caracas 1080A, Venezuela. 

and ¢ are two angular coordinates. The condition that the 
solution be truly isolated requires that the metric functions 
be regular everywhere; in particular on the polar axis 
(B = 0,17"). This means that V, b, (U Isin B), and (glsin2 B) 
are regular functions of cos B as cos B = ± 1. We would like 
to stress that this condition will be satisfied all through this 
paper, and that its violation would lead to a completely dif
ferent set of results. 

It is well known that the field equations are split into two 
groups: the main equations and the supplementary condi
tions (actually there is also a trivial equation). The former 
read 

b l = !~, (2) 

[r4e2(g-blU
I

] I 

- 2r[b12 - gl2 + 2glg2 - 2b2r- 1 - 2g1 cot B] = 0, 
(3) 

2VI + !r4e2(g-b)ut - rUI2 

- 4,U2 - rUI cot B - 4, cot BU + 2e2(b-g) 

X [ - 1 - (3g2 - b2) cot B - g22 

+ b22 + b ~ + 2g2(g2 - b2)] = 0, 

2,(rg)ol + (1-rgl)VI - (rgll +gl)V 

- ,( 1 - rgl) U2 - r(cot B - g2) UI 

+ ,(2g12, + 2g2 + rgl cot B-3 cot B) U 

+ e2(b- g
)[ - 1 - (3g2 - 2b2 ) cot B 

- g22 + 2g2(g2 - b2)] = 0. 

(4) 

(5) 

Differentiation with respect to u, B, and, are denoted by 
SUbscripts 0, 1, and 2, respectively. 

Next, if one assumes that the metric functions may be 
expanded in terms of series in powers of r- I, then using (2)
( 5) one obtains 

g = c(U,B),-1 + [C(u,B) - ic3 ] ,-3 + 0(,-4), (6) 

b = - (c2/4 ),-2 + 0(,-4) (7) 

U = - (c2 + 2c cot B),-2 

+ [2N(u,B) + 3cc2 + 4c2 cot B ],-3 + 0(,-4), (8) 

V = , - 2M(U,B) - [N2 + N cot B - c~ 

- 4c2c cot B - !c2 ( 1 + 8 cot B)2],-1 + 0(,-3), (9) 

with 
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( 10) 

The three arbitrary functions of integration, M, N, and c, are 
related by the two supplementary conditions 

Mo= -c~ +~(c22+3c2cote-2c)0, (11) 

- 3No = M2 + 3CC02 + 4cco cot e + CoC2' (12) 

Next, the associated tetrad may be written as 

III = e - 2b8Jt, nil = c% - ( V 12r)8Jt + UIYf., 

mil = (1!r{i) (e - glYf. + ie csc eO':;), (13) 

or, in covariant components, 

III = 8~, nil = (Ve2b 12r)~ + e2b8!, 

mil = (rl{i)(Ue~ -e8! -ie- g sine8!). (14) 

For the spin coefficients we gee 

and the Ricci scalars are given, in terms of the spin coeffi
cients, by3 

<1>00 = Dp -"JK - (p2 + 0'0') - (E + E)p 

+ K7 + K(3a + lJ -iT), 

<1>10 = Da - "JE - (p + E - 2E)a 

-f3ii+f3E+KA+KA- (E+p)1T, 

<1>20 = DA -"J1T - (pA + O'fl) - r 
- (a -lJ)1T - VI( + (3E - E)A, 

<1>22 = 8v - f¥t - fl2 + 3f3v - XA + av 

- 7V + V1T - Yfl - Yfl, 

<1>12 = 8y - A/3 + (a + f3 - 7)Y - fl7 

+ O'V + Eli + f3(y - Y - fl) - aX, 

<1>11 = ~{Dy -!l£ + 8a - 8f3 - (7 + iT)a 

- (r+1T)f3+ (E+f')Y+E(Y+Y) 

- 71T - VK - (flP - AU) - aa - f3P 

+ 2af3 - y(p - p) - E( fl - ji)}, 
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(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

A = !{Dfl - 81T - 8a -"Jf3 - fl(P + p) 

- y(p - p) + VK + Efl + Ej1 - aa - f3lJ - 1TiT 

+ 1T(a - f3) - 2af3 - <l>1I}' (22) 

where 

D - -2ba =e -, 
ar 

a va a 
a=----+u-, 

au 2r ar ae 
(23) 

1 ( a ie a) 
8= {ir e-

g 

ae + sin e a¢ . 

As is well known, the Bondi metric (in its most general 
form) admits only one Killing vector, associated with the 
axial symmetry. On the other hand, in the spherically sym
metric case (Schwarzschild) there are three additional Kill
ing vectors associated with the sphericity and staticity. 
These Killing vectors may be expressed as 

t a = ~(1 - 2mlr)/~ + n~, 
(I) 

(24) 

t a = - (rl{i)(cos ¢ + i cos e sin ¢)m~ 
(2) 

- (rl{i)(cos¢-icosesin¢)m~, (25) 

t a = - (rl{i)( -sin¢+icosecos¢)m~ 
(3) 

- (rl{i)( -sin¢-icosecos¢)m~, (26) 

where (l~, n~, m~, m~) form the tetrad associated with the 
Schwarzschild metric (Le., b = g = U = 0, V = r - 2m) 
and m is a constant representing Schwarzschild mass. As a 
first step we shall calculate the tetrad projections of the Lie 
derivative of the Bondi metric with respect to vector fields 
such that, in the spherically symmetric case, they coincide 
with (24 )-( 26) [as a matter off act we only need to consider 
(24) and either (25) or (26)]. Clearly, these quantities (tet
rad projections of the Lie derivatives), while nonvanishing 
for a general Bondi metric, will measure how far the system 
is from spherical symmetry. 

Now, the tetrad components of the Lie derivatives of the 
metric tensor with respect to a general vector field t a are4 

2A Re(y) + 2 Re(CV) + aA, (27) 

2A Re(E) - 2B Re(y) + 2 Re(CiT) 

- 2 Re(C7) + DA + aB, (28) 

Bli - A (a + f3 + 7) - cX - Cfl 

- 2iClm(y) - 8A + aC, (29) 

- 2BRe(E) - CK- CK + DB, (30) 

- AK + B (a + f3 + iT) + CO' 

+ C[p - 2i Im(E)] - 8B + DC, (31) 

2A Re( p) - 2B Re( fl) 

+2Re[C(a-f3)] -8C-8C, (32) 

AO'-BX - 8C - C(a -f3), (33) 

with 

t a = AI a + Bna + Cm a + ema (34) 

[this C is not to be confounded with the function C(u,e) in 

L. Herrera and J. Jimenez 2098 



                                                                                                                                    

Eqs. (6)-(10)]. Let us start with the vector field (24), gen
erating the time independence of the Schwarzschild metric, 
we obtain, using (27)-(33), (I) 

aA +2Ay=l, (35) 

(2) 

DA -2Y==I, (36) 

(3) 

v-A(a +/3+7)=1, (37) 

DB ==0, (38) 
(4) 

a+/3+1T=I, (39) 

(5) 

2Ap - 2Jl=I, (40) 

(6) 

al7-A=I, (41 ) 

with A =!(1 - 2mlr) , B = 1, C = 0, and the functions 1 
are defined by (35)-(41). At this point it is important to 
make the following remark: the vector field 5 a with the val
ues of the coefficients A, B, C, as given above, is a Killing 
vector generating the time independence for the Schwarz
schild metric, but not for a static axially symmetric metric 
(Weyl). We make this choice because we are specially inter
ested in deviations from spherical symmetry. It should be 
clear, however, that this choice is not unique. Equations 
(35)-(41) may be rewritten as 

[ 
(2)] [(I)] 

Y =! DA - 1 = (1/2A) 1 - aA , 

(3) 

V = A (a + /3 + 7) + I, 
(4) 

a+/3+1T=I, 

(5) 

Jl=Ap-!/, 

(6) 

A =Al7- I. 

(42) 

(43) 

(44) 

(45) 

(46) 

Next, let us consider the vector field (25), associated with 
the spherical symmetry of the Schwarzschild metric. We ob
tain, from (27)-(33), (I) 

2vReC=F cos¢, 

(2) 

2(1T - 7)Re C=F cos ¢, 

(3) (4) 

1:.C - CA - CJl=F cos ¢ + i F sin ¢, 

(5) (6) 

DC+Cl7+Cp=F cos¢+i F sin¢, 

(7) 

2(a - /3)Re C - 2 Re(bC)=F cos ¢, 

(8) (9) 

C( /3 - a) - bC = F cos ¢ + i F sin ¢, 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

where, again, the functions F are defined by the tetrad com
ponent of the Lie derivative of the metric tensor with respect 
to a vector field with tetrad components 
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A = B = 0, C = ( - rl..fi)( cos ¢ + i cos 0 sin ¢). 

Such a vector field will coincide with (25) for the spherically 
symmetric case. Next it follows, from (47 )-( 52) and (11), 
that 

(I) 

v= - F l..fir, 

(2) 

7 - 1T = F l..fir, 

1 (3) F U 
[ 

(4) 1 
A =- F +-- +-tanO, 

r..fi cos 0 2 

1 (3) F V U 
[ 

(4) 1 
Jl = r..fi F - cos 0 - 2r -"2 tan 0, 

e-2b 1 (F (5») 
p = - -r- + r..fi cos 0 - F , 

1 [(5) F 1 
l7= - r..fi F + cosO' 

(7) (8) 

F 12+ F =0, 

(7) 

elI F 
( /3 - a) - - cot 0 = - , 

..fir ..fir 
(7) 

(9) F e-S sin (J - elI sin (J 
F - - cos (J = -------

2 2 

= - sin (J sinh g. 

Also, it follows from (11) that 

7=a +/3, 

thus 

or 

and 

(4) 

7+1T=1, 

(2) 

7 - 1T = F l..fir, 

[

(4) (2) ] 

7 = ~ 1 + F l..fir , 

[

(4) (2) ] 

1T =! 1 - F IJ2r , 

(7) 

/3 - a = F l..fir + (elI cot (J)/J2r. 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

Then using (42)-(67), we can express the spin coefficients 
in terms of the functions 1 and F, as follows: 

K=€=O, 

( 
(2)] 

y=! DA-I , 

L. Herrera and J. Jimenez 
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e-2b 1 [F (5)] p= + F --r- {2r cosO - , (70) 

1 [(5) F] 
U= - {2r F+ cosO' (71) 

1 [(4) 'P '2 (7) )] 
a=- f + ___ V'" F + e8"cot 0 , 

4 {2r r 
(72) 

1 [(4) 'P '2 (7) )] 
{3=- f +_+_V'" F + e8"cot 0 , 

4 {2r r 
(73) 

[

(4) (2) ] 

1" =! f + F l{2r , (74) 

1 [(3) F] U 
A =- F +-- + tan 0, 

{2r cos 0 2 
(75) 

[

(4) (2) ] 

1T =! f - F l{2r , (76) 

p=_I_[F _ F ]_~_ U tan 0, 
r{2 cosO 2r 2 

(77) 

(I) 

V= - F l{2r. (78) 

These have the following constraints: 

(1) [ (2)] 
f =A DA - f + aA, (79) 

(I) [(4) (2) ] (3) 

F I {2r + A f + F I {2r + f 0, (80) 

(5) 

f = 2Ap - 21'-, (81) 

(6) 

f =AU-A, (82) 

(7) (8) 

F 12+ F 0, (83) 

(

7) ) (9) 

F 12 cos 0 - F = sin 0 sinh g. (84) 

Next, we shall express the metric functions b, g, U, and Vin 
terms of the functions f and F. 

Thus, from 

p = e- 2b Ir, 

and (70) and (71), it follows at once that 
(5) (6) 

F = F Icos O. 

and 
(5) 

U= - ({2lr) F. 

Then from the field equation 

<1>00= ° =Dp _p2 - ~ 0, 

we obtain, using (70), (71), and (85), 
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(85) 

(86) 

(87) 

f
'" [t (u,r',O) r 

e 4b = 1 + 4 dr', 
r r' 

and from 

U= _g
j
e- 2b, 

we get, using (86), 
(5) 

f
'" e2b F (u,r',O) 

g= -{2 dr'. 
r r' 

Next, using (63) and (15) 

u= - _V_"'e(2b-g) f (u,O,r') dr'. f
'" '2 (4) 

r r' 

Finally, from (42) it follows that 

V = e - 2b(r - 2m) - 2e - 2br 

(88) 

(89) 

(90) 

(91) 

U(e2b )2] dr'. 

(92) 

We would like to close this section with the following re
mark: The vanishing of the functions F implies the vanishing 
of the f's, as required by Birkhoff 's theorem. Furthermore, 

(5) 

the vanishing of F alone leads to the spherically symmetric 
(5) 

case. In fact, if F = 0, then it follows at once from (88) and 

(90) that 

b =g=O, 

and from (3) we get 

U = 2N(u,O)/~, 

(93) 

(94) 

where we have used (6), (8), and (93). Next, from (4) and 
( 5) we obtain 

2V j + 18N 21r4 
- 2 = 0, 

VI - 2N2/r - 1 = 0, 

which imply 

N=O, 

and, by virtue of (94), 

U=O. 

(95) 

(96) 

(97) 

(98) 

Then using (95) [or (96)] and the supplementary condi
tions (11) and (12), we have 

V= r 2M, (99) 

M=const. 

Equations (93), (98), and (99) define the Schwarzschild 
metric in Bondi coordinates. The fact that the vanishing of 
(5) 

F implies the spherical symmetry will be exploited in the 

next section to study small perturbations off Schwarzschild. 

III. SMALL PERTURBATIONS OFF SCHWARZSCHILD 

Let us now consider small departures from the spherical 
symmetry. In the language of the preceding section that 
means 
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(5) 

F = Eh (u,r,B), ( 1(0) 

where lEI < 1 and h (u,r,B) is an arbitrary function of its argu
ments. Neglecting terms of the order O(E") with n>2, we 
obtain, from (88) and (90), 

b = 0, (l01) 

g= -..j2E -. i '" hdr' 
r r' 

(102) 

or, using (102), 

U = - L (u,B) - 2..j2E i'" ~ 
3~ r r'4 

x {L(u,B) i'" h(u,~,B) dr" 
r' r 

- [f r'(h2 + 2h cot B) dr']} dr'. (104) 
Next, from (3), we get, up to the first order in E, 

[r4e2(g-b)UI ] 1= [r4e2gU I ] I 

= 2r( - gl2 - 2g1 cot B), (103) 
Similarly, we can find an expression for V. Using the field 
equation (4) we obtain 

. {L i'" [ i'" h dr" f ] dr' } + 2r - _2 - 2..j2 E L -"- - r'(h2 + 2h cot B) dr' --;;j" 
3~ r r' r 2 r 

+ ~ cot B {~ + 2~E [L i'" h :,r' - f r(h2 + 2h cot B) dr]} 

{ L i'" [ i'" h dr" f ] dr'} + 2r cot B - 3~ - 2..j2E r L r' --;:;- - r' (h2 + 2h cot B) dr' 74 

I ( i'" h dr') {L 2 4.[2LE [ i'" h dr' f ]} -4"r
4 

1-2..j2E r 7 7+-,.s- L r 7- r(h2+2hcotB)dr 

+ (1 + 2..j2E i'" :. dr') [ 1 - 3 cot B..j2E i'" ~~ dr' -..j2E i'" h;2 dr'], 

with L(u,B) = L(u,B) + l(u,B)E, which may be written as 

L2 L cot B L 2 p> 
VI = 1---::2--_-2--4 + ,,2ER(u,r,B), 

6, 6, 4r 

where R(u,r,B) represent the terms multiplied by E in (105). Or, integrating, 

V = r _ 2M(u,B) + L2 +L cot B + L: + .(2EfR dr, 
6r 12r 

(105) 

(106) 

(107) 

where the function of integration - 2M(u,B) has been taken from (9). Finally, feeding back these results in (5), we obtain 
- - -2-

(LcotB+L2) -~+~+O(E)=O (1OS) 6r 4r4 3r ' 
which implies 

L=o. 
Thus 

U = 2..j2E i'" [S r' (h2 + 2h cot B) dr'] dr' _ El(u,B) 
r,4 3~ , 

and 

(109) 

( 110) 

p> { 1 f i'" [ S (h + 2h cot B) r'dr'] 1 f VI = I + ,,2E - r r(h2 + 2h cot B}z dr - 4r r 2 r'4 2 dr' - r cot B r(h2 + 2h cot B) dr 

+ 4r cot B i'" [S (h2 + 2h cot B)r' dr'] dr' - 3 cot B i'" h2 dr' - i'" h22 dr' + 2 i'" !!..- dr' } 
r r'4 rr' r r' rr' 

+ [plus terms with EI(u,B)]. (111 ) 

Also, from (5) it follows that 

(r-2M)(1gI) + ~ (UcotB- U2) =2 J r(go1') I dr+ E9(u,B), (112) 
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where 9(u,O) is an arbitrary function of its arguments. 
Next, we shall assume that the function h(u,O,r) may be expanded in a series of inverse powers of r. Thus 

(n) 

"" 
H (u,O) 

h(u,r,O) = - I ---
n = I .J2,n 

then 

(n) 

"" H (U,O) 
g=E I ---

n= I n,n 

U = _ E {[H + 2H cot 0 ] + ~ [/% + 2H cot 0 ] (J... + In r) _ 2 "" ~ + 2H cot 0 } _ El(u,O) , 

,:z 3 ,-3 3 n~3 (n + l)(n - 2),n + I 3,-3 

and, using (112), 

(n) {[(I) (I) ] 

"" 2MH "" H H2 + 2H cot 0 cot ° 
I--I--
n=l,n n=I,n-1 2 

(n) 

[

(I) (I) ] 

H2 + 2H cot 0 2 

2 

1 (1 )[(2) (2) ) (2) (2) ) ] 
+ 3r "3 + In r H2 + 2H cot 0 cot 0 - H2 + 2H cot 0 2 

"" H2 + 2H cot 0 cot 0 - H2 + 2H cot 0 2 [ 

(n) (n) ] [(n) (n) ]} 

- n~3 (n + l)(n + 2),n-1 

(n) 

(2) "" Ho (n - 1) 1 
= 9(u,O) - Ho In r + 2 I + -[/(u,O) cot 0 -12(u,O)]. 

n=3 n(n - 2),n-2 6r 
(2) 

From (6) it follows that H =0, then 

(I) 1 {[(I) (I) ] [(I) (I) ] } 
H + 2 H2 + 2 H cot 0 cot 0 - H2 + 2 H cot 0 2 = - 9(u,O), 

(I) 2 (3) 1 
M H = -Ho -- (lcot 0 -/2), 

3 6 

{[

(3) (3) ] [(3) (3) ] } 

(3) H2 + 2 H cot 0 cot 0 - H2 + 2 H cot 0 2 3 (4) 

-H - 20 = "4 Ho, 

[

(n+l) (n+l) ] [(n+l) (n+1) ] (n+2) 

(n) (n + I) H2 + 2 H cot 0 cot 0 - H2 + 2 H cot 0 2 2 Ho (n + 1) 
'lMH- H - =-----

(n+2)(n+3) n(n+2) 
(n>3). 

Comparing the preceding results with (6)-(9), we get and 
(I) (4) 

EH (u,O) = e(u,O), (121) - 4C + 5[C2 cot 0 + 2C - C22 ] = EHoI3. 

(3) 

EH (u,O) = 3 [C(u,O) - e3/6] 

or, keeping terms of order O(E), 

(3) 

EH = 3C(u,O). 

(122) 

(123) 

Next, comparing (115) with (8) we see that 

N= - EI/6. 

Thus ( 124) becomes 

4Co = 2eM +Ncot 0 - N2, 

(113) 

(114) 

(115) 

(116) 

(117) 

(118) 

(119) 

(120) 

(125) 

(126) 

(127) 

Also, from (118) and (119) one gets 

Me = 2Co + 1(/ cot 0 - 12 )E (124) 

which is just Eq. (10) up to the order E. The recurrence 
relation (120) gives the constraints for the time derivatives 
of the rest of the coefficients in (114). We have still the 
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supplementatry conditions (11) and (12), which read (up 
to the order E) 

MO = !(C22 + 3c2 cot 0 - 2c)0, 

-3No=M2• 

(128) 

(129) 

Observe that in general the function M may be written as 

M = ms + €in, ( 130) 

where ms is the Schwarzschild mass and N is of order E as it 
follows from (126), then 

EmO = !(C22 + 3C2 cot 0 - 2c)0, 

- 3No = Em 2· 

(131) 

( 132) 

The Bondi mass aspect 

m = _1- f1T c~ sin OdO 
2 Jo 

is constant at order E. This of course is the same situation as 
in the linear approximation. I 

We may further introduce the quadrupole moment as 7.8 

Q(u) = 3n I1T CP~ (cos 0) sin o dO, (133) 

where is a numerical factor and P~ is the associated Le
gendre polynomial 

p~ =3sin2 0. (134) 

Then, using (127), 

Qoo = 9n i1T [~ cooms + Noo cot 0 - N20 ] sin
3 0 dO 

(135) 

or, using (132), 

Q 9 11T [ 1 - m 20 cot 0 + m22] . 3 0 dO 
00= n -cooms - -- sm . 

o 2 3 3 
( 136) 

We may now assume that Co may be expanded in Legendre 
polymonials in cos 0 with U dependent coefficients. Then, 
following the same line of argument as in Ref. 8, a relation
ship between the radiated energy and the change of quadru
pole moments may be obtained (see Eq. V 17 in Ref. 8). 

IV. INITIALLY STATIC SYSTEMS 

Let us now assume that, on a given null hypersurface 
U = U i = const, a Bondi metric (general) coincides with 
some static solution (g .. be' Ue• Ve ). Then 

and 

2103 

gi g(u;.r,O) = ge (r,O), 

bi=b(u;.r,O) = be (r,O), 

Ui=U(upr,O) = Ue (r,O), 

Vi= V(u;.r,O) = Ve (r,O), 

gli gl(u;.r,8) = gel> g2(u;.r,8) =ge2' 

bli=bl (u;.r,8) = bel' b2(u;or,O) = be2 , 

( 137) 

(138) 

( 139) 

(140) 

(141) 

(142) 

UIi =UI (u i,r,8) = Uel' U2(u;or,8) = Ue2 , (143) 

VIi=VI (u i,r,8) = Vel' V2 (u;or,8) = Ve2 · (144) 
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Where the SUbscript e refers to the static solution and the 
SUbscript i refers to the general (radiative) solution evaluat
ed on the hypersurface U = Ui • It follows from (137)-( 144) 
that 

1Ti = 1Te, fle = fli' Vi = Ve, 

and 

(145) 

A. i = A.e + gOi' (146) 

Since both the static (Ve, be' ge' Ue ) and the general (dy
namic) metric (U,b, g, V) are solutions of the Einstein vacu
um equations, then we get, from the vanishing of the Ricci 
scalars (16)-(22) at the hypersurface U = U i ' 

(147) 

"'2 (5) COiV"- 2bi ---eF r I' 

(148) 

(149) 

rP22 = 0=> - flOi = 2A. e gOi + i,i - 2boi fli' (150) 

The vanishing of the other Ricci scalars is trivially satisfied. 
Next, using (90) and (147), we get 

(5) (5) 

2bOi Fi +Foi = - (co;l{2.r) e- 2bi, (151 ) 

(5) (5) 

and we recall that Fi = Fe' bi = be. Now, it is clear that if 
there are not "news" at U = ui (i.e., COi = 0), then gOi = 0, 
bOi = 0, /30i = flOi = O. And it follows from (15) that VOi 
= UOi = O. Let us now assume that Co vanishes not only at 
the hypersurface U = U;o but in a finite interval Ui <,u<,u/. 
Then, it is obvious from the results above that in this interval 
the solution will be static. Thus, if the metric coincides with a 
static metric at U = U;. and is nonradiative (co = 0) for 
U > U;. then it is also static for U > Ui • 

We would like to mention that a similar result was found 
by Papapetrou5.6 some years ago. There are, however, some 
differences in the conditions imposed, namely the following. 

(a) The absence of radiation is defined by Papapetrou as 
Coo = 0, instead of Co = 0, as in our case. 

(b) We do not require the space-time to be static below 
U = U;. as is the case in Refs. 5 and 6, but just to coincide at 
U = U i with a static metric. 

Finally we would like to remark that the conditions 
(5) 

COi = 0 and FOi = 0 are completely equivalent. In fact, if 

(5) 

COi = 0 then bOi = 0 and the vanishing of FOi follows from 
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(5) 

( 151 ). On the other hand if FOi = 0, then it follows from 

(88), (90), and (147) that COi = O. 

v. CONCLUSIONS 

We have seen so far that it is possible to reformulate the 
Bondi approach in terms of the functions measuring the de
viation from spherical symmetry. The method seems to be 
specially suitable in the case of small perturbations off 
Schwarzschild. It is worth stressing the possibility of differ
ent alternatives in the choice of the vector field with respect 
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to which the Lie derivatives of the metric tensor are calculat
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D~al mass, ~-spaces, self-dual gauge connections, and nonlinear gravitons 
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A.n an~l?gy bet~een source-free: asymptotically Taub-NUT magnetic monopole solutions to 
~mstelO s equatIon and self- (antI-self- ) dual gauge connections is displayed, which finds its origin 
10 the first Chern class of these space-times. A definition of asymptotic graviton modes is 
proposed that suggests th.a~ a subclas~ of Penrose's nonlinear gravitons or Newman's 2-spaces 
could emerge from nontnvlal space-time topologies. 

I. INTRODUCTION 

Most approaches, presently available in the quantum 
theory of interacting fields, are the perturbative ones. Al
though the importance of nonperturbative effects has gradu
ally been acknowledged, difficulties paving the way to an 
exact theory seem to be so formidable that other methods 
had to be substituted. Among those, semiclassical methods 
have been most helpful. In particular, ideas connected with 
Feynman path integrals have led to techniques of Euclidean
i~tion and a lot of effort has been devoted to the investiga
tIOn of Yang-Mills fields in Euclidean space and solutions 
such as instantons, the viewpoint here being that such solu
tions signal physically interesting quantum processes, which 
escape perturbative descriptions. 

In the case of quantum gravity, the issue is even less 
settled. Due to the absence of a preferred time, what is meant 
by Euclideanization is not a priori clear. For instance, one 
can decide to complexify Lorentzian solutions of Einstein's 
equation and investigate their Euclidean sections. However, 
such sections are relatively scarce. Another possibility is to 
search for Euclidean solutions in their own right, expecting 
that some of them will carry an interesting physical interpre
tation. This has led to the notion of gravitational instanton: 
black-hole instantons describing states of thermal equilibri
um of the "quantized gravitational field," locally asymptoti
cally flat instantons signaling tunneling processes, and com
pact instantons contributing to the space-time foam picture. 
This i.n tum has developed Wheeler'sl viewpoint according 
to which a very large fluctuation of the metric and even of the 
short scale space-time topology should be expected in quan
t~m gravity. The reason is that the action for the gravita
tIOnal field is not scale invariant, unlike that of the Yang
Mills or electromagnetic fields. Consequently, a large fluctu
ation of the metric over a short length scale does not have a 
very large action and therefore exhibits a small damping in 
the path integral. 

Since the path integral approach is a convenient way to 
handle nontrivial topologies, much attention has been devot
ed to solutions that are expected to have a dominant contri
bution to the path integral, the hope being that instanton 
solutions with complicated topologies would be such solu-

a) Detachee du Ministere des Relations Exterieures, Paris, France. 

tions, i.e., metrics near stationary phase points of the action, 
and much attention has been devoted to the investigation 
and classification of gravitational instantons, based on their 
topological invariants such as the Euler number X and signa
ture 1". 

On another hand, since stationary points of the action 
are provided, in the case of Yang-Mills fields by self- (anti
self-) dual (bundle) connections over Euclidean four-space, 
one expects that self- (anti-self-) dual (complex) solutions 
to Einstein's equation should play an important role in the 
quantum gravity program. Penrose's nonlinear graviton 
construction via twistorial methods and Newman's Jr'
spaces theory have aimed at developing such considerations. 

In this paper we would like to strengthen this viewpoint. 
We shall take advantage of the existence of a particular class 
of Lorentzian source-free solutions to Einstein's equation, 
the asymptotically NUT gravitational magnetic monopoles, 
to propose that (a subclass of) Penrose's nonlinear gravitons 
could be viewed (at least asymptotically) as self- (anti-self-) 
d~a~ gauge co~nections on a suitable bundle, provided non
tnvlal topolOgical features of the space-time manifold are 
incorporated in their description. This result will be ob
tained as follows. In a previous series of papers2-4 we have 
presented a general framework for the description of the ge
~metr~ and asymptotic behavior of (real Lorentzian) space
times 10 the presence of magnetic mass. An important fea
ture lies in the fact that these space-times exhibit the 
structure of a nontrivial U ( I) bundle over a base space with 
nontri~ial second cohomology group. This in tum, implies 
the eXistence of a bundle connection one-form at infinity, 
analogous to the Maxwell connection, the flux of the corre
sponding curvature two-form being a measurement of the 
enclosed magnetic charge (i.e., the first Chern class of the 
bundle). This charge (an integral over a two-sphere sur
rounding the nontrivial topological features) is purely topo
logical. Hence the situation for gravitational magnetic 
monopoles is analogous to that of the electromagnetic 
monopoles. Restricting ourselves to (Lorentzian) asymp
totically NUT magnetic monopoles that are real sections of a 
complex (right- or left-flat) asymptotically Taub-NUT so
lution, one can show the existence (in the neighborhood of 
their complexified conformal null boundary) of asymptoti
cally self- (anti-self-) dual bundle curvature two-forms and 
connections, implying the existence of integrable propaga-
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tion laws along specific complex two-planes. Thus, under 
such conditions, the right- or left-flat Taub-NUT complex 
solutions proposed by Penrose as an illustration of his non
linear graviton construction provide an example of space
times that are in many respects similar to the self-dual Yang
Mills gauge fields (obtained, i.e., via Ward's generating pro
cedure). Since the existence of our connections relies cru
cially on the nonvanishing of the first Chern class of the 
Lorentzian slices, we propose to associate them with gravi
ton modes originating within the space-time nontrivial to
pology. Since nontrivial topologies provide new quantum 
numbers, via superselected photonic sectors, which are anal
ogous to spin and mass, in the quantization of Maxwell 
fields, these results could be interpreted as a generalization 
in the case of gravity: existence of "superselected self- (anti
self-) dual bundle connections." A unification with the al
ready available5 scheme of quantization at null infinity 
(based on the description of asymptotic gravitational de
grees of freedom via equivalence classes of metric connec
tions) is possible. We hope that these considerations will 
bring support to the viewpoint according to which nontrivial 
topologies might have a crucial role to play in the unification 
of quantization methods available for Yang-Mills fields and 
for gravity. 

II. PRELIMINARIES 

In this section we would like to briefly review the notion 
of self-dual connection in the context of principal bundles or 
vector bundles over Riemannian manifolds. The description 
of Yang-Mills fields is based on such a framework. Since the 
following sections aim at displaying an analogy between 
gravity (in the complex left- or right-flat regime) and Yang
Mills gauge fields, this section will serve as a mathematical 
introduction. 

Let A P denote the bundle of exterior p-forms over J(, an 
oriented Riemannian manifold of even dimension 21, and 
reAP) its space of smooth sections. 

On a principal G-bundle g{} over J(, a connection is a 
one-form w, valued in the Lie algebra g of G, and its curva
ture 0 is the g-valued two-form 

dw + Hw,w], (1) 

a section of g ® A 2, g denoting the vector bundle associated 
to g{} by the adjoint representation. On a vector bundle r 
over J(, a connection is defined by its covariant derivative 
V, a first-order linear differential operator 

V: r(r®Ao)~r(r®A). (2) 

This covariant derivative V has a natural extension D to 
r ( r ® AI) defined by 

D(aO®a 1 ) = Vaol\a) + ao®da l , (3) 

whereaoEr(r®Ao) andaIEr(r®AI). The curvature 0 
is defined as the composition DV Er (End r ® A 2 ). The re
lation between wand V can be described as follows. Any 
representation r G of G on a vector space r induces a parti
cular local basis {eJ of r, a local section of g{} X r G' The 
pullback of w via this section induces a matrix of one-forms 
wij' the resulting action of V being defined via 
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(4) 

Conversely, if r is a V -preserving representation of G, the 
above formula defines won the principal bundle of G-frames. 
This w is also called the gauge potential, and its curvature 0 
the gauge field. 

Definition 1: A gauge transformation on a principal G
bundle g{} is a diffeomorphism f g{} ~g{} such that (i) 
I(g·p) = gl(p) , PEg{}, gEG, and (ii)/preserves each fi
ber. 

Under such a mapping, the connection one-form w 
transforms according tol-Iw = I-I dl + (Ad/- I )w, and 
the covariant derivative according tol-IV = I-IV! 

Definition 2: A connection is said to be self-dual if its 
curvature 0 satisfies 0 = *0, and anti-self-dual if 
0= -*0. 

Self- (anti-self-) duality is invariant under the action of 
conformal transformations on the base space. In the particu
lar case of aU ( 1 ) bundle, 0 is a closed two-form defining the 
first Chern class in H 2 (J( ,R ) . 

It can be shown6 that a bundle with self-dual connection 
must satisfy some topological properties. In particular the 
first Chern class and Pontrjagin class (evaluated on the fun
damental cycle on a compact base manifold) must be posi
tive. 

Recall also that a form 
0= w(2.0)ab dz" I\dzb + w(J,I)ab dz" I\dZb 

+ W(O.2) ab aza 1\ U 
is of type (1,1) on C 2 if W(2,O) = W(O,2) = O. If 0 is of type (1,1) 

for all possible such complex structures on R 4, then 0 is anti
self-dual; one has6 the following theorem. 

Theorem: If J( is a complex manifold modeled on a 
four-dimensional Riemannian manifold, and g{} is a COO 
principal bundle with connection V whose curvature 0 is of 
type (1,1), g{} admits a natural holomorphic structure, V 
being the (unique) corresponding Hermitian connection. 

Remarks: 
(i) Using the complex structure on J( and complexified 

fiber G C in the case of a compact structure group, one can get 
an almost complex structure on the principal bundle g{} . In
tegrability of this almost complex structure follows from 
self-duality of the conformal curvature tensor on the base 
manifold J(. 

( ii) The above theorem will be useful in the forthcoming 
sections. More precisely we shall focus on a particular class 
of Lorentzian solutions to Einstein's equation which admits 
a conformal null boundary J, a nontrivial U (1) bundle over 
S2. Assuming that such solutions are real sections of self
dual complex solutions (left-flat complex, holomorphic, 
nonsingular, invertible metrics gab on a four-dimensional 
complex manifold M, in the sense of Refs. 7 and 8), it will be 
useful to assume that IC.F (a complex thickening of J) in
herits a natural, almost complex structure from its bundle 
structure. 

III. ASYMPTOTICALLY NUT LORENTZIAN MAGNETIC 
MONOPOLES AND NULL REGIME 

In this section we shall adopt the notations of Ref. 9. In 
view of our investigation (Sec. IV) of the complex right-
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(left-) flat regimes, we summarize from Refs. 3 and 4 the 
situation at null infinity for Lorentzian asymptotically NUT 
magnetic monopole solutions. Let (M,gab = 02gab ) denote 
the (unphysical) space-time obtained from such a space-

A 

time (M,gab) after conformal completion. Since the unphy-
sical Weyl tensor Cabed = OKabed vanishes at f, we have 

Rabed = ga[cSd lb - gb [cSd 10 

with 

(5) 

Sob = Rob - tRgab' (6) 

Let j. denote the pullback operation at f. The two basic 
fields on f are nb = j. (g'bVa 0) and &.b = j·gab (the de
generate metric). Introducing a Newman-Penrose null tet
rad field in the neighborhood of f (na,ma,mar), and its 
pullback j·na = n°, j·ma = ma, j·mo = iiia, j·,o = la' 
j·ma = ma, j·ma = iiia, j·na = 0, one can define 
Yab = Do Ib' and obtain the following expressions: 

Yab = lf10b + !&'bgmny mn' (7) 

where lf1ab = UOmOmb + lf1iiioiiib (lf1 is known as the 
asymptotic shear), 

Sob = - 2ifJab + !&'b84' (8) 

(where 84' is the scalar curvature of the manifold of orbits of 
nO), and 

(9) 

the symmetric traceless News tensor, invariant under con
formal rescalings. One can further introduce the "electric" 
and "magnetic" components of the (rescaled) Weyl tensor, 

Kab = _ Kambnnmnn , .Kab = _ .Kambnnmnn , (10) 

and their pullbacks Kab, *Kab, with the following properties: 

(11 ) 

Kmb - _"*Kmb (12) gma - - Eampl£ , 

gmo ·Kmb = EamprY'Kmb, (13) 

where Eabc = j·(Eabed,d) and ~bc = j.(~bednd)' The "mag
netic" component *Kab is going to playa crucial role in the 
forthcoming section. Note first that if a stationary Killing 

A A "'-

vector field SO is available on (M,gab'Va ), we have shown3 

that 

j·v[ol-Itb I =D[aWb I (14) 

(wheregobtat b = -1), can be identified with 

D[aSbtlc D[a'Ybl' (15) 

a constant multiple of! Eabm ·Kcmlc' This leads us to intro
duce Oab = Eabm ·Kcmlc' a closed two-form on f. The relat
ed connection one-form 'Yb can be viewed as a "Maxwell" 
connection induced at f by 1 - It b [recall that in the pres
ence of nonvanishing magnetic mass, i.e., 

r V[al-Itb J dS ab #0, JS2 
.f is a nontrivial U ( 1) bundle over S, the two-sphere of its 
null generators]. The presence of a magnetic monopole is 
related to that of a wire singularity on (M,gab)' which ori
ginates in this monopole and registers at infinity as follows: 
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D[a 'Yb I is the lift of a closed (not globally exact) two-form 
D[a Vb I on the base space S; the discontinuity in Vb is the 
imprint, at infinity, of the wire singularity. 

In absence ofisometry, on another hand, we have shown 
(3) that the total magnetic mass N f (an integral over a 
cross section C of f) is such that 

Nf = L Oab ds
ab = iD[a Vb I dS

ab 

and is a measurement of the number of times the (nontri
vial) f bundle winds around its S I fiber. It is thus clear that, 
in the absence of isometry t a, the presence of a nontrivial 
U ( 1) bundle structure at f is a characteristic feature of 
Lorentzian asymptotically NUT dual mass gravitational 
monopoles. 

Theorem: Source-free, asymptotically NUT Lorentzian 
solutions to Einstein's equation are nontrivial S I bundles 
over a base space with nontrivial second cohomology group. 
Their magnetic mass is a purely topological charge, a mea
surement of the flux of the curvature two-form on the non
trivial compact f bundle (or equivalently the first Chern 
class of the space-time). 

Corollary: The presence of non vanishing magnetic mass 
induces transition functions at null infinity reflecting the 
non triviality of the .f bundle (lens space) over its S 2 base 
space, or equivalently the degree of mappings 

g: S2_TI2(S2). 

IV. COMPLEX REGIME AND ASYMPTOTICALLY (ANTI-) 
SELF-DUAL BUNDLE CONNECTIONS WITH 
TOPOLOGICAL ORIGIN 

Recall that the self-dual Taub-NUT instanton can be 
written in the form 

ds2 = (r - n)(r + n) -1(d7 + 2n cos 0 d,p)2 

+ (r - n2)(d0 2 + sin2 Od,p2) 

+ (r+n)(r-n)-Idr. (16) 

The Dirac string singularity at the north pole (0 = 0) can be 
removed by introducing a new coordinate 

7' = 7 + 2n,p. (17) 

Similarly the Dirac string singularity at the south pole 
(0 = 11") can be removed by introducing a new coordinate 

7" = 7 - 2n,p. (18) 

Because,p is defined as modulo 211", 7', and 7" must be identi
fied as modulo 811"n. These identifications give the surfaces 
r> n the topology of three-spheres with (7 (2n ) - I ,,p) as Euler 
coordinates. Due to presence of the Killing vector field 
K a = a / a7, one can relate the self-duality of the Riemann 
curvature (Robed = !eabefR efcd ) to that of the two-form 
Kab = V[aKb J' The self-dual (anti-self-dual) parts of Kab 
are defined via K ± ab = !(Kab ± !eabefKef), and (provided 
the curvature is itself self-dual) one can show that Kab is self
dual everywhere if it is self-dual at one point. Appearance 
and disappearance of pairs of self- and anti-self-dual instan
tons have been proposed to describe quantum fluctuations of 
the metric. As we shall see now, the right- (left-) flat com-
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plex regime, though probably more realistic, is not so 
straightforward. 

Let us now focus on source-free asymptotically NUT 
Lorentzian gravitational magnetic monopoles. We assume 
that such solutions are (at least asymptotically) real sections 
of asymptotically left- (right-) flat complex space-times in 
the sense of Refs. 7, 8, and 10. 

On one hand, such Lorentzian slices exhibit an interest
ing bundle structure [a nontrivial U ( 1) bundle over a base 
space with a nonvanishing second homology group]. From 
the previous section we know that this bundle structure 
arises from the non vanishing of the first Chern class, or 
equivalently the presence of nonvanishing magnetic mass 
(Le., gravitational magnetic monopole). On another hand, 
left- (right-) flat complex solutions to Einstein's equation 
have been introduced by Newman10 (K-spaces) and Pen
rose7

•
8 (definition of the nonlinear graviton within the 

framework of deformed twistor space) as possible candi
dates for the description of one particle states in a future 
theory of quantum gravity. One expects that (in the Euclid
ean regime) such solutions would provide extrema for the 
path integral functional, and therefore playa role similar to 
that of self-dual Yang-Mills gauge fields. In agreement with 
the results presented in Ref. 10, we shall assume that a com
plex solution can be defined, at least asymptotically on a 
complex manifold modeled on the real manifold associated 
to the Lorentzian (magnetic monopole) solutions under 
consideration. In a suitable complex neighborhood of infin
ity we shall combine the bundle structure (arising from the 
Lorentzian regime) with the self-dual features of the com
plexified solution. The result will be summarized in our abi
lity to select a family of (anti-) self-dual bundle gauge con
nections that find their origin in the first Chern class of these 
space-times. An analogy between gravity and Yang-Mills 
fields (Sec. III) will consequently be underlined that does 
not require the existence of Euclidean (instantonic) sections 
or the introduction of bundles over four-dimensional Rie
mannian spaces. A definition of graviton-antigraviton pairs 
that find their origin in the space-time topology will be pro
posed. 

Let us briefly recall the definition of (right-) left-flat 
space-times. Denote by (M,gab) a four-dimensional com
plex manifold with a complex, holomorphic, nonsingular in
vertible metric gab' Vacuum equation Rab = ° will be as
sumed, thus implying the following decomposition of the 
Weyl curvature tensor into its irreducible (spinor) compo
nents: 

(19) 

with 

tPABCD = tP(ABCDl' "'A'B'C'D' = "'(A'B'C'D'); (20) 

tPABCD ("'A'B'C'D') corresponds to the anti-self-dual (resp. 
self-dual) part of the conformal curvature: 

C - abed = tP ABCDtA 'B' tC'D" 

C + abed = '¢IA 'B'C'D'tABtCD' 

(C ) '" - e e/,c ± - + 'C ± abed - ab efed - _ I abed' 

C + abed = C - abed' 
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(21) 

(22) 

(23) 

(24) 

A space-time is right (resp. left) conformally flat if 
¢A 'B'C'D' = ° (resp. "'ABCD = 0), and is thus essentially 
complex. We shall further assume (in the asymptotic region 
of the Lorentzian section) the existence of a rescaled (real) 
curvature tensor Kabed subject to 

C- abed + C+abed 

=Cabed = nKabed = n(K - abed + K + abed)' (25) 

Recall also 10. 11 the existence of an adapted complex asymp
totic chart (z", a = 0,1,2,3) suitable for the introduction of 
a complexified conformal null boundary U (in the sense of 
Penrose) and of a complex function Z (the good-cut func
tion) enabling the definition of a field of null tetrads adapted 
to the asymptotic behavior of the complex solution9

-
11

: 

La = Za = oa Z = OAOA" 

Ma =Ma(Z) =OA1A" 

Ma =Ma(Z) =IAOA" 

Na =IAIA" 

(26) 

(27) 

(28) 

(29) 

with the normalizations OA1A = OA,JA' = 1. Such right
(left-) flat complex solutions have emerged from the theory 
of K-spaces 10 and can be viewed as a thickened region (not 
necessarily unique) of their Lorentzian section ( s). The fol
lowing expression of the Levi-Civita tensor will be useful: 

eabcd = (i/2) (tACtBDtA 'D'tB'C' tADtBCtA 'C'tS'D' ). 
(30) 

The resulting three-tensors admitting pullbacks at U are 

eabe = eabedL d = (i/2)(OBOA,EACtB'C' 

eabc = eabedNd = (i/2) (lBIA'eAc~'c' 

_ IB'IAeA 'c'~c). 

(31) 

(32) 

Definition: The curvature two-form (on the of bundle), 
which induces (via its flux) the total magnetic mass of the 
gravitational monopole, defines a two-flat 

(33) 

We shall refer to n'" ab as being the magnetic two-flat. The 
corresponding complex two-form in the left-flat (complex) 
solution is 

n",- - _. K imjeNNL 
,U ab - leabm i j c 

= n-AA'BB" (34) 

Similarly, the two-form associated to the total mass of the 
solution is given by 

n-ab eabmK -imjcNi~Le 

(35) 

Hence the following theorem. 
Theorem 1: The mass M and magnetic mass M '" of a left

(right-) flat complex solution are related via 

M"'= -iM (M"'=iM). 
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Remark: The two-form 0 * - ab is not self- (or anti-self- ) 
dual. This follows immediately from 

(36) 

a two-form perpendicular to the two-flat M[aMb ], while 
n * - ab is perpendicular to N [a L b ]. 

We shall now introduce the self- (anti-self-) dual com
ponents of 0 * - ab via projection on suitable self- (anti-self-) 
dual two-flats. 

Theorem 2: The complex two-flats F"+ AA'BB' 

(n = 1,2,3), respectively, defined via 

are self-dual 

[ 
AA'BB'F" + 'F"+ 

eCC'DD' AA 'BB' = I CC'DD' (n = 1,2,3,) ] 

while their primed analogs, P" - AA 'BB' (n = 1,2,3), defined 
via 

are anti-self-dual 
AA 'BB'F-" - - 'F-" - ) 

(EcC'DD' AA 'BB' - - I CC'DD" 

The proof follows immediately from the expression of 
eabcd=eAA'BB'CC'DD' [formula (30)]; antisymmetry is ob
vious. 

Theorem 3: The two-flats 

n+ _n*- F"+MM' 
(() AA 'BB' =u {AA'MM' BB'] 

( -"- n*- F-"-MM') resp. (() AA 'BB' ==u [AA'MM' BB'] 

are self-dual (anti-self-dual) (n = 1,2). Their respective ex
pressions are 

1+ .iN'T'N'K'I 0 0 L M-
(() AA 'BB' = 'f' M./N' T' K' [b a]' 

-2- .iN'T'N'K' 0 0 N M-
(() AA'BB' ='f' I M ./N , T' K' [a b]' 

The proof is straightforward. 

(37) 

(38) 

(39) 

(40) 

(41) 

Corollary: The self- (anti-self- ) dual components 
(() ± AA' BB' of the magnetic two-flat vanish when contracted 
with an anti-self- (self-) dual two-flat F" - (F" + ). 

Theorem 4: The two-forms (()" ± AA 'BB' (n = 1,2) are 
self- (anti-self-) dual restrictions of the magnetic two-flat 
0*-ab to totally null two-planes. 

Proof It suffices to notice that the null vectors Lb and 
Mb can be spanned by the two-plane-forming family of null 
vectorSOB,A.B (OB fixed,AB varyingfromOB toIB),Lb and 
Mb by the family of null vectors OBAB , (OB fixed, A B , vary
ingfrom OB' toIB , ),Nb andMb by the family of null vectors 
IB,AB (/B' fixed,AB varyingfromIB to 0B)' andNb , Mb by 
the family of null vectors IBAB " (A B , varying from 
I B , to OB')' 
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Theorem 5: The forms (()I ± AA 'BB' admit a complex 
gauge potential 

,.,I± -V A ± 
'" AA 'BB' - [AA' BB']' 

This follow~ from the fact that 0 * ab admits a gauge potential 
Vb on f, (0 * ab = V [a Vb] ), and from its spinor expression 

¢(AB) EA 'B' +~A'B'EAB' 
From (()+ AA 'BB' = ¢(AB) EA 'B' with VAB'¢AB = 0 (resp. 
-- - • A'B-
(() AA'BB' =¢(A'B,)EAB WIth V ¢A'B' =0) one concludes 
the existence of a gauge potential A + BB' (resp. A - BB' ) 

(since i*Na = 0 we shall not, from now onwards, be con
cerned by the forms (()2) • 

Corollary: In a suitable neighborhood of CJil'", 
A + BB' (resp. A - BB' ) defines an integrable propagation on 
the complex nontrivial space-time bundle provided one 
chooses a closed path r that lies within an anti-self-dual 
(resp. self-dual) complex totally null two-plane and which 
does not cross singularities of this potential. (The proof is 
straightforward since along such paths, one has 

LAbdSb=O.) 

Remarks: 
(i) Recall that for Yang-Mills fields (over a base space 

M) with n internal degrees offreedom (a;, i = 1, ... ,n) the 
curvature two-form F is derived from the formula 

(42) 

The curvature two-forms (() ± AA' BB' can be viewed as gravi
tational analogs of Fab , the internal gauge degrees of freedom 
being provided by the totally null directions displayed in the 
proof of Theorem 4. As will be mentioned in our concluding 
remarks, such internal degrees can be viewed as "trans
verse" to the radiative degrees offreedom usually related to 
the presence of the BMS group at f. 

(ii) In the absence of magnetic mass, the (complex) 
space-time bundle is trivial, and the analogy with non-Abe
lian Yang-Mills self-dual gauge connections should be re
vised; also, if C 1 ( 0 * ab) = 0 (no magnetic monopole) an 
analysis of the origin of singularities in the gauge potential is 
required. 

(iii) We propose that pairs of self- (anti-self-) dual 
gauge connections (A + BB', A - BB') could describe gravi
ton-antigraviton modes emerging from the non vanishing of 
the first Chern class of the Lorentzian (gravitational) mag
netic monopole. The onset of nontrivial topologies in the 
Lorentzian regime could thus be described, within this 
framework, via creation of graviton-antigraviton pairs; in 
strong analogy with the instantonic model presented in the 
beginning of this section, clouds of such pairs could be asso
ciated with the "space-time foam." 

v. CONCLUDING REMARKS 

(i) Recall that the radiative degrees of freedom can be 
described at f via equivalence classes of metric connections 
D's. It is easy to show that conn~tions D, jj corresponding 
to a given physical space-time (M,gab) must be related via 

(43) 
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for some function! on f. Two such connections are said to 
be equivalent. Furthermore the transformation Da~jja 
leaves the two fields Nab' ·K ab invariant provided D and jj 
belong to the same equivalence class. If Nab = 0 (compact 
f) one can thus focus on the degrees offreedom incorporat
ed in the symmetric and traceless tensor • K abo In the pres
ence of radiation, on the other hand, one can consider that 
the basic variables are the equivalence classes {D}'s. Recall 
that two connections D I and D 2 on f are related via 

(D1a -D2a)Kb =l:abKrnom, (44) 

for some tensor field l:ab satisfying l:abob = O. It thus fol
lows that a pair of equivalence classes can be characterized 
by Yab' the trace-free part of l:ab: there are precisely two 
radiative degrees offreedom at conformal infinity. A scheme 
of asymptotic quantization can be derived consequently. 
First one introduces the (phase) space r of equivalence 
classes, an infinite dimensional affine space, the symplectic 
tensor n on r being defined via 

neD) (y,y) = If (Yab.2" n Ycd - Yab.2" n Yed )g"Cgbd df. 

(45) 
The restriction to right- (left-) flat complex solutions in
duces a negative- (positive-) frequency decomposition of 
Yab: Yab = y+ ab + Y- ab' The procedure presented in Sec. 
IV, which, starting from ·K -ab, induces self- (anti-self-) 
dual curvature two-forms [formulas (37)-( 41)], can be re
produced. Since 

€abmy-mPMp =JL[aMb J' (46) 

the (right-) left-handed asymptotic graviton modes, de
fined5 via 

€mnPLpgnby- rna = ±iY-ab' (47) 

appear as transverse to those presented in Sec. IV; this con
firms the viewpoint according to which gauge fields A ± BB' 

could describe (solitonic) graviton modes originating with
in the space-time nontrivial topology. 

(ii) An extension of the above results to solutions with 
matter contents would be rather straightforward. Recently, 
fluid generalizationsl2 of NUT spaces have been manufac
tured, using the three-dimensional spin coefficient method, 
which brings out the nontrivial topological structure of such 
space-times. The expression of the metric in the case of a 
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(timelike) stationary fluid flow has been explicitly given in 
Ref. 12. It follows that the topology of the r = const hyper
surfaces is S 3, the timelike Killing trajectories (fluid flow) 
being the S I (Hopf) fibers of S 3 over S 2. This metric reduces 
to the NUT metric in the matter-free limit. Since the bundle 
structure is not modified by the presence of matter, our re
sults could be easily adapted in the case of (nonvacuum) 
solutions, which are (at least asymptotically) Lorentzian 
sections of complex solutions. 

(iii) A reformulation of the above results using twistor
ial methods (Ref. 8) is required if a relation between our self
(anti-self-) dual gauge connections and self- (anti-self-) 
dual Yang-Mills fields [introduced as restrictions of curva
ture two-forms to ,B-planes or a-planes (in the sense of Pen
rose) ] is to be exhibited within the context of curved twistor 
theoryY 
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The energy momentum of any asymptotically flat vacuum solution to the Einstein equations is a 
well-defined, conserved, Lorentz-covariant, timelike, future-pointing vector. The only 
requirement is that one be given asymptotically flat initial data that satisfy very weak continuity 
and falloff conditions; the three-metric must go flat faster than r- 1/2. A large class of such data 
exists, consistent with the constraints, and the constraints playa key role in guaranteeing that the 
energy momentum is well behaved. 

I. INTRODUCTION 

Many years ago people realized that asymptotically flat 
solutions to the Einstein equations possess conserved quanti
ties. These conserved quantities were identified as the total 
energy momentum and the total angular momentum of the 
solution. Given a global singularity-free solution, and mak
ing plausible assumptions about the falloff of the metric, it 
was shown that the energy momentum was a conserved Lor
entz four-vector. I

•
2 Making similar assumptions (more or 

less that the metric falls off like 1/r at infinity), it was more 
recently demonstrated that this Lorentz vector was future 
pointing and timelike.3

-
5 

In this paper we wish to prove that I get a well-defined, 
finite, conserved energy momentum, which forms a timelike, 
future-pointing Lorentz four-vector under much weaker as
sumptions about the asymptotic behavior of the metric. This 
improved result is an application of a recent proofthat a very 
large class of asymptotically flat initial data possesses ex
tended domains of development. These domains are large 
enough to permit coordinate transformations that become 
Lorentz transformations at infinity. Further, the space-time 
metric on this large domain inherits the falloff characteris
tics of the original data. 

These conclusions ("the Boost Theorem,,)6 mean that 
we need make no a priori assumptions about the space-time, 
either as regards its size, or the falloff properties ofthe met
ric. We can replace these with asymptotic conditions on the 
initial data. Essentially, I will show that if the energy mo
mentum associated with a single initial slice is finite, then it 
will be globally well-defined. 

Further, I will show that the standard asymptotic condi
tion used (1/r falloff in the metric) can be significantly re
laxed. I will show that we only need that the metric ap
proaches the flat metric faster than r- I

/
2 to get a 

well-defined, conserved, finite energy momentum. This 
weaker asymptotic condition suffices because of the exis
tence of constraints on the initial data. The conserved quan
tities are usually expressed as surface integrals at infinity 
(the ADM expressions7

). If we only consider these surface 
integrals, then the 1Irfalloffis the natural condition to guar
antee finiteness. However, we can use the Gauss theorem to 
turn the surface integrals into volume integrals. The leading 
term in the volume integral expression vanishes, due to the 
constraints, and thus the volume integral expressions for the 

energy momentum converge using the weaker falloff condi
tion. 

This intimate connection between the conserved quanti
ties and the constraints can be seen by considering the equi
valent problem in electromagnetism. The total energy in 
general relativity is equivalent to, not one, but two indepen
dent quantities in electromagnetism, the total charge and the 
total energy, and it is illuminating to consider the asymptotic 
conditions necessary for the finiteness of each of these ob
jects. 

We know that the total charge can be expressed as a 
surface integral at infinity (the analog of the ADM inte
grals) 

Q = Eo £, E· dS, ( 1.1 ) 

where E is the electric field strength. This can be turned into 
a volume integral using the Gauss theorem 

Q = Eo L div Ed 3X • 

On using the Maxwell initial value constraint 

Eodiv E =p 

this becomes 

Q= LPd 3
x, 

wherep is the charge density. 

( 1.2) 

(1.3 ) 

If the initial value condition had been ignored the sur
face integral expression would have led one to the (incor
rect) conclusion that for Q to be finite, E must fall off like 11 
r. The correct conclusion (on using the constraint) is that 
there is no direct restriction on E, and that one only requires 
p to fall off faster than 1/r. When this condition is substitut
ed back into the constraint, it leads to the condition that the 
longitudinal part of E (the potential part) must fall off like 
1Ir, and that the transverse part of E has no restrictions 
placed on it. This is only to be expected since electromagnet
ic waves are intrinsically uncharged. 

When we look at the total energy of the electromagnetic 
field on the other hand we do get real restrictions on the 
asymptotic behavior of both the electric and magnetic fields. 
The total energy is 
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(1.4 ) 

Therefore, for M to be finite, E and B must fall off faster than 
r- 3/2

• In terms of the four-potential AI' this means 
A -112 A -3/2 Th' d' . h h ~ I' - r 'Jt.v - r . IS con Ihon t at t e lour-poten-
tial must fall off faster than r- 1/2 at infinity for finite total 
energy holds not only for Maxwell's equations but also for 
Yang-Mills theory.s The four-potential is the object that is 
directly analogous to the metric in general relativity and so it 
is very nice that the finite energy condition in general relativ
ity is that the metric approach the Minkowski metric faster 
than r-1/2. 

The parallels between electromagnetism and general 
relativity run much deeper than this r- 1/2 coincidence, how
ever. The mass in general relativity can be expressed as a 
surface integral [just like (1.1)]. This, when turned into a 
volume integral, can be reduced to a volume integral over the 
source using the initial value constraint [just like (1.3)]. 
Unfortunately the reduction in the case of gravity is not as 
clean as in the case of electromagnetism. The gravitational 
waves carry energy whereas the electromagnetic waves are 
not charged. This means that the gravitational analog of 
( 1.3) is of the form 

M-L ("p + E2 + B 2")d 3x, ( 1.5) 

where "E 2 + B 2" is shorthand for terms like (g .. k )2, which 
I). 

represent the wave energy density. This is why gravitational 
energy is a composite of the properties of electromagnetic 
charge and energy. 

In field theories, conserved quantities are related to 
symmetries. In general relativity, the total energy momen
tum is generated not by any exact symmetry of the given 
solution, but rather by the time and space translational sym
metry of the underlying Minkowski space. This is why only 
asymptotically flat solutions have a conserved energy mo
mentum. Ifwe have an asymptotically flat solution we do not 
have a unique underlying Minkowski space; rather we have a 
whole family of them. Thus to show that the energy momen
tum is well defined we have to consider not only transforma
tions (boosts and rotations) of a given Minkowski space but 
also the effect of transforming from one Minkowski space to 
another. The class offlat spaces we have to consider is deter
mined by the falloff characteristics of the given metric. 

When we say that a metric g ij goes flat faster than r - a 

we mean that gij can be written in the form 

( 1.6) 

and ~hij-o at infinity, where r is a radial measure and it 
does not matter whether we measure it with respect to gij or 
{) ij' Thus on a given manifold we have a curved metric gij and 
a flat metric {) ij' which agree near infinity. Now if we perform 
a coordinate transformation I on the manifold that ap
proaches the identity transformation at infinity we will have 
that g' = I(g) is also asymptotically flat, i.e., g' can be writ
ten 

( 1.7) 

with h ij vanishing near infinity. It is vital to notice that the 
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{)ij in ( 1.6) is a different flat metricfrom the {)ij in ( 1. 7) and 
that h ij is not the coordinate transformation of hij in (1.6). 
The two {)ij are each diag( 1,1,1) but in different coordinate 
systems. 

However, we are given that the original hij falls offfaster 
than r - a. Thus it seems perverse to allow coordinate trans
formations that do not preserve this property. In tum this 
means that we do not consider all coordinate transforma
tions but only a restricted class, those which do not worsen 
the falloff characteristics of the metric. This also restricts the 
class of the flat spaces we have to consider. 

Hence, the statement that the metric falls off faster than 
r- 1/2 is used twice. First, it is used to show that the energy 
momentum is finite and well behaved with respect to a given 
Minkowski background. Second, we have to show that the 
energy momentum is unchanged when we change the back
ground. However, the set of allowed backgrounds is restrict
ed also by the r -1/2 falloff and this permits us to prove the 
necessary result. We will also show (by means of a counter
example) that if we relax either of these conditions, then the 
energy momentum goes crazy. 

The theorems proved in this paper are all expressed in 
terms of weighted Sobolev spaces. We will attempt to give a 
precise definition for every quantity used in this paper but we 
will not aim at completeness in that we will only state those 
results that we need and that are available in the literature. 

Thus, in Sec. II, I will give a very brief account of 
weighted Sobolev spaces and their useful properties. I will 
give a much more detailed discussion of what I would call 
the asymptotic structure group, the class of diffeomor
phisms that preserve a given metric falloff. This group con
tains not only those coordinate transformations that reduce 
to the identity at infinity but also the rotations and transla
tions of the Euclidean group for Riemannian manifolds (for 
pseudo-Riemannian manifolds we include the Poincare 
group). We obviously will have to consider these rotations 
and boosts in any analysis of the energy momentum. Noth
ing surprising happens; the asymptotic symmetry group is 
the direct sum of the Euclidean group and of the transforma
tions that reduce to the identity. 

Section III consists just of a statement of the boost 
theorem.6 Section IV is the central section of the paper. In it, 
by a careful reworking of the analysis in Weinberg,2 we show 
that the energy momentum is well defined and finite under 
the weaker (r-1/2) falloff conditions I use. 

In Sec. V I show how this r- 1/2 falloff is compatible with 
the surface integral formulation of the energy momentum, 
which seems to demand an r- I falloff. I strengthen the ana
logy with electromagnetism by showing that we can break 
the metric into two parts, a "wave" part, which falls off fas
ter than r- 1/2

, and a "Newtonian potential" part, which falls 
offlike 1Ir. The "wave" part,just like the transverse part of 
the electric field, does not contribute to the surface integral. 
Only the "Newtonian potential" part contributes, and this 
must be finite. This breakup is most easily effected by using 
harmonic coordinates near infinity. To prove the existence 
of these harmonic coordinates we need to understand the 
properties of the Laplacian when operating in weighted So
bolev spaces. Thus in Sec. V we prove the desired results and 
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use them to demonstrate the existence of the desired coordi
nate system. 

Section VI is devoted to showing that the energy, in 
addition to being finite, is always positive. This, when com
bined with the boost theorem, shows that the energy mo
mentum is both future pointing and timelike. It largely con
sists of a reworking of the standard positive energy proofs3-5 
to show that they work under the weaker asymptotic condi
tions used here. 

Each of the three major sections IV, V, and VI are writ
ten so as to stand on their own, independent of one another. 
However, they each draw heavily on the two preliminary 
sections II and III. 

II. WEIGHTED SOBOLEV SPACES 

We will want to discuss two kinds of spaces in this arti
cle. The initial data for the gravitational field will be defined 
on the three-dimensional spacelike slices and therefore we 
will have to define functions and metrics on Riemannian 
spaces. In addition, the space-time itself will be a pseudo
Riemannian manifold, which will have to be handled differ
ently. 

A. Riemannian spaces 

We define two classes of functions on an n-dimensional 
Riemannian manifold R", specifying both differentiability 
(continuity) properties and falloff properties. We want, in 
particular, that each derivative (up to some order usually 
denoted by s) falls off faster (by one power of r) than the 
previous stage. In other words, we want the function to fall 
off like r - 6, the first derivatives to fall off like r - (6+ I), the 
second derivative to falloff like r - (6 + 2) and so on. 

To make this precise we want to be given a Euclidean 
(fiat) metric e on H" and we define the function u on H" to be 

u(x) = (1 + /X2 /)1/ 2
, 

where XE R", / '/=11 . lie' Here ulooks just like the radial 
distance r at 00 but it remains positive (in fact;;;. 1) even at 
the origin. This is only to ensure that u - a is well behaved 
everywhere (whereas r- a is not). The use ofa Euclidean 
metric e permits us to consider non-Cartesian coordinates 
(spherical polars, or whatever), but little is lost if one re
stricts oneself to Cartesians. I will do so, and discuss at the 
end how to generalize. 

The first set of functions we wish to consider are ordi
nary classical functions, which are differentiable s times and 
which fall off like r- 6, r- (6+ I), ... ,r- (6 +S), wheres is a nat
ural number and lJ is a real number. We wish to consider 
metrics and other tensors so we will specify that the func
tions belong to some particular tensor class. The derivative 
operator will be the covariant derivative V with respect to the 
given metric e. 

Definition 2.1: C 6 (lR") , SE N, lJe R is the Banach space 
of functions u in R", with values in some finite dimensional 
vector space V of class C s such that 

IIullC6(R") = sup { ') /~+Ialvau/} <00. 

R I*s 
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In addition to these classical functions we also wish to 
consider distributions, functions that are not well defined at 
every point of space, but are well defined under integration. 
The norm we wish to use is a variant of the Sobolev norm, 
usually denoted by H s ' which involves squaring everything 
and integrating 

IIull H , = ') r /Vau/ 2 d",(e), 
l*sJR" 

where d",(e) is the volume density related to e. 
Such a norm, while it looks unnatural to the uneducated 

eye, is a much more physical object than the classical contin
uous functions. There is no way we can ever measure the 
value of the electric field at a point whereas f E 2 + B 2 is a 
very important physical quantity. Therefore we wish to de
fine the following. 

Definition 2.2 (weighted Sob%v spaces): Hs•6 (R"), SE N, 
lJE R, is the Hilbert space off unctions u on H" with values in 
V possessing weak derivatives up to order s, such that 

IIullH6(R") = L r ~(6+lal)/Vau/2d",(e)<00. 
s. lalo;;;s JR" 

The Sobolev space is a Hilbert space because we can take 
the dot product of two functions 

IIu, vII = ') r ~(6+ lal)(vu' Vv)d",(e). 
l*sJR" 

No such operation is naturally defined by the C 8 norm, 
which is why it is only a Banach space. 

In our discussions, we will spend some time moving 
between the weighted Sobolev spaces and the classical 
weighted spaces. The relationship between the two sets is 
clearly complicated by the fact that d", (e) - r + " - 1 dr so 
that if ~ + n12u goes to zero at infinity, then fr6u2 is finite. 
This means that lJ in one measure has to be replaced by 
lJ + n/2 in the other. This is not the major difficulty, how
ever. This is due to the fact that the statement above is not 
reversible. The fact that fr6u2 is finite does not guarantee 
that ~ + "/2U is even bounded. 

A similar problem arises with differentiability. A strong 
differentiable function is also weakly differentiable, but a 
weakly differentiable function is not strongly differentiable. 
The Sobolev imbedding theorem9 shows, however, that a 
function that is weakly differentiable to a high order is 
strongly differentiable to a lesser order. One loses nl2 de
grees of differentiability. This means that in three-space if a 
function is weakly differentiable five times it is strongly dif
ferentiable three times. 

In turns out that losing these nl2 degrees also resolves 
the falloff problem, and in three-space if a function satisfies a 
weak falloff condition to five orders, it satisfies a strong fall
off condition to three orders. The following theorem has 
been proven. 10 

Theorem 2.1 (imbedding): 

H s•6 (R") CC~, (R"), ifs' <s - n12, lJ' <lJ + n12, 

C~.(H")CHs.6(H"), ifs';;;.s, lJ'>8+nI2. 

In the course of various calculations in this paper we will 
have to deal with complicated expressions like 
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t'mtn~Pgab,c gmn,p' Therefore we will have to multiply func
tions belonging to different weighted Sobolev spaces togeth
er, This is handled by the following theorem. 

Theorem 2.2 (multiplication)IO: Pointwise multiplica
tion on Rn is a continuous, bilinear map 

Hs"o, (Rn) XHs"o, (Rn)-Hs,o (Rn), 

if 

SI,s2>S, s<sl+s2-nI2, {j<{jI+{j2+n/2. 

The first two conditions are the standard ones from the mul
tiplication theorem for regular Sobolev spaces. II The first 
one says that you cannot improve the differentiability of 
functions by multiplying them together. The second condi
tion says that if you mUltiply functions of low differentiabil
ity together, you may worsen the differentiability of the com
bination. An extreme example: If u and v are 
square-integrable functions, the combination uv, while inte
grable, need not be square integrable. 

The condition on {j is very easy to understand. All it says 
is that the falloff of the combination is the sum of the falloffs 
of the individual terms. This may be more obvious when the 
expression is written in the form 

{j + n/2 < ({jl + n12) + ({j2 + nI2). 

Corollary: Hs,o (Rn) is a Banach algebra if s> n12, 
{j > - n12. This is just a fancy way of saying that if S - nl 
2 > 0, {j + n12> 0, then Hs,6 X Hs,6 belongs to the same Hs,6' 
Here (j + n/2 > ° may be naively interpreted as functions 
that vanish at infinity. Thus, given two functions, each of 
which vanishes at infinity, the product also vanishes at infin
ity. 

A key role in this paper will be taken by what we call the 
asymptotic symmetry group, the set of diffeomorphisms that 
preserve the asymptotic falloff of the metric. Part of the 
groundwork has been done already. We already have proved 
the following lemma.6 

Lemma 2.1: If / is a diffeomorphism Rn_Rn and 
/-idEHs + I,6_I(Rn

), s>n/2, {j> -n/2, then 
/-1 _ idEHs+ 1,6-1 (Rn). 

This lemma deals with diffeomorphisms that, near in
finity, become the identity x-x, plus a term that blows up 
slower than r. This means that the derivative of/is the identi
ty matrix plus a term that belongs to Hs,6 (s> n/2, (j> - nl 
2). The extra term (from the imbedding theorem) belongs 
to C ~ for some E> 0, and so is pointwise well-defined and 
vanishes at infinity. The effect of these diffeomorphisms is 
reflected in the following theorem. 

Theorem 2.3 (composition)6: If/is a diffeomorphism on 
Rn such that/ - idE Hs + 1.0 _ I (Rn

), S> n/2, (j> - n12; u 
is a function on Rn belonging to H s',6' (RIt) then composition 
u_u . / is an isomorphism 

Hs',6' (Rn)_Hs,,6' (Rn
), for every s'<,s + 1, {j'E R, 

This theorem says that these diffeomorphisms, which reduce 
to the identity at infinity, preserve asymptotic falloff ({j' E R) 
and preserve differentiability as much as possible 
(s' <,s + 1). Lemma 2.1 and Theorem 2.3 now can be com
bined to prove6 the following corollary. 

Corollary: Let Ds+ 1,6_1 (Rn
) denote the set of diffeo-
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morphisms / on Rn such that / - idE Hs + 1,6 _ I (Rn) with 
s>n/2, (j> -n/2. Then DS+I,6_dRn) is a topological 
group with respect to composition. 

OfcourseDs+ 1,6 _ I (Rn) does not include all the diffeo
morphisms that preserve falloff. We would expect that 
members of the Euclidean group (rigid rotations and trans
lations) would have this property in addition to those diffeo
morphisms that reduce to the identity at infinity. The new 
result in this section will be to show how the Euclidean group 
can be combined with Ds+ 1,6 _ I . 

Lemma 2.2: If/is a member ofthe Euclidean group of 
Rn and UE Hs,6 (Rn) is a function on Rn, then composition 
u-u . / is an isomorphism Hs.6 (Rn)-Hs,6 (Rn) for every 
SE N, (jE lR. 

Proof' Let us denotey =/(x), XE Rn. Since/is a combi
nation of a rotation and a translation, one can show there 
exist positive constants CI,C2 such that 

CIU(X) <,u(y) <,Czu(x), 'VXE Rn. 

We also h~v:... d,u (y) = d,u (x). Hence there exist positive 
constants CI,CZ such that 

CI 5 U(X) 26 Iu ./(x) 12 dj-l(x) 

<'5 u(y) 2°l u(y) 12 dj-l(y) 

<'C2 5 U(X) 26 Iu ./(XW dj-l(x). 

This is sufficient to show u-u . / is an isomorphism HO,6 

-HO,6' In addition we have 1 Vau (y) 1 = 1 vau . /(x) 1 for ev
ery a > 0. This is sufficient to prove the lemma. 

Corollary: Let Es+ 1,6 _ I (Rn) denote the direct product 
of Ds+ 1,6-1 (lRn) , s>nI2, {j> - nl2 with the Euclidean 
group. ThenEs+ 1,6-1 (Rn

) is a group andDs+ 1,6-1 (Rn) is 
a normal subgroup. The factor group is the Euclidean group 
back again. 

It is not enough for our purposes to just discuss the ef
fects on scalar functions of the action of the diffeomor
phisms. We will wish to deal with the situation where we 
have a Riemannian metric g on Rn (in addition to the Euclid
ean metric e). Here g and e will be asymptotically related by 
the fact that g - eE Hs,6 (Rn

) for some s > n12, (j > - n/2. 
This is how we generically specify asymptotic flatness be
cause the imbedding theorem guarantees that g - e goes 
(classically) to zero at infinity. The rate of decay is deter
mined by the particular value of (j specified. 

We wish to investigate the behavior of g under various 
diffeomorphisms. If/is a diffeomorphism we will denote the 
image of g under / as reg). We intend to prove that if 
g - eE Hs,o and /E Es + 1,6 _ I (with, of course, S> n/2, 
(j> - n12) then!, (g) - eE Hs,o (notice thatthe same sand 
(j are in H and E). ThusEs+ 1,6 _ I (Rn) is the natural asymp
totic symmetry group associated with g. 

Before we discuss the effects of/ong, we wish to under
stand the effects of/on e. This is covered by the following 
lemma. 

Lemma 2.3: If /EEs+I,6_dRn), then 
/' (e) - eE Hs,6 (Rn) for every s> n12, {j> - n/2. 
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Proof If / is a member of the Euclidean group then 
f'(e) = e, which trivially proves the lemma. Hence we can 
restrictourselvestothecasewhere/eDs+I,8_1 (Rn). Using 
the standard rule for coordinate transformations we have 

f'(e) = e· (D/)2 ./-1, 
which can be rewritten 

f'(e) =e· [I+D(/-id)]2./-1 

=e· [I+D(/-id)F 

+ e . [I + D( / - id) F . (/ - 1 - id), 

where I is the identity matrix and id is the identity map. This 
expression can be expanded out, and the multiplication 
theorem (together with Lemma 2.1) gives us the desired 
result. 

All this lemma is saying is that if I have Cartesian co
ordinates and I make a coordinate transformation that re
duces to the identity at infinity, the transformed coordinates 
are asymptotically Cartesian. The next piece that we need is 
an extension of the composition theorem (Theorem 2.3) to 
tensors. This is given by the following lemma. 

Lemma 2.4: If /EEs+ 1,6-1 (Rn), s>n/2, {j> - n/2, 
and a tensor tEHs',8' (Rn), thenf'(t)EHs',8,(Rn) if s'<s, 
{j'eR. 

Proof If t is a pth-order tensor we have 

f'(t) = t· (Dj)P ./-1. 
This, as in Lemma 2.3, can be expanded out, and use ofthe 
multiplication theorem and Lemma 2.1 gives the desired re
sult. 

All this lemma says is that any diffeomorphism that re
duces to a Euclidean transformation at infinity will not 
change the falloff properties of a tensor ({j' ERn), nor will it 
change its differentiability so long as the diffeomorphism is 
as differentiable as the tensor s' <so Note that the composi
tion theorem had s' <s + 1; the difference is that the tensor 
transformation involves DJ, whereas the scalar transforma
tion involves only f 

Lemma 2.3 and Lemma 2.4 can now be combined to 
prove the following theorem. 

Theorem 2.4 (asymptotic symmetry): If g is a two-tensor 
and if/belongs toEs + 1,8-1 (Rn), s>n/2, {j> - n/2, then 

g - eeHs',8' (Rn):::::}f'(g) - eeHs',8' (Rn) 

for every s' <s, {j' <{j. 
Proof We can write 

f'(g) - e =f'(g) - f'(e) + f'(e) - e 

= f' (g - e) + [f' (e) - e]. 

We can immediately apply Lemma 2.4 to the first term and 
Lemma 2.3 to the last term to obtain the result. 

The order in which this theorem should be read is that 
we are given g, which specifies s' and {j'. Then the largest set 
of diffeomorphisms that preserves /' (g) in both falloff and 
differentiability isEs' + 1,8' _ 1 (Rn). Ofcourse we needs' > n/ 
2, {j' > - n/2. All this says is that g is naively asymptotically 
flat, i.e., there exists an € such that '-£(g - e)-<l classically. 
The theorem does not deal with the falloff of the tensor g - e 
(this is dealt with in Lemma 2.4). We have two different flat 
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metricsf'(e) and e on the same manifold and we can com
paref'(g) with either of them. 

In the results we have proven here we have implicitly 
assumed that e = diag(l,I, ... ,l). This can be relaxed easily 
to the case where e - diag(l,1, ... ,l)eHs",8" for some suit
ably large sIt ,{j" . Alternatively we could express it in terms of 
the mapping that maps e to diag(l,I, ... ,I) and have this 
mapping belonging to Ds" + 1,8" _ 1 (Rn) again for some suit
ably large sIt ,{j". 

A more difficult problem arises when we wish to deal 
with a non-Cartesian e (such as in spherical polar coordi
nates). In this case the results we have derived are clearly 
untrue. The easiest way to deal with this problem is to find 
the mapping h which brings one from the desired coordi
nates to Cartesian coordinates; identify the asymptotic sym
metry group; and map back again. Thus, the diffeomor
phism group we would deal with (and identify as the 
asymptotic symmetry group) is h - I • Es + 1,8 _ I • h. All this 
does is reflect the fact that the Euclidean group in, say, polar 
coordinates looks very different from the same group in Car
tesian coordinates. 

B. Pseudo-Riemannian spaces 

In general relativity we will be dealing with a four-di
mensional manifold with a metric with signature 
( +, +, +, - ). We wish to extend the weighted Sobolev 
spaces to such manifolds and prove theorems analogous to 
those proven in Sec. II A. We begin by considering R4 with a 
Minkowski metric 1/. Associated with the Minkowski metric 
is a standard Euclidean metric e = 1/ + 2t X t, where t is a 
unit timelike Killing vector. In Cartesian coordinates, the 
Minkowski metric is diag ( + I, + 1, + 1, - 1), the timelike 
Killing vector is (0,0,0, I ), and therefore the Euclidean met
ric is e = diag( + 1, + 1, + I, + I). We need the Euclidean 
metric e to give us a positive norm on R4. 

We define a function u on R4 by 

u(x) = {I + IxI2}112, xeR4
, I· I = II ·lle· 

On any subset U ofR4 we can define function spaces C 6 (U) 
and H s,8 (U) analogous to Definitions 2.1 and 2.2 with (se
mi)norms 

lIullc~(u) = sup {I u 1al +6I vau l}, 
u lal<s 

IluIlH,.s(U) = I r u2(lal +8)IVauI2 dp.(e). 
lal<s Ju 

They are seminorms rather than norms because they may 
not satisfy IIA II = O:::::}A = O. We assume, as before, that u 
belongs to some given finite-dimensional vector space. 

In this article we will be interested in special subsets of 
R4. The viewpoint we will adopt is that we consider an initial 
spacelike three-slice on which we give initial data for the 
gravitational field. We are interested in a subset of a Cauchy 
development of this data. We wish to consider both translat
ing the original slice in time and tilting it (corresponding to a 
Lorentz boost). Thus we wish to consider subsets ofR4 that 
are wedge shaped near infinity. 

In standard coordinates let fill be the domain defined by 
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flo = {xER4: IxOI/O"(x) di}, O<B< 11.J2. 

These domains are large enough to permit Lorentz boosts, 

and the closer B is to 11.J2, the closer the boost can be made 
to light speed. It has been shown 10 that the imbedding 
theorem, the multiplication theorem, Lemma 2.1, and the 
composition theorem are again correct in any such domain 
(with, of course, R n replaced by fl 0 ) • 

This means that we have the group of diffeomorphisms 
Da 1,0 I (flo), which reduce to the identity at infinity, and 
preserve falloff. In Sec. II A we added the Euclidean group 
to Ds + 1,0 _ I to get the asymptotic symmetry group. The 
symmetry group of Minkowski space is the Poincare group. 
Therefore in this section we wish to add the Poincare group 
to Ds + 1,0 _ I (flo) and derive results analogous to Lemmas 
2.2-2.4 and Theorem 2.4. 

The first difficulty that arises is that if we have a set flo 
in some set of standard (Cartesian) coordinates, and Lor
entz transform these coordinates, the original set flo is not 
an fle of the transformed coordinates. Rather it is contained 

in an flo, and contains an flo, (B 1,B2 < 11.J2) of the trans
formed coordinates. In fact the imbedding, multiplication, 
and composition theorems are still true in the Lorentz-trans
formed flo. 

Analogous to Lemma 2.2 we now wish to prove the fol
lowing lemma. 

Lemma 2.5: If/is a member of the Poincare group and u 
is a scalar function on flo (BE(O,1I.J2»), then the composi
tion u~u . / is an isomorphism 

Hs,o (flo )~Hs,o (flo), for every SEN, 8ElR. 

Proof Let us denotey =/(x). SincexEflo, we can show 
that there exist positive constants C1,C2 such that 
Clu(Z) <u(y)<C2u(x). In standard coordinates 
dp(x) = dp(y). Hence there exist positive constants (\,C2 

such that 

C1 f u(x) 2°l u '/(X) 12 dp(x) 

< f u(y) 2°l u (y) 12 dp(y) 

<C2 f U(X)
217lu ,/(x)12 dp(x). 

This guarantees Ho.o~Ho,o is an isomorphism. In addition, 
for every a there exist positive constants Cia ,C2a such that 

Cia IDau(x) 1 <IDau(y) 1 <C2a IDau(x) I· 

This is sufficient to prove the lemma. 
Corollary: Let Ds + 1,0 _ I (flo) denote the set of diffeo

morphisms on flo such that / - idE Hs + 1.1l I (flo), S> 2, 
8> - 2. Let Ps + 1.6-1 (flo) be the direct sum of Ds+ 1,0-1 

and the Poincare group. Here Ps + 1,0 _ 1 (flo) is a group and 
Ds + 1,0 _ 1 is a normal subgroup. In exact parallel with Lem
mas 2.3 and 2.4 we can also prove the following lemma. 

Lemma 2.6: If/EPa 1,1l-I (flo ),s>2,8> - 2, then 

/'( 'TO - 'TJE Hs,o (flo)' 

Lemma 2. 7: If/ E Ps + I,ll _ 1 (flo) and t is a tensor which 
belongs to Hs',Il' (flo), then/'(t)E Hs',Il' (flo) fOr any s' <s, 
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8'ElR. These lemmas may now be combined to prove the fol
lowing theorem. 

Theorem 2.5 (asymptotic symmetry): If r is a symmetric 
two-tensor and/ E Ps + 1.1l- 1 (fle ), s> 2, 8> - 2, then 

r - 'T/E Hs',o' (flo )=}/'(r) - 'TJE Hs',Il' (flo')' 

for every s' <s, 8' <8 and some B 'E(O,l/.J2). 
Proof The proof of this theorem is almost exactly the 

same as Theorem 2.4. 

Again, the obvious way to understand this theorem is to 
be given a metric r such that r - 'T/E Hs'.Il' (flo), s' > 2, 
8' > - 2. This means that r - 'T/ goes to zero at infinity clas
sically. The class of diffeomorphisms that preserve both the 
falloff and differentiability of r include p. + 1,0 _ 1 (fle) for 
any s>s', 8>8'. This means the Poincare group, together 
with any diffeomorphisms that reduce to the identity at in
finity, are continuous enough (s>s') and falloff rapidly 
enough (/»/)'). We need the falloff condition because we are 
not comparing/'(r) with/,('T/) (this is done in Lemma 
2.7), we are comparing/'(r) with the old 'T/, which is why 
we need Lemma 2.6. 

We have two sets of weighted Sobolev spaces, three
dimensional Riemannian ones and four-dimensional pseu
do-Riemannian ones. We wish to connect these together, 
because we wish to consider three-dimensional Riemannian 
hypersurfaces imbedded in the four-space. 

We introduce a natural foliation of the sets flo induced 
by the function u(x), which we defined at the beginning of 
Sec. II B. We define the function 

T(X) = xOlu(x), xEflo. 

This function induces a foliation of flo: 

flo = U :IT' 10 = ] - B,B [. 
7E J. 

Each :IT' the set with constant T, is a hypersurface imbedded 
in flo, and is a complete R3 with an induced Riemannian 
metric. We define the following restriction norm: 

lIuIlH, .• cr,,.n.l = eto IIDau l:dIH,_a,'+ a(R'l )112 

The following restriction lemma was proved (Ref. 12). 
Lemma 2.8 (restrictionF~' For each TE 10 , the following 

inclusion holds and is continuous: 

Hs + 1,0 (fle) C H,,1l + 112 (:IT,fle ), 

for every SEN, /)ER. 
The restriction norm allows us to take a function u on 

flo and look at it on :tT • However, the restriction norm not 
only looks at the derivatives of u along :tT but also its deriva
tives out of :IT (at:IT ). Therefore it is not the same as 
H s•8 (R

3
). 

In R4, an R3 hypersurface has measure zero. Therefore a 
function could be square integrable on R4 and yet blow up on 
a set of nonzero measure on R3. Therefore an Ho function on 
R4 may not be an Ho function on R3. However, there is a 
Sobolev restriction theorem 13 that one only loses one degree 
of differentiability. Therefore a H5 on R4 (or fle) induces a 
H4 on a hypersurface. This is why S + 1 ~s. 

The ~ + ~ can be easily understood by considering 
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ordinary functions with falloff. Say we have a function u on 
R4, which falls off faster than r- a for some a. This means 
that ueHo•s (R4) for every {j <a - 2. Now consider UR the 
restriction of u to some R3 hypersurface of R4. Also u R will 
fall off faster than r - a so therefore u R e Ho,s' (R3) for every 
{j' < a -~. The volume measure in one case goes like ~ dr 
and in the second case like r dr. 

III. THE BOOST PROBLEM 

Initial data for the vacuum Einstein equations consist of 
giving a Riemannian metric g and a two-covariant symmet
ric tensor field k on R3. This R3 is to form the Xo = 0 hyper
surface of an R4 with a pseudo-Riemannian metric r, which 
is a solution to the vacuum Einstein equations. The given g 
and k are to be, respectively, the first and second fundamen
tal forms of X o = O. These quantities cannot be given inde
pendently, but must satisfy the initial value constraints7 

Vg{k-(trgk)g}=O, (3.1) 

R(g) - Ik Ii + (trg k)2 = O. (3.2) 

We have proven the following theorems.6 

Theorem 3.1 (the boost theorem)ti: Let g be a Rieman
nian metric and k a two-covariant symmetric tensor on a 
three-manifold l:. If (g,k) satisfy the initial value constraints 
and 

g - eE Hs,s + 112 (l:), kE Hs _ I,S+ 3/2 (l:), 

s;;;.4, {j> - 2, 

then there exists a 8> 0 and a solution r to the Einstein 
equations in o.9 ,r -1]e Hs,s (0.9 ) such that g and k are, re
spectively, the first and second fundamental form of l: rela
tive to r, where r is a regularly hyperbolic metric on 0.9 ' 

Theorem 3.2 (completeness of spacelike infinity)ti: Giv
en an initial data system (I,g,k) satisfying the initial value 
constraints, g - ee Hs,s + 1/2 (l:), kE Hs _ I,S + 3/2 (l:), s;;;.4, 
{j> - 2, and given 8 < Vii, there exists a finite R and a set 
0.: such thatxeo.:¢}xeR4, Ixl >R, Ixol/u(x) <8. There ex
ists a regularly hyperbolic solution r to the Einstein equa
tions on 0.: r - 1]e Hs,s (0.:) such that g and k are, respec
tively, the first and second fundamental forms of l: with 
respect to r. 

Remark: Theorem 3.1 shows that if the initial data is 
(very weakly) asymptotically fiat, the Cauchy extension is 
large enough to permit a global Lorentz-boosted slice. 
Theorem 3.2 states that the Cauchy extension is large 
enough at spacelike infinity to permit slices that are boosted 
all the way up to (but not including) the light cone. 

In proving Theorem 3.1 we showed that the value of 8 
we got was determined by the size of the initial data, in a 
suitable norm. This meant that we could only boost by a 
finite amount. In Theorem 3.2, we cut out a sphere of radius 
Rout of the initial hypersurface, so as to reduce the measure 
of the initial data to any desired value, The Cauchy develop
ment of this data is large enough to contain a domain that is 
wedge shaped near infinity but is pinched off in the middle 
(n:). 

From the imbedding theorem we get that initial data 
that satisfies the boost theorem also satisfies 
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g - ee C~ + £ (R3), ke C: + E (R3) for some E> O. Near in
finity, the Brill-Deser expression 14 

P = (/1617) [!(gij,k)2 + (kij )2] 

accurately represents the energy density in the gravitational 
field and hencep-r-(2+E) near infinity. This means that 
the total energy of the solution will be infinite, although the 
solution is asymptotically fiat, 

When we seek to construct the Cauchy development of 
an initial data set we can integrate forward at least until we 
hit our first singularity. The boost theorem tells us that we 
can integrate forward much further near infinity than in the
middle. It is interesting to see how p - r - (2 + E) is compatible 
with this behavior. Singularities will fortn if a large amount 
of energy is forced into a small volume. Consider a small 
sphere of radius ro at a time t in the future from the original 
slice and at a radius r. The maximum energy that can collect 
in this sphere can be estimated by drawing the past light cone 
of the sphere, and seeing where it intersects the original slice. 

This intersection consists of a shell of radius t, thickness 
ro at radius r. The volume of the shell is 41Tt 2ro and the energy 
in it is 41rt2rop(r). If we call the energy in the sphere of 
radius ro, E(ro,r,t) , we have 

E(ro,r,t) <417t 2rop (r), 

at large r we have 

per) < por- (2 + E). 

Hence 

E(ro,r,t) Iro < 417po (t Ir)2r - E. 

Therefore, as we go out along a line of constant t Ir (a boost
ed slice) we get thatE Iro--+O' But ofcourseE Iro finite is the 
criterion for the formation of a black hole. Therefore, if the 
energy density in the original slice falls off faster than r- 2

, we 
will not get black holes far out along any boosted slice. 

IV. THE TOTAL ENERGY MOMENTUM 

As is clear from the Introduction we will wish to consid
er space-times where (r -1])r I/2--+o. In Theorems 3.1 and 
3.2 (the boost theorems) we require {j> - 2. Theorem 2.1 
(the imbedding theorem) gives us that if r -1]E H 4,s (0.9 ) 

for any {j> - 2, then (r - 1J)r --+0 for an E> O. Therefore 
the boost theorem allows us to consider solutions of the Ein
stein equations that fall off so slowly at infinity that they 
must be regarded as infinite energy, but asymptotically fiat 
solutions. 

To restrict attention to finite energy solutions we will 
only consider those solutions for which {j> - ~ (which we 
are free to do). This will give us the desired r- 112 falloff and 
we will assume this condition consistently for the rest of this 
paper. Hence, let us be given initial data (g,k) for the vacu
um Einstein equations on some three-manifold l:. We as
sume (g,k) satisfy the constraints. We further assume 

g -1]E Hs,s + 112 (l:), ke Hs _ I,S + 3/2 (l:), 

s;;.4, {j> -l' 
We have shown6 that a large set of such data exist, 

These data will generate a solution r of the vacuum Ein
stein equations on a manifold M that is large enough at infin-
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ity to permit a complete set of Lorentz boosts. The boost 
theorems further show that y - 7]E Hs,6' We will show that 
we can associate a well-defined, finite, conserved, future
pointing total energy momentum with y. 

The proof involves nothing more than a reworking of 
the standard approach adopted by Weinberg2 (Chap. 7.6). 
He deals with a l/r falloff so the only real care we need to 
take is to show that various integrals still converge with 
r- 1/2 falloff. We write h = Y -7] and identify the part of the 
Ricci tensor linear in h (raising and lowering with 7]) 

R ~~) = !(a/l a).h ~ - a). ayh ~ - a/layh 1 + 7]a{3 aaa{3h/lY) 
(4.1 ) 

and rewrite the Einstein vacuum equation G /lY = 0 as 

R 0) _ In R ).0) = 81Tt 
~v 2·/~v A ~V, (4.2) 

where t/lY represents the terms in the Einstein equation of 
second or higher order in h. The second-order terms are of 
the form haah and (ah) 2. Using the multiplication theorem 
it can be shown haah and (ah) 2 belong to H S ',6' (M) for every 
s' <,.s - 2, I)' < 21) - 4. In particular we can choose s' = 2 and 
I)' = 1. We can prove a similar result for the higher-order 
terms in t. Thus we show tEH2,1 (M). The imbedding 
theorem then allows us to conclude that t is a Co (classical) 
function that falls off faster than a- 3

• 

Remark: This key falloff result could be naively deduced 
from the fact that 

hrI/2-.0, ah~/2--o, 

aahr /2-o=;,[haah + (ah)2]~--o. 
R ~~) satisfies the linearized Bianchi identities and hence 

t /lY is locally conserved: 

t/lYo/l = O. (4.3) 

We now consider some spacelike hypersurface Vimbed
ded in M, and on it we define 

p(V) = L t /lVn" d 3x, (4.4) 

where n is the unit timelike normal to V. Notice that there is 

no ~ in the definition ofP. We will call P (V) the total energy 
momentum associated with V. We will naturally consider V 
as being one of the flat hypersurface of the given underlying 
Minkowski space, with metric 7]. We have that t /lY falls off 
faster than r- 3 as a classical function. Therefore the integral 
in (4.4) will converge and p( V) is finite. 

Remark: This result could also be obtained by starting 
with tE H 2,! (M) and applying first the restriction lemma 
and then the inclusion theorem. However, we would require 
stronger versions of these theorems because we would need 
to deal with nonintegral degrees of differentiability. In short, 
we would get 

tE H 2,I (M)~tE H 312,3/2 (V)~tE C~ + E (V), 

for some € > O. 
Having shown that P (V) is finite, we now wish to prove 

that P (V) is a constant irrespective of which fiat hypersur
face of the underlying Minkowski space is chosen. Let us 
pick two of them, Vo and VI (VI may be boosted relative to 
Vol. These will enclose a part of Minkowski space and part 
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of the four-manifold. Hence we have a set M I bounded by 
VO,VI and a surface at spacelike infinity S 00 , which has topol
ogy S2XR. 

Now we use the Gauss theorem on this M I, regarded as 
part of Minkowski space 

0= r a/lt /lV d 4x 
JM' 

= r t /lVn/l d 3X + r t /lvn/l d 3X + r t /lYn/l d 3X • 

Jvo JV1 Js~ 
(4.5) 

The normals in the surface integrals will all be pointing out 
of M'. Therefore, if the normal on VI is future pointing, the 
normal on Vo will be past pointing. This means we can write 
(4.5) as 

Po·;,) = PlY,) + i t /lYn/l d 3x. (4.6) 
Sro 

We can do the integration over Soo in two stages, first the 
two-sphere integral and then the integral over the line. Since 
t falls off faster than r- 3

, the two-sphere integral falls off 
faster than r- I

• The real-line interval is either finite (for time 
translations) or grows linearly with r (for boosts). In either 
case f Sro t /lYny d 3X vanishes and 

Po·;,) =p(V')' (4.7) 

Thus P is both finite and slice independent, with respect to a 
given Minkowski space background. 

The final challenge is to show that the energy momen
tum is invariant with respect to changes of the Minkowski 
space background. If we make a coordinate transformation 
which simultaneously acts on yand 7], then the invariance of 
P (V) is simply a consequence of the coordinate invariance of 
the integral. The difficulty arises in the kind of transforma
tion which changes 7] but not y, or vice versa. 

These kind of transformations arise from the fact (dis
cussed at length in Sec. II) that the underlying Minkowski 
space is only asymptotically fixed for an asymptotically fiat 
space-time. The arbitrariness in the Minkowski space is rep
resented by the asymptotic symmetry group Ps + 1,6 _ 1 (M) 
(defined in the corollary to Lemma 2.5). We must show that 
P is invariant under the action of Ps + 1,6 _ 1 (M). 

We have a metric y in some coordinate system such that 
y--rliag( + 1, + 1, + 1, - 1) at infinity. We define 
7] = diag( + 1, + 1, + 1, - 1) everywhere in the same co
ordinate system. Let/be a member of PH 1,6-1 and con
sider /' y, the transformation of y under f We have that /' y 
still goes to diag ( + 1, + 1, + 1, - 1). We therefore define 
7]' = diag( + 1, + 1, + 1, - 1) everywhere in the new coor
dinate system. Is P as measured on the fiat slices of 7]' the 
same as P measured on the fiat slices of 7]? 

This is exactly equivalent to asking whether P as mea
sured on one slice of M equals P measured on any other. The 
only restriction on the choice of slice is that they are related 
by an element of Ps + 1,6 _ 1 (M), s>4, I) > -~. If the two 
slices were such that they could be regarded as the t = 0 and 
t = 1 slice in some coordinates system then (4.7) would give 
an answer. However, if we had two slices that cross one an
other several times, we cannot find a coordinate system in 
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which they are the flat slices of a Minkowski space. Further, 
even if we could find a Minkowski space, it would not be 
unique. 

Therefore, we have to consider the invariance ofP under 
several different kinds of transformation. First, given a slice 
in the manifold M, we can consider it as the t = 0 slice of 
many Minkowski spaces. Thus we have to consider elements 
lof Ps + 1,0-1 (M), which leave a given slice unchanged. 
Thesej's, at the slice in question, reduce to three-dimension
al coordinate transformations on the slice. We also have to 
consider changes in the slice itself. 

Weinberg2 discusses these kinds of transformations and 
shows that the neatest way of dealing with them is not to 
consider P as defined by (4.4) but to substitute (4.2) into 
(4.4) to give 

p(V) = _1_ r [R (I)JlV - J.- rfVR 1(1)] 'T/v d 3x. (4.8) 
81T Jv 2 

He shows that this is a total divergence, which allows us to 
turn it into a surface integral and obtain the standard ADM 
energy-momentum formulas 7 

(4.9) 

(4.10) 

Let us assume IEDHI,o_tCM), s>4, 8> -~. We 
know 

!f Y= 'ilalp + 'ilpla 
f 

( 4.11) 

where !f is the Lie derivative. Let us first deal with their 
term. We can write it as 

Ir = (1- id)r + id r. 

On using the multiplication theorem we can show IrE H 3,o' 

for some 8' > - 1. The imbedding theorem then gives 
IrE c ~ for some a> 1. This implies that/r falls off faster 
than r- I

, and (/O,a falls off faster than l/r. This means 
that when we wish to calculate the changes in the surface 
integrals (4.9) and (4.10) due to J, we can ignore the 
changes due to Ir and need only worry about the changes 
caused by 

8YJlv = ~,v + IV'Jl' 
Weinberg2 does the calculation in detail for such shifts 

and shows that the extra terms in ( 4. 9) and (4.10) are a total 
curl and thus the surface integral must vanish, independent 
of any falloff argument. 

This can be easily seen in the case of (4.9) if we consider 
a three-dimensional coordinate transformation 

8gij = h,j + fj,i> 

8p o = f (1'. .. + I'. .. - 21'. .. )dS J~D J~y ~~fl I 

~ 

= f ('. -I'. .) . dS = O. J i.) J j.t.} I 

~ 

(4.12) 

Therefore, the total energy momentum is invariant un
der any infinitesimal coordinate transformation that belongs 
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to Ds + 1,0 _ I (M). However, any finite transformation that is 
connected to the identity can be regarded as an integral of 
infinitesimals. Thus the energy momentum is invariant un
der transformations that belong to Ds + 1,0 _ I (M). 

We have effectively dealt with the Lorentz covariance of 
the energy momentum already. We have shown that the en
ergy momentum on a given boosted slice of a given Min
kowski space is constant. Now make a Lorentz transforma
tion of everything, so that boosted slice becomes the new 
t = 0 slice. Then the energy momentum, under this Lorentz 
transformation, will transform like a Lorentz four-vector. 
Thus P is well behaved under the action of PH 1,0 _ I (M). 

V.ADMMASS 

In Sec. IV we have shown that the energy momentum is 
finite and well defined in any space-time that is generated by 
initial data (g,k) belonging to 

g-eEHs,oCI,), kEHs_I,o+1 (1:), s>4, 8>-1. 

The argument in Sec. IV was a four-dimensional argument, 
and only at the very end [in using (4.9) and (4.10) ] did any 
element of a 3 + 1 analysis creep in. It is interesting and 
enlightening to do the finiteness of energy proof entirely as 
an initial data problem. This is the motivation behind this 
section. 

On a three-dimensional manifold the imbedding 
theorem gives 

g - eE Hs,o (1:):::}g - eE Ci12 +E' 

for some E> 0, which implies that g - e falls off faster than 
r- I

/
2

, its derivative faster than r- 3
/
2

, and k falls off faster 
than r- 312• Traditionally, the ADM energy (4.9) has been 
identified with the mass of the Schwarzschild solution, 
which appears as aM /r term in the metric. Further, it ap
pears that the surface integral expressions (4.9) and (4.10) 
would blow up if either gij,k or kij fell off slower than r- 2

• 

We will show that this r- 2 falloff, which is obtained by 
directly inspecting the surface integrals, is misleading. Just 
as in electromagnetism, if we tum the surface integrals into 
volume integrals, and use the field equations (in this case the 
constraints) we will show that we can get by with weaker 
falloff conditions. Thus, we are not looking for pairs (g,k) 
that give finite integrals (4.9) and (4.10). Rather we are 
looking for pairs (g,k) that solve the constraints and give us 
finite (4.9) and (4.10). 

In fact, we can strengthen the analogy to electromagne
tism by showing that we can identify a unique M /r term in 
the metric (M = pO = const) even when the metric only 
falls offfasterthanr- 1I2. TheM /rterm (which is the analog 
of the Newtonian potential) is the only term that contributes 
to the surface integral (4.9), the rest of the metric, which 
may fall off slower than l/r, appears in the surface integral as 
a total curl, and so integrates to zero. One way of doing this is 
by introducing three-harmonic coordinates. 

To show the existence of such a coordinate sytem we 
need to prove a number of new results. In this section we will 
restrict our attention to Riemannian metrics on a three
manifold (although the theorems can be easily generalized). 
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Lemma 5.1: 

g - eE Hs.o (l:)~ g-'b - eE Hs.o (l:), 

for any s;:;.2, {) > -~. 

Proof: From the corollary to the multiplication theorem 
(Theorem 2.2) we have 

g-eEHs.o(l:)~detg-lEHs.o(l:), ifs;:;.2,8> -~. 
(5.1 ) 

Since we assume g Riemannian we have det g > O. From the 
imbedding theorem we have det g - IE C~ for some /3> O. 
Hence there exists constants C1,C2 such that 

O<C1..;detg..;Cz' (5.2) 

Now (det g )g-'b = cofactor of gab' Hence from the corollary 
to the multiplication theorem 

g - eE Hs.o (l: )~( det g )g-'b - eE Hs.o (l:), 

if s;:;' 2, 8> -~. (5.3) 

Together (5.1 )-( 5.3) prove the lemma. The following theo
rems have been proven about the Laplacian. 

Theorem 5.1 (McOwen)15 (the flat space Laplacian): 
The map 

Ae: Hs•o (R3 )-Hs _ 2•0 + 2 (R3
), s;:;.2, 

(a) is an isomorphism if - ~ <8 < -!; (b) is an injection 
with closed range given by 

R I = (rE Hs - 2.0 + 2 (R3
), f f df.l (e) = o} if - ! < 8 < !; 

theorem we have that g - eE C ~ for some /3 > O. Hence 

£, .Ji¢J.a dS a = T", ¢J.a dS a = O. (5.4) 

Now 

Ag ¢J = Ae¢J + (g-'b - e)aaab ¢J -g-'br~b ¢J,c> (5.5) 

~Ae ¢J = f - (g-'b - e)aaab ¢J + g-'br~b ¢J.e' (5.6) 

The multiplication theorem shows that the right-hand side 
of (5.6) belongs to Hs _ 2.05 + 2 for some;5 > -!. Further, the 
right-hand side of (5.6) belongs to RI (e) because of (5.4). 
Therefore Theorem 5.l(b) gives us that ¢JE Hs 6 for some 
;5 > -!. Thus we have improved the falloff on ¢J from < -! 
to > -!. Now we can iterate on Eq. (5.6), by substituting 
the faster falloff ¢J into the right-hand side. Since 
g - eE Hs·.O' , 8' > -~, there exists an E> 0 so that 
g - eE Hs·. _ 3/2 + 2E' When we substitute this, together with 
the fact that ¢JE H s•6 into the right-hand side of (5.§), we can 
prove it)elongs to Hs_ 2.r+ 2 where r = min(8,8 + E). SO 
long as 8 < 8 we gain an extra E every time round, to finally 
conclude ¢JE Hs•o (R

3
). 

Theorem S.2c: Let g be a Riemannian metric on R3 with 
g-eEHs·.o·(R

3
), s';:;.3, 8'> -~. Then Ag: 

Hs.o -.Hs _ 2.6 + 2 (R3
) is a surjection with kernel equal the 

constant functions if 2..;s";s' + 1, - ~ < 8 < -~. 
Proof: Let us be given anfE Hs - 2.6+ 2 with2..;s..;s' + 1, 

- ~ < 8 < -~. Theorem 5.1 (c) tells us that there exists a 
¢JoE H s•o, which solves 

and (c) is a surjection with kernel equal the constant func- Ae ¢Jo = f (5.7) 

tions if Now consider 

-~<8< -~. 

Theorem S.2a (the curved space Laplacian)6.1o: Let g be 
a Riemannian metric on R3 such that g - eE Hs'.o' (R

3
), 

s'>2, 8' > -~. Then Ag (acting on scalar functions) is an 
isomorphism Hs.o-.Hs_2.6+2 for each 2..;s..;s' + 1, 
-~<8< -!. 

Theorem 5.2a is clearly the direct analog of Theorem 
5.1 (a). They both say that if the source falls off between 1/r 
and 1/r, the potentialfalls off at infinity but slower than 1/r 
(and vice versa). The extra bits in 5.2a are there to deal with 
the r¢J.a term in Ag ¢J. In this article we will prove the theo
rems equivalent to 5.1 (b) and 5.1 (c). Theorem 5.1 (b) says 
that if the potential falls off faster than 1/r, then the source 
must fall off faster than 1/r and its integral must vanish. 
Theorem 5.1 (c) deals with slowly falling-off potentials and 
sources. It says that if the potential blows up slower than r, 
the source falls off faster than 1/r. However, we can always 
add a constant to the potential. 

Theorem S.2b: Letg ge a Riemannian metric on R3 such 
that g - eE H s'.6' (R3

), s';:;.3, 8' > -~. Then Ag: H S •6 (R
3

) 

-.Hs _ 2.6 + 2 (R3
) is an injection with closed range given by 

R1(g) = (rE H s - 2.6+ 2' f fdf.l(g) =O}, 

if 2..;s..;s'+1, -!<8<!. 

Proof: Let us be givenfERI (g). Theorem 5.2a tells us we 
can solve Ag ¢J = f with ¢JE H s•b for every ;5 < -!. Further 
!P '" V g ¢J . dS = 0 since fER I (g). From the imbedding 
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(5.8) 

We know there exists an E> 0 such that 
g - eE Hs·. _ 3/2 + 2E (R3

). The multiplication theorem now 
can be used to show that the right-hand side. of (5.8) belongs 
to Hs _ 2.0 + 2 + E' Theorem 5.1( c) tells us now that we can 
solve (5.8) for ¢JI belonging to H s.6+ E' We now iterate solv
ing 

(5.9) 

for ¢J2E Hs.o + 2E' We keep iterating until we get ¢J n E H S•6 + nE 

with 8 + nE> -~. We now solve 

Ag¢Jn+1 = - (g-e)aa¢J" +gra¢J". (5.10) 

The right-hand side of (5.10) now belongs to Hs_ 2.112 H' 

Theorem 5.2a now guarantees that we can solve (5.10) for 
¢In + IE Hs. _ 3/2 + E' Summing (5.7)-(5.10) now gives us 

Ag(¢JO+¢JI+"'+¢Jn+I)=j, (5.11) 

with, of course, ¢Jo + ¢JI + ... + ¢In + I EHs•o. Hence Ag is a 
surjection. It is clear from the construction [and Theorem 
5.1 (c)] that the kernel is the constant functions. 

To return to the problem at hand, we have that the ini
tial data (g,k) are not independent, they must satisfy the 
constraints. The constraints are elliptic equations, the exact 
analog of the Poisson equation in electromagnetism. The 
surface integral expressions ( 4.9) and (4.10) are locked into 
these elliptic equations. They detect only the energy and mo
mentum potentials (the dependent parts of the elliptic equa
tions) and ignore the independent parts of the initial data. 
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Expression ( 4. 9) expresses P 0 just as a function of the initial 
data 

P =-- a a (g'k' -g··k)dSI · o 1 f ij kl 
161T 00 I .J I). 

( 5.12) 

We have gab - e, det g - 1, and ~b - eE Ci12 + E for some 
€> O. Therefore in (5.12) we can replace a ij a klwith,jiijgkl, 
without changing the value of the integral, to give 

o I f r::. ij-Jel p = -- vgg IS (gik J' - gii k )dSI • 
161T 00 .,. 

(5.13) 

When this is turned into a volume integral, using the Gauss 
theorem, we get a term 

if kl FIg (gik.j1 - gij.kl)' 

plus other, first metric derivative terms. This is the second 
derivative term in the scalar curvature (3)R. Thus the volume 
integral of (5.13) can be written as 

pO = _1_ ( ,Jg {(3)R + lo"'n,..ab,.cd(2g g 
161T Jl: 46 5 5 mn.d ac.b 

- 2gma.d gnc.b + gdm.b gnc.a - gcd.a gmn.b)}d 3X • 

On using the initial value constraint 

(3)R = k . k - (tr k)2, 

this can be written as 

pO =_1_ ( ,ji{k.k- (trk)2 
161T Jl: 
+ ~ gmngabg<d(2gmn.d gac.b - 2gma.d gnc.b 

+ gdm.b gnc.a - gcd.a gmn.b )}d 3X • 

(5.14 ) 

(5.15 ) 

The multiplication theorem immediately guarantees that 
this is finite. An exactly equivalent calculation shows that 
the momentum ~onstraint Va (k ab - gabk ~) = 0 guarantees 
the finiteness of pi as defined by (4.10). Thus, the con
straints guarantee that the energy momentum, defined on 
the initial slice, is finite. 

To show that the energy momentum is well defined we 
would have to calculate the change of po and pi due to 
changing the hypersurface. This means using the Einstein 
dynamical equations with essentially arbitrary lapse Nand 
shift N2 functions to calculate the rate of change of g and k in 
propagating off the hypersurface. The only real restrictions 
we would place on Nand N2 is that they asymptotically blow 
up slower than rl /2. This is equivalent to demanding that the 
coordinate transformation belongs to Ds+ 1 • .5 _ 1 (R4

). It fol
lows from this [see the part of Sec. IV after (4.9)] that the 
energy momentum is conserved. 

To extend to the Poincare group we have to consider 

N ~ax + iJy + rz + O(r1l2 - E), 

where a,/3,r are constants (a general boost), and 

Na -A (0, - z, + y) + B(z,O, - x) 

+ C( - y, + x,O) + O(r l12 
- E), 

with A, B, and C constant (a general rotation). The energy 
momentum pI-' transforms in exactly the correct way. 
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The constraint equations not only force the energy mo
mentum to be finite, but also allow us to identify part of the 
metric to be a potential term (analogous to the Newtonian 
potential). The independent, freely specifiable parts of the 
metric 16 can fall off like r- 112 - Ebut the dependent part (the 
potential) must fall offlike 1/r. Not only does it fall off like 
1/r, it must be of the form po /r, where pO is a constant, the 
total energy. 

This breakup of the metric into independent and depen
dent parts is related to the choice of coordinates. One natural 
choice of coordinates is a three-harmonic coordinate system. 
The three-harmonic coordinate condition is that 

Agxa = 0, 

for each coordinate xa. We wish to prove that on all asymp
totically flat three-manifolds we can choose (asymptotic) 
three-harmonic coordinates. 

Let us be given nonharmonic coordinates X I and we seek 
a coordinate transformation X I ---+X = SeX ') such that X is 
harmonic. This is equivalent to 

AgX=O, 

which implies 

Ag.X = 0 = Ag,S(X ' ). (5.16 ) 

Let us set Sa = X a' + fa. Equation (5.16) then becomes 

Ag, r = P. (5.17) 

If g' -eEHs . .5(~)' s'> -4, 8> -~ then rEHs _ 1 • .5+I' 

Theorem 5.2c tells us thatthere exists an/aE Hs+ 1 • .5- 1 (~), 
which solves (5.17) and is unique up to constants. 

The imbedding theorem tells us that DjEC ~ (f3 > 0). We 
can find a C co non-negative function 0R..;1 with the follow
ing properties on ~: 

OR (x) = 0, \flxl <R, 

OR(x)=I, \flxl>2R, 

and in the region between Rand 2R, IDOR I < 2IR. Hence, 
there exists an Ro such that Idet D(OR.}) 1< 1. We cannot 
generate a global coordinate transformation with/because 
D/ may be too large somewhere and the Jacobian may go 
negative. However, since D/ falls off we can multiply /by a 
smooth function ORo' which eliminates / in the center and 
leaves / unchanged in the exterior region. This guarantees 
that the transformation 

t: X'---+X = x' + ORo / 

is a diffeomorphism. In fact, tE Ds + 1 • .5 _ 1 (~) so the energy 
momentum is unchanged. Further, outside of 2Ro, the co
ordinates X are three-harmonic. Hence we have proved the 
following theorem. 

Theorem 5.3 (three-harmonic coordinates): Given a 
three-manifold ~ with Riemannian metric g such that 
g - eE Hs•o (~), s,>4, 8> -~, there exists a diffeomorphism 
SEDs+ 1 • .5-1 andaconstantCsuchthats'gisthree-harmon
ic outside a sphere of radius C. 

The three-harmonic coordinate condition Agx = 0 re
duces to 

r a = gh<rbc = gh<gaa(gbd.c - ~bc.d) = O. 

We can now use this condition to simplify the ADM energy 
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expression (5.13). It now can be written 

pO = __ 1_ i gl/2,..IJb,.,cdg dS 
3217' 100 oS oS ab,c d 

= __ 1_ i (gI/2) dSc. 
1617' I, .c 

(5.18 ) 

Hence, we expect gl 12 to be the mass potential and to go like 
g1/2_1 + 4PoIr, even when gab -{jab + O(r- I12 - E). 

In harmonic coordinates, we can show that Rab 
= - !gmngab,mn + Pab' where Pab is quadratic in gab,c' 

Hence 

R = g"bRab = - !g"bgmngab,mn + g"bPab . 

We also have 

gmn am an gl/2 = !8'1/2{g"b~ngab,mn + Q}. 

Combining (5.19) and (5.20), we have 

gl/2 (3)R = _ gmn am an gl/2 + S, 

(5.19) 

(5.20) 

where S is quadratic in gab,c' Finally, the initial value con
straint gives 

- gmn am an gl/2 =gl/2[k. k - (tr k)2] - S 

or (5.21 ) 

- am (~n an g1/2) = gI/2[k. k - (tr k)2] - S', 

where S' is quadratic in gab,c' Equations (5.18) and (5.15) 
are compatible because the right-hand side of (5.21) is iden
tical to the expression (5.15). The multiplication theorem 
and Lemma 5.1 show that it belongs to H 3.3/2 +E ( I.) for 
some E>O. 

Naively, Eq. (5.21) looks like a2¢ = p, where ¢ = g1/2, 
and p - r - 3 - E. We are seeking a solution with ¢--+ 1 at 00. 

We expect a solution ¢ = 1 - a/417'r + O(r-I-E), where 
a = Sp. The theorems we have in terms of weighted Sobolev 
spaces, which deal with fast falloff sources [Theorems 
5.1 (b) and 5.2b], deal with the situation where we eliminate 
the air term by demanding that Sp d 3X = O. The trick is to 
take out the air term first by hand and then apply the theo
rems to the residue. 

To that end, it is easy to show 

am (gmn an (T-I)E H 3,2 (I.). 

Now consider 

am[~nan {gI/2(1_ 4:0)_1}] 
_ gl/2 am [gmn an (4:0)] 
_ 2~n an gl/2 am (4:0) 
+ (1 _ 4:0) am [gmn an gI/2]. (5.22) 

From (5.21) the third term on the right-hand side of (5.22) 
belongs to H3,3/2 + E' The other two terms belong to H3,2' 
Thus the sum belongs to H 3.312 + E (I. ) . Now consider 

This is zero because of (5.18). Hence the right-hand side of 
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(5.22) not only belongs to H 3,312+E but also to RI(g). 
Therefore, we can apply Theorem 5.2b to have that 

gI/2(l-4pol(T) -leH5,_II2+E(l:) 

or (5.23 ) 

gl/2 = 1 + 4pol(T + h, 

where hE H 5, _ 112 + E' Thus h is a classical function that falls 
off faster than l/r. Notice that not only does the constraint 
(in three-harmonic coordinates) force gl/2 to fall off more 
rapidly than gab; it also forces it to be smoother. 

This result, that in three-harmonic coordinates the de
terminant of g acts as the gravitational potential and falls off 
like pO/r, is not unique to this coordinate choice. For exam
ple, another coordinate choice is the so-called IT coordi
nates, where the metric is written in the form 

gab = {jab + (){jab + h !;" 
where h !;' is both divergence-free and trace-free. Everything 
we have proven for three-harmonic coordinates can also be 
proven for IT coordinates; they exist (asymptotically); the 
energy expression (5.12) reduces to 

pO = __ 1_ i V(). d S, 
817' roo 

and the constraint reduces to 

V2() = p, pE H3,3/2 + E' 

(5.24 ) 

which implies () = 2polr + O(r- I - E). Therefore,intheIT 
coordinates, (), which can be regarded as either the trace of 
gab - {jab or as a conformal factor, acts as the Newtonian 
potential. 

VI. POSITIVITY OF MASS 

One of the long-outstanding problems related to the 
ADM mass was whether it was positive. Recently, two 
proofs of the positivity of mass have been obtained, one by 
Witten,5 one by Schoen and Yau.3

,4 Both the Witten proof 
and the Schoen and Yau proof explicitly assume that the 
initial data is such that the metric falls off like l/r, and the 
extrinsic curvature falls off like l/r. In this section we wish 
to show that the ADM mass associated with the more slowly 
falling-off initial data we have been dealing with in this pa
per, 

g-eEHs,6(I.), keHs _1.6+1(I.), s;;.4, {j> -1, 
(6.1 ) 

is positive definite. 
This result, when combined with the boost theorem, 

says that the ADM energy is finite and positive in every 
Lorentz frame. This is sufficient to show that the total ener
gy momentum is timelike and future pointing. 

The way we approach the problem is by redoing the 
Schoen and Yau proof, but being careful to assume only that 
the initial data satisfy (6.1) rather than the more restrictive 
Schoen and Yau assumptions. The Schoen and Yau proof 
breaks up naturally into a set of independent stages. 

(A) If we are given nonmaximal initial data, i.e., data 
with g"bkab =1= 0, we cannot assume that the three-scalar cur
vature (3)R is positive because the constraint (3.2) only gives 
(3)R = k . k - (tr k)2. The first stage is to eliminate the tr k 
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term to find a three-metric with positive scalar curvature, 
with the same ADM energy. 

(B) Given a metric with positive scalar curvature 
(which we are guaranteed iftr k = 0), then we can show the 
existence of a conformally related three-manifold with zero 
scalar curvature and less energy. Of course, any three-mani
fold with zero scalar curvature is a solution to the constraints 
with kab = O. Physically, what we are saying is that if we 
eliminate the extrinsic curvature we lower the energy. 

(C) Now one eliminates the independent parts of the 
metric outside a region of compact support and further low
ers the energy. We are then left with a three-manifold with 
zero scalar curvature, which is conformally flat outside a 
region of compact support, with less energy. We cannot have 
it flat outside the region of compact support because we can
not eliminate the Newtonian potential. However, the new 
metric is Schwarzschildean at infinity. 

(D) Schoen and Yau finally show that all solutions that 
are Schwarzschildean outside a region of compact support 
have positive mass. 

The detailed falloff conditions play relatively little role 
in part (A) and the differences have been eliminated by part 
(D), so in this section we will only work through parts (B) 

and (C). 
Part (A): Let us be given an initial data set (g" ,k " ) satis

fying both the constraints (3.1) and (3.2) and (6.1). From 
the constraints (3.2), the multiplication theorem (Theorem 
2.2) shows us that R(g")E Hs'.s (l:), s';;;.3, 8' >~. [The im
bedding theorem gives us k " falling off faster than r- 3 

/2, and 
sinceR -k 2, we have thatR falls off faster than r- 3

, where
as, reading directly from (6.1) we would only get R falling 
off faster than r- 5

/
2

).] Schoen and Yau4 show how to con
struct a metric g', g' - eE H s,{) (l: ), s;;;.4, 8> - I, such that 
R(g');;;.O, that R(g')EHs'.{),(l:), s';;;.3, 8'>~, and that the 
ADM energy associated with g' equals the ADM energy of 
g". 

Part (B): Let us be given a metric g' such that 
g' - eEHs,{) (l:), s;;;.4, 8> - I, such that R(g');;;.O and 
R(g')EHs',{)" s';;;.3, 8'>~. This can either come from part 
(A), or directly from an initial data set which satisfies Ik '12, 

k ' 2 g ;;;.(trg, ). 

We have already proven one relevant result for metrics 
satisfying the above conditions (Lemma 3.2 of Ref. 6). 

Lemma 6.1: Let g' be a Riemannian metric on R3 such 
that g' - eE Hs.{), s;;;.4, 8> -~, and R (g') ;;;.0. Then there 
exists a unique Riemannian metric g, conformally equivalent 
tog', such thatg - eEHs,{)' R(g) = O. 

Ifwe call pO(g) the value of the ADM energy integral 
(5.13 ) associated with a metric g, we can prove the following 
lemma. 

Lemma 6.2: Let g' be a Riemannian metric on R3 such 
thatg' -eEHs,{),s;;;.4,8> -1,withR(g');;;.O,R(g')EHs',{)" 

s';;;.3, 8' >~. Let g be the unique Riemannian metric confor
mally equivalent to g' with R (g) = O. Then 

pO(g)<po(g') < 00. 

Proof: pO(g') is finite, this follows from (5.14). Lemma 
6.1 guarantees the existence of a positive function ,p, 
,p - IE H s,{) , where,p is the unique solution to 
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8ag , ,p - R (g'),p = 0, ,p-+ I at 00. (6.2) 

Then g = ,p4g' satisfies R (g) = 0, g - eE H s,{). On substitut
ing this expression into (5.13) we can easily show 

pO(g') _ pO(g) = _1_ i 8V,p. dS. 
1617' Yoo 

Turning the surface integral into a volume integral gives 

pO(g') _ pO(g) = -I-f 8ag, ,p df-t(g') 
1617' 

= 1~1T f R(g'),p df-t(g'). (6.3) 

The integrand in (6.3) is positive, and the integral is finite, 
thu~ proving the lemma. This result was originally derived 
by 0 Murchadha and York. 17 The major difference is that 
we deal with slow falloff data. Hence, we have shown that 
eliminating the extrinsic curvature must reduce the energy. 

Part (C): Let us be given a Riemannian metric g, 
g - eE H s,{),s;;;'4, 8 > - I, withR (g)=O. This trivially satis
fies the constraints (with k = 0) and is called a moment of 
time symmetry solution. Now we will follow Schoen and 
Yau3 and show that there exists an asymptotically Schwarz
schildean metricgwithR(g) = Oandpo(g) :::::po(g). More 
precisely, given any E > 0, there exists a Riemannian metric g 
[ with R (g) = 0] and a constant a with 

g- (l + a/2(7)48ijE H s,{)" 8'> -~, (6.4) 

and 

(6.5) 

The imbedding theorem says thatg - (I + a/2CT)48 falls off 
faster than l/r. Further, only the l/r part ofg will contribute 
to the ADM energy integral (5.13) and it is easy to show 
pO(g) = a. In fact, not only does g - (I + a/2CT)48 fall off 
faster than r- I

, it actually falls off like r- 2• 

The technique involves taking the given metric g and 
multiplying it by a suitable cutoff function so that it becomes 
flat outside some large radius R. Now the resultant metric is 
conformally transformed into one with vanishing scalar cur
vature. Since we have only eliminated the gravitational 
waves outsideR, the total energy of the new solution will not 
differ much from the total energy of the original solution. 

Let us choose a family of smooth cutoff functions r «(7) , ~o 
With ~oEC 00 such that 

~o«(7)=I, (7<0, 

~o«(7) =0, (7)20, 

O<~o<l, 

ID~ol<C(1 + (7)-1, 

IDD~ol <C(l + (7) -2, 

for some constant C. We now define a modified metric 

gO=(I+ p:~)re+~o {g-(I + p:~g)re}. 
(6.6) 

When ° is large enough gO will be Riemannian. It is clear that 

gO =g, r<O, 

gO = (I + PO(g)/2r)4e, r> 20, 
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R (g8) = 0, r < () (from definition of g), 

R (g8) = 0, r> 2() (from Schwarzschildean 

form of g), 

and the key result 

IR(g8) I <Cl ll + rl- (5/2+ E
,), 

()<r<2(), for some EI > O. 

To see this we write (6.6) as 

g8=b8(g-e) +O(lIr). 

Then 

(6.7a) 

(6.7b) 

g~b = b 8,ab (g - e) + b 8,a (g - e) ,b + b 8,b (g - e) ,a 

+ b8(g - e),ab + O(lIr), 

a power-counting argument shows that each of these terms 
falls off faster than r- 512• In particular we now can show 

[.[, IR(g8) 13/2 df-L(g8) r3 

<C2() -1/2 (6.8) 

[.[, IR (g8) 1
6/5 df-L (g8) ] 5/6 < C3() - E, for some E> 0, 

(6.9) 

where C2 and C3 are constants independent of (). 
It is not clear from (6. 7b) that fiR (g8) Idf-L (g8) remains 

finite as ()---+oo. It seems to blow up like () 1/2. Nevertheless we 
can still prove that 

r R(g8)df-L(g8)---+o as ()---+oo. (6.10) 
JR' 

The way to prove this is to realize that the ADM mass asso
ciated with g8 is pO(g), the ADM mass associated with g. 
Consider the ADM surface integral in the form (S.13), and 
evaluate it on the surface r = 2(), it is easy to show 

1 f G 8
ij 

8
kl 

8 8 dS -16 '.jg g g (gik,j - gij,k ) I 
1T r= 28 

= (1 + P:~») pO(g). 

Turn this surface integral into a volume integral just like 
(S.14) to give 

(1 + P:~») pO(g) 

= _1_ r [R(gll) 
161T J<211 

8
mn 

II II ] d II) + 19 ... (2gmn,d gac,b + ... ) f-L(g . 

We also have the expression for pO (g) in terms of g: 

pO(g) = _1_ r [R(g) 
161T JR' 
+ ~n ... (2gmn,d gac,b + ... ) ]df-L(g) 

(6.11 ) 

= 1~1T i, [! gmn ... (2gmn,d gac,b + ... ) ]df-L(g). 

( 6.12) 

Subtract (6.12) from (6.11), remembering that g = gil in
side r = (). We then get 
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[PO(g) j2/4() 

= _1_ f R (gll)df-L (g8) 
161T 

1 1
r= 211 

limn II II II + -64 g ... (2gmn,d gac,b + ... )df-L (g ) 
1T r=1I 

1 100 

--64 ~n ... (2gmn,dgac,b + ... )df-L(g). 
1T r=1I 

(6.13 ) 
It is easy to see that the last two expressions in (6.13) fall off 
like () - E for some E> 0 as ()---+ 00. The left-hand side falls off 
like () - I and hence the integral of R (gil) must also fall off as 
() - E. 

We have written down a metric gil, which is asymptoti
cally Schwarzschildean. However, R (gil), although small, is 
not identically zero. We now conformally transform gil into 
an asymptotically flat metric gil that satisfies R (gil) = O. 
This means that we seek a conformal factor X, which satisfies 
an equation similar to (6.2): 

8A 8 X - R(gll)X = 0, X---+l at 00. (6.14) 
g 

Hence gil = X4g satisfies R (gil) =0. 
Since R (gil) has compact support X asymptotically will 

look like X = 1 + P /2r, where P is some constant. Hence gil 
will be asymptotically Schwarzschildean. In Lemma (6.1), 
where we proved the existence of suitable solutions to (6.2), 
we needed that R (g') >0. However, we have no guarantee 
that R (gil) >0. However, we do have that R (gil) is small, and 
that is sufficient to prove that a suitable solution exists. 
Further, since R (gil) is small, the deviation of X from unity 
will be small, and the value of p will be small. We have 

gil = X4g11 = (1 + [PO(g) + P l/2r)4e at 00. 

Hence 
pO(gll) = pO(g) + p. 

The trick then is to choose () large enough so that p is less 
than the E mentioned in expression (6. S). We use the small
ness of R(gll) twice, and, happily, (6.8)-(6.10) are the 
norms in which we want R (gil) to be small. Not only do we 
want a solution to (6.14), we want a positive solution. Oth
erwise gil = X4g8 would have a singularity. 

To prove the existence of a suitable solution when () is 
large enough we need to prove a few theorems. 

Lemma 6. 3 J~. Let g be a Riemannian metric, 
g - eE HS',If' s'>4, 0' > -~, and I some function, 
IE H s, _ 2,{j' + 2' The operator Ag - I is injective from HS.{j 
---+Hs _2,{J+2,S>3, 8> - 1, if 

[I, 1/1
3/2 

df-L r3 

<Eo, 

for some Eo> O. 
Proof' Let us assume the contrary, i.e., there exists a 

function ¢ that solves 

Ag ¢ - I¢ = 0, ¢EHs,{j' 

Multiply across by ¢ to give 

¢Ag ¢ - 1¢2 = 0, 

that is, 

div(¢V¢) - (V¢)2 - 1¢2 = O. 
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Take the volume integral of (6.15). The term 

1, div(¢V¢)dll(g) = £, ¢v¢· dS = 0, 

since 15 > - 1. Hence 

f (V¢)2dll(g) + f f¢2dll(g) =0. 

Now 

If f¢2 dll(g) I, [f 1 f 13/2 dll(g) f/3 [f ¢6 dll(g) f/3. 
Further we have the Sobolev inequality 

[f ¢6 dll(g) f/3 ,Co f (V¢)2 dll(g)· 

Therefore we can rewrite (6.16) as 

f (V¢)2 dll(g) 

= If f¢2 dll(g) I 
,Co [f If 3

/
2Idll(g) r3 f (V¢)2 dll(g)· 

Therefore if 

[f If 3
/
2Idll(g) f/3 < ~o ' 

(6.16 ) 

( 6.17) 

(6.18 ) 

we cannot satisfy (6.18) and hence the lemma must be true. 
Aside: This is the old result that with the Schr6dinger 

equation if we have a shallow well we cannot have a bound 
state. If we regard f as a potential, then the ~ norm is the 
correct one. This result can be dressed up by splittingf into 
positive and negative partsf + andf _. We really only needf_ 
small, i.e., 

[f If_13/2dll(g) f/3 < ~o 
to prove the lemma. Again, only the negative part of the 
potential matters for a bound state. 

Now, we have a uniqueness result for an elliptic equa
tion. The obvious thing to do is to use the Fredholm alterna
tive to give us existence. Rather, since we are dealing with 
noncompact manifolds we can use lO the following theorem. 

Theorem 6.1: Let L be a linear elliptic differential sys
tem such that L belongs to a continuous family L t of such 
systems te[O,l], Ll = L. If each oftheLt is injective and if 
Lo is an isomorphism Hs.tr-+Hs _ 2.lj + 2 with - ~ < 15 < - ~ 
then L is also an isomorphism Hs,r-+Hs _ 2.6 + 2' Lemma 
(6.3) and Theorem (6.1) can be used in combination to 
show that a unique solution to (6.14) exists. First of all we 
choose () large enough so that 

[L, IR (l') 13/2 dll(g) f/3 < ~o 
[( 6.8) shows that this can be done]. Now rewrite (6.14) in 
the form 

( 6.19) 

The right-hand side of (6.19) has compact support and 
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hence belongs to Hs _ 2.3/2' The operator !l.g9 - R (g8) from 
Lemma 6.3 is injective. Hence (from Theorem 6.1) a solu
tion X-I exists and belongs to H S •6 for every 15 < -!. 

We still have to show that the solution X to (6.14) re
mains positive. This is shown by the following lemma. 

Lemma 6.4: Let X be the solution to 

8!l.g9X-R(g8)X=0, x-leHs•6 (6.14) 

and if 

[ r IR (g8) 13/2 dll (g8)] 2/3 <....!.., 
JR' CO 

thenx>O. 
Proof: Again, a proof by contradiction. Say there exists a 

point in R3 at which X < O. Hence there exists a subset S ofR3 

in which X,O. This set S must be bounded (because X--+ 1 at 
(0), and on the boundary of S, as, X = O. Now, repeat the 
calculation of Lemma 6.3, but now only over the set S: 

8!l.g9 X - R(g8)X = 0 

=>8X!l.g9 X - R(g8)X2 = 0 

=>8 div(XVX) - 8(VX)2 - R(g8)X2 = O. 

Integrate over the set S. Now 

8 r div(XVX)dll(g8)=8 i XVX.dS=O, Js ~s 

since X = 0 on as. Hence we must have 

8i (VX)2 dll(g8) + i RX2 dll(g8) = O. 

Analogous to Eq. (6.18) we have 

8i (VX)2 dll(g8) 

,Co [f IR(g8) 13/2 dll(g8) r3 

xi (VX)2 dll(g8). 

This cannot be true under the assumptions of the lemma, 
hence S cannot exist, and so X can never be negative. 

The only other case we have to consider is that X = 0 at 
an isolated point. In this case X, VX, and !l.X are all zero at 
that point. This guarantees X==O, which does not satisfy the 
boundary condition X--+ 1 at 00. Hence X > 0 everywhere. 

We have shown that a solution X to (6.14) exists and is 
everywhere positive. We hve also shown X - Ie Hs•6' forev
ery 15' < -~. This (from the imbedding theorem) shows that 
rl - E (X - 1)--+0 at infinity for every € > O. We can do better 
than that, however, since the right-hand side of (6.19) has 
compact support. We can show that X-I falls off at infinity 
like (J /2r, where (J is a constant. This is nothing more than 
the calculation used to demonstrate Eq. (5.23) in Sec. V. 
Hence we can show 

X - 1 + (J /2re Hs. _ 1/2 + E (R3
), for some € > O. 

(6.20) 

(From the imbedding theorem we have that X-I + (J /2r 
falls off faster than lIr.) We also have that 
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/3= --I-i R(g8)XdJ-l(g8). (6.21) 
1617 R' 

Therefore, we finally get that the metric g8 = X4g8 is asymp-
totically Schwarschildean and satisfies R (g8) ==0. 

The next problem is to show that the difference between 
the ADM mass associated with the original metric g and the 
ADM mass associated with g8 is small. Analogous to Eq. 
(6.3), it is easy to show 

pO(g) _pO(g8) =/3. (6.22) 

At a naive level it seems obvious that as () gets large R (g8) 
gets small and X:::::; 1. When this is pushed into (6.21) we 
expect that /3 would get small. To tum this into a precise 
argument is a nontrivial operation and we will follow Schoen 
and Yau,3 who have worked it out in detail. 

We have to show that 

/3 = - _1_ r R (g8)X dJ-l(g8) 
1617 JR' 

(6.21 ) 

gets small as () gets large. We already know that 
f R (g8)dJ-l(g8) gets small [(6.10)] and so it is sufficient to 
show that 

a = 1, R(g8)(X - l)dJ-l(g8) 

gets small. We have that v = X-I satisfies (6.19), 

Sd
g9 V - R(g8)V = R (g8). (6.19) 

Multiplying across by v and integrating gives 

8 £, vVv ·dS - 8 f (VV)2 dJ-l(g8) 

- f R(g8)v2dJ-l(g8) = f R(g8)vdJ-l(g8). 

The surface integral is zero, since v falls offIike 1Ir and so we 
get 

8 f (VV)2 dJ-l(g8) 

- f R(g8)V2 dJ-l(g8) - f R(g8)V dJ-l(g8). 

Hence 

S f (VV)2 dJ-l(g8) 

< [f IR (g8) 13/2 dJ-l r3

[f v6 dJ-l (g8) ] 113 

+ [f IR (~) 16/5 
dJ-l r6

[f v
6 dJ-l(~) r6 

We now use the Sobolev inequality (6.17) 

[f v6 dJ-l(g8) f/3 <Co f (VV)2 dJ-l(g8) 

to give 

S f (VV)2 dJ-l(g8) 

<Co [f IR(g8) 13/2 dJ-l(g8) r3 f (VV)2 dJ-l(g8) 
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(6.23 ) 

(6.17) 

+..rc; [f IR (g8) 16/5 dJ-l(g8) r6 

X [f (VV)2 dJ-l(g8) r2 

If we choose () large enough we can have [see (6.8) ] 

[f IR(g8)13/2dJ-l(~)r/3 < ~o . 

In that case we can rearrange (6.24) to have 

(6.24) 

f 
(VV)2 d (gB) < Co(fIR(g8) 16/5 dJ-l(g8) p/3 . 

fl {S _ Co (fIR (g8 13 /2 dJ-l(g8) F/3}2 

From (6.S) and (6.9) it is clear that 

f(VV)2dJ-l(g8)-+o as ()-+oo. 

Let us return to (6.23). It also can be written 

a = f R (g8) v dJ-l (g8) 

= - 8 f (Vv)2dJ-l(g8) - f R(g8)v2dJ-l(gB) 

Hence 

a< - S f (VV)2 dJ-l(g8) 

+ [f IR(g8W/2dJ-l(g8) r/3[J v6 dJ-l(g8) f/3 
< - S f (VV)2 dJ-l(g8) 

(6.25) 

+ CO [J IR(g8)3/2 dJ-l(g8) r/3[J (VV)2 dJ-l(g8)] . 

Therefore as ()-+ 00 , a-+O, hence /3-+0. 
We have finally shown what we set out to do in part (c) 

of the Schoen and Yau program. This means that given any 
metricg,g - eE Hs./l (R3

), s>4, 8> - 1, withR(g) = 0 and 
any € > 0, there exists a metric g', which is Schwarzschildean 
at infinity so that Ipo(g) - pO(g')1 <€ andR(g') = O. 

The last stage (D) of the Schoen and Yau program con
sists of showing that all metrics g' that satisfy R (g') = 0 and 
are Schwarzschildean outside a region of compact support 
have positive mass. We will not discuss this result here. All 
we wish to do is point out that this result, when combined 
with part (e), shows that all metrics g, g - eEHs,/l' s>4, 
8> - 1, with R (g) = 0 have positive mass. In tum part (B) 
now shows that all metrics g, g - eE Hs,/l' s>4, 8 > - 1, with 
R(g»O, R(g)EHS',/l"s'>3, 8' >~ have positive mass. Final
ly, using part (A), this suffices to show that all solutions to 
the constraints satisfying (6.1) have positive mass. 

The boost theorem shows that initial data of the form 
(6.1) are preserved under Lorentz transformations. This 
means that the ADM energy is positive in every Lorentz 
frame. Hence the ADM energy momentum four-vector is 
timelike and future pointing. 

VII. CONCLUSIONS 

In this article we have shown that if we have initial data 
to the vacuum Einstein equations satisfying 
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g - eE Hs,B (R3
), kE Hs-t,,'i+ I (R3

), s>4, 0> - 1, 
(7.1) 

then the space-time generated by this data has a well-de
fined, finite, conserved, Lorentz covariant, future-pointing, 
timelike energy momentum vector. 

Can we relax conditions (7.1)? The falloff condition 
0> - 1 in (7.1) cannot be significantly weakened. One de
monstration of this is to consider the following coordinate 
transformation of fiat space-time: 

t' = t + ~8a" " =, (a const). (7.2) 

This gives gij = oij - 2axixj lr, where gij is the induced 
three-metric of the t ' = 0 slice. When this metric is substitut
ed into the ADM expression (4.9) and (5.12), we immedi
ately get pO = - a. Of course, we know that the fiat space 
energy must be zero. This apparent contradiction is resolved 
when we realize that in the coordinate system (7.2), k ij falls 
off like ,-3/2 and hence belongs to every Hs,fj with 0 < - 1, 
but does not belong to any Hs,B with 0> - 1, and so does not 
satisfy (7.1). In this particular example the ADM momen
tum is actually zero due to the spherical symmetry of the 
transformation (7.2). This example shows clearly that the 
ADM energy momentum being finite is not equivalent to it 
being well defined. 

An alternative demonstration of this same disease can 
be obtained by considering the Schwarzschild solution. The 
lapse function joining the regular t = 0 slice of the Schwarz
schild solution to a constant time slice in Lemaitre coordi-

nates is of the form N - - ~ 8M,. Now the constant time 
slices of the Lemaitre coordinates are fiat so obviously 
pO = Oandk fallsoffliker- 3/2. Again the momentum is zero 
from the spherical symmetry. 

Thus, the only case we need to worry about is 0 = - 1. 
This condition is sufficient to give a finite pO and pi [from 
Eq. (5.15)]. However, we use theo> - 1 condition in two 
places in this article. First, we use the fact that tp.o [as defined 
by Eq. (4.2) 1 falls offfaster than l/r to show thatthe ener
gy momentum is conserved [Eq. (4.7)]. Second, we use 
0> - 1 in the positive energy proofs, particularly in deriv
ing the estimates (6,9) and (6.10), which are very important 
in the proof. 

There exists, of course, an alternative method of proving 
the positivity of mass, the Witten proof.5 This method also 
can be used to relax the asymptotic conditions and show that 
the energy momentum is well behaved under weak asympto
tic conditions. The Witten proof is totally different from the 
Schoen and Yau proof and is, in many ways, much easier. An 
analysis of the Witten proof, with emphasis on weakening 
the asymptotic conditions, already has been carried out by 
Reula,t9 

The Reula analysis cannot be translated directly into the 
language of weighted Sobolev spaces because he assumes 
that the metric and extrinsic curvature are Coo. With this 
condition all he needs is that (gab,c) 2 and (kab ) 2 be both 
integrable. Thus, this result is simultaneously stronger and 
weaker than the result we obtain here. It would be desirable 
to redo the Reula analysis in the language of weighted Sobo
lev spaces because it seems to indicate very strongly that 
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with 0 = - 1 we can show po>O and (PO)2> (Pi)2 on a 
single slice. This still leaves open the question of the energy 
momentum being conserved. Until this can be resolved, it 
may be better to stick with 0> - 1. 

It is important to realize that in this paper we are only 
setting conditions on the independent gravitational degrees 
offreedom. The dependent parts of the gravitational field are 
determined by the constraints, which are elliptic equa
tions. 16 This is why the natural asymptotic conditions are in 
terms of "falling off faster than" rather than "falling off 
like." It is the gravitational potentials20 that emerge when we 
solve the constraints that have the specified falloff. 

The relationship between the ,-112 falloff and finite 
mass is not new. It is implicit in the key perturbation calcula
tion of Brill and Deser. 14 Sommers21 discusses a source that 
has been radiating for an infinite time to the past. He as
sumes that the power radiated falls off like (- t) n. If 
n < - I, the total power radiated will be finite. This solution 
will have the curvature falling off at spacelike infinity like 
,n12 - 2, i.e., for finite total power faster than ,-5/2. Hence the 
metric itself need only fall off faster than' - 1/2. 

Schutz and Sorkin22 have explicitly demonstrated that 
the mass is finite if the metric falls off faster than ,- 1/2. In 
their calculation the mass is defined via a variational princi
ple which replaces the initial value constraints. This ap
proach could have been used in Sec. IV in place of the more 
direct method we did adopt. 

In retrospect, it is amazing how accurately the perturba
tion analysis of Brill and Deserl4 represented the true state of 
affairs. They obtained 

02pO = _l_J [..!.. (oglT)2 + (otfJ )2] d3x. 
161T 4 ".k IT 

Therefore, the energy in their analysis would be finite and 
positive if the IT parts of gij and k ij are square integrable. 
Further, the perturbation analysis of Deser et al.23 shows 

02pi = __ 1_J (OgTT01'l..k )d 3x. 
161T Jk,l IT 

This immediately shows (02pO)2> (02Pi)2 and so we have 
the positivity and the future-pointing nature of the energy 
momentum. These expressions are correct for nonmaximal 
as well as maximal data, see 6 Murchadha.24 

Finally, I would like to point out that in most of the 
proofs I have made no particular attempt to state minimal 
conditions on the degree of differentiability needed, especial
ly in the existence of harmonic coordinates and the positivity 
of energy proofs. In both these cases I have been guided by 
the s>4 condition in the boost theorem. Undoubtedly 
sharper results could be obtained if we were interested in 
these proofs for their own sakes. 
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The collision of two plane gravitational and hydrodynamic waves with parallel polarizations is 
studied. In the interaction region, to the future of the collision, the space-time admits two 
hypersurface orthogonal Killing fields, and the problem reduces to solving two (decoupled!) 
linear partial differential equations. The characteristic initial value problem for these equations is 
explicitly solved by means of Riemann's method. In the appendices the relevant field equations 
are written in two different coordinate systems that have been proved useful in the studies of 
colliding waves, relationships among the solutions of the gravitational and the hydrodynamic 
equations are obtained. separable solutions involving Bessel functions are constructed, and 
integral identities among the Legendre functions are obtained. 

I. INTRODUCTION 

Stationary axisymmetric space-times, as well as space
times with two spacelike commuting Killing fields, have 
been considered extensively in general relativity: The former 
describe the space-time of uniformly rotating stars and the 
latter-except from cylindrically symmetrical situations 
that will not be considered in the present paper-describe 
the interaction region of two colliding plane gravitational 
waves, Le., the part of space-time to the future of the colli
sion. The common geometrical characteristic of the two 
cases is the existence of two commuting Killing vector fields, 
so one expects to encounter the same essential difficulty in 
solving the relevant Einstein equations. But the asymptotic 
or boundary conditions are quite different for the descrip
tion of the relevant problems. 

The equations are much simplified when the two Killing 
fields are hypersurface orthogonal. The former case then 
corresponds to the absence of rotation and the latter to the 
collision of plane gravitational waves with collinear polari
zations. In vacuum regions, where there exists only the gra
vitational field, the former case is described by the well
known Weyl solutions and the latter was studied by 
Szekeres.1 So, rotation in stationary axisymmetric space
times corresponds to different polarizations for space-times 
with two spacelike Killing fields. And this correspondence 
seems to go even deeper between the mostly interesting solu
tions in the two cases. It was recently found2

•
3 that the black 

hole solutions in the former case correspond, in a well-de
fined mathematical manner, to the solutions describing the 
interaction region of colliding impulsive gravitational 
waves.4 •S 

There exists, however, an essential difference between 
stationary axisymmetry space-times and space-times with 
two spacelike Killing fields: while in the former case the 
space-time metric is time independent, in the latter case the 
metric is time dependent and as such, the basic problem is 
that of the time evolution of the prescribed initial data. The 
main objective of the present paper is to show how to solve 
this Cauchy problem for space-times with two hypersurface 
orthogonal spacelike commuting Killing vectors when the 
gravitational field is coupled with a perfect fluid satisfying 

the extremely relativistic equation of state energy density 
E = pressure p. We shall show that this problem reduces to 
two quite similar linear partial differential equations for 
which the underlying Cauchy problem can be explicitly 
solved. Szekeres I has solved the same problem for the vacu
um equations. 

II. THE EQUATIONS 

We have studied,6 ab initio, space-times with two space
like commuting Killing fields coupled to perfect fluids with 
E = P the equation of state. We summarize here the results of 
the reduction of the coupled Einstein and hydrodynamic 
equations. 

The metric can be written in the form 

ds2 = e2v +f (dxo)2 _ e2p.,+f(dx3 )2 

- e2tP(dx1 _ q2 dX2 )2 - e2P.z(dx2)2, (2.1) 

where a lax) and a /ax2 are the two Killing fields. We can 
impose the same gauge conditions as in the vacuum case,2 
namely the conditions 

rf" - v = /A, eP = etP + pz =~, (2.2) 

where 

(2.3) 

With these gauge conditions and the notation 

X=rf'z-tP, (2.4) 

the metric ( 1) becomes 

ds2 =ev + P3 + f /A[b. -1(dlJ)2 _ 8-1($)2] 

- ~[X(dX2)2 + X-1(dx' - q2 dX2)2J. (2.5) 

The complex combination 

X+iQ2=Z (1 +E)/(I-E) (2.6) 

satisfies the Ernst equation 

(Z+Z*)[(b.Z.'1),'1 - (8Z,p),p] =2(b.Z~'1 -8Z~) 

or 

(l-EE*)[(b.E,'1),'1 - (8E,p),p] 

= - 2E*(b.E~'1 - 8E~), 

(2.7) 

(2.8) 
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while v + 1t3 is determined (up to an irrelevant additive con
stant) by 

(ltlo)(v + 1t3).71 + (1]I!1)(v + 1t3).1' 

- (I/X2) (X.71 X.1' + Q2.71 q2.1' ) 

2(E.71E! + E~E.I') 
0-EE*)2 

21](v + 1t3).71 + 21t(v + 1t3).1' 

(2.9a) 

_ 3 1 1 [!1( 2 2) o( 2 2] 
- ""i + {; - X2 X. 71 + Q2.71 + X.I' + Q2.1' ) 

3 1 4 =-+-- (!1E E* +oE E*) !1 0 0-EE*)2 .71.71 .1'.1' • 

(2.9b) 

The fluid is described by a stream potential ¢ = ¢( 1],It) sub
ject to the equation 

!1¢.7171-0¢.1'1'=0. (2.10) 

Then the scalar ! in the metric (2.1), which owes its exis
tence entirely to the presence of the fluid, is determined from 
¢ (again up to an additive constant) by 

It! + 1]! _ 8 -I. -I. 
{;.71 ""i'1' - !10 '1'.71 '1'.1" 

(2.11a) 

(2.11b) 

The energy density of the fluid is 

€= _ (!10)-le-21'3-f(!1-1.2 _0-1.2 ) 
'1'.71 '1'.1' (2.12 ) 

and the tetrad components Uta) of the fluids for velocity, 
related to the tensor components Ua by 

(0) v 0 - v 
U = u(o) = e U = e uo, 

U(3) = - U(3) = el'-3u3 = - e-1'3u3, 

are given by 

(2.13 ) 

u(O).J€=!1- 1/2e-1'3¢.I" U(3).J€= -0-1/2e -I"¢.71· 
(2.14 ) 

The difficult part is to solve Eq. (2.7) or Eq. (2.8) for the 
gravitational field and Eq. (2.10) for the fluid; then v + 1t3 
and! are determined by straightforward quadratures. When 
¢ =! = 0, the problem reduces to the vacuum Einstein 
equations with two spacelike commuting Killing fields. 

III. THE SOLUTION OFTHE INITIAL VALUE PROBLEM 

We shall be concerned, from now on, with space-times 
with hypersurface orthogonal Killing fields, i.e., with space
times for which Q2 = 0. In this case the Ernst potential Z is 
real and Eq. (2.7) reads 

X[(!1X.71 ).71 - (OX.I').I'] =!1X~71 -OX~, (3.1) 

which, with the introduction of 

X=lnx, 

reduces to 

(!1X.71 ).71 - (oXJ' ).1' = 0. 

(3.2) 

(3.3 ) 

Therefore, the collision of two plane gravitational and hy
drodynamic waves with collinear polarizations is described 
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by the two linear equations (3.3) for the gravitational field 
and (2.10) for the fluid. The two equations are quite similar, 
having the same second-order derivative terms, but not iden
tical. And their similarity becomes more apparent when we 
write them in the null coordinates (u,v) given by 

1] = u..JT=/1 + v~, It = u..JT=/1 - v~. 
(3.4 ) 

They become 

X.uv - [I/O - u2 - v2) ](vX.u + uX.v) = 0, (3.5) 

and 

¢.uv + [I/O - u2 - v2) ](v¢.u + u¢.v) = 0, (3.6) 

respectively. In fact, we shall be able to treat both equations 
(3.5) and (3.6) simultaneously. To do that, we shall intro
duce the two new null independent variables 

(3.7) 

Then the two equations reduce to 

!feU) = u.xy + [nl(x+y)](U. x + U.y ) =0, (3.8) 

where (U = X, n =!) is Eq. (3.5) for the gravitational and 
( U = ¢, n = -!) is Eq. (3.6) for the fluid field. Equation 
(3.8) can be further reduced to the self-adjoint equation 

U.Xy + nO - n)(x + y)-2U(X,y) = 0, (3.9) 

by the substitution 

(3.10) 

but we shall not be using this self-adjoint form of the equa
tion because, since n (1 - n) equals! for n = ! and - a for 
n = -!, we shall have to consider two different equations. 

The initial value problem that we wish to solve is to 
determine U(x,y) in the domain of dependence of the initial 
data (Fig. 1). The initial data are U and its first derivatives, 
specified on the curve PQ, which does not intersect any line 
parallel to the characteristics ofEq. (3.8) more than once. It 
is well known that the solution of the initial value problem 
that we have formulated can be obtained by Riemann's 
method, for a very readable account of which we recom
mend the book of Copson. 7 

A successful application of Riemann's method depends 
on finding explicitly a solution V(x,y;xo,Yo)-the Riemann 
function!-of the adjoint of the equation that one studies, 
which for the particular equation (3.8) we are concerned 
with is 

Q 

FIG. I. The lines CA, and CA 2 are the characteristics of the equation 
through the (arbitrary) point C at which we would like to determine the 
solution. The initial data are given on the curve PQ. which does not intersect 
any line parallel to the characteristics more than once. Due to the hyperbo
lic type of the equation, the solution at C depends only on the initial data on 
A,A2 • 
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* _ n 2nV _ 
.!f (V) - V,xy - (V:x + V:y) + 2 - o. 

(x+y) (x+y) 
(3.11 ) 

Besides solving Eq. (3.11), the Riemann function also satis
fies the conditions 

where P _ n is Legendre's ring function with (not necessarily 
an integer) index - n. In terms of V(x,y;.xo,Yo) the value of 
U at the arbitrary point (xo,Yo) is determined by the values it 
takes along the curve A IA2, where A I andA 2 are the intersec
tions of the initial data curve PQ with the characteristics 
through (xo,yo)' 

Vox = [n/(x+y)]V, when y=Yo, 

V:y = [n/(x + y)] V, when x = xo, (3.12) 

on the characteristics x = xoandy = YoofEq. (3.8) through 
the point (xo, Yo) that we are interested in to evaluate the 
solution. For normalization, Riemann's function also satis
fies the condition 

(3.13 ) 

Fortunately, Riemann's function for Eq. (3.8) is known 
(Copson,7 §S.7). It is 

Following Copson, we write 

V.!f(U) _ U.!f*(V) = aH + aK 
ax ay' 

where 

nUV I 
H=--+- (VU - UV ) x+y 2 ,y ,y' 

K = n UV +.l (VU _ UV ). 
x+y 2 ,x ,x 

(3.15) 

(3.16) 

V(x,y,xo,Yo) = (x+y)n P _,,(1 + 2(X-Xo)(Y-Yo»), 
(xo + Yo)" (x + y) (xo + Yo) Then integrating in the "triangle" CA 1A 2 and using that 

_________________ ~( ... 3_.1 ...... 4), .!f (U) = .!f*( V) = 0, we get 

0= f f [V.!f(U) - U.!f*(V)]dxdy= f f (~~ + :)dXdy=f (Hdy-Kdx) 

= fA, (H dy _ K dx) - LA, H(xo)dy - LA, K(yo)dx = (uV)(C) -.l [(UV)(A,) + (UV)(A,>l 
JA, c c 2 

+ fA, {( nUV +.l vu _.l UV )dY _ (nuv +.l vu _.l UV )dX} = 0 L, x + y 2 ,y 2,y x + y 2 ,x 2 ,x , 
(3.17) 

from which we can express U(xo,Yo) as an integral over the initial data 

U(xo,Yo) = ! [U(A I) V(A I;XO,yO) + U(A 2 ) V(A 2;.xo,yo)] 

+ lA, {(nuv +.lVU _.lUV )dX_(nuv +.lVU _.lUV )dY}. 
A, x + y 2 ,x 2 ,x x + y 2 ,y 2 ,y 

(3.18 ) 

IV. THE CHARACTERISTIC PROBLEM 
We are mainly interested in applying the previous initial value problem to the description of the collision of plane 

gravitational and hydrodynamic waves. In this case the space-time consists of four distinct regions (Fig. 2). Region IV is the 
part of the space-time before the arrival of neither of the waves and regions II and III are the parts of the space-time after the 
arrival of only one or the other of the waves, depending on the position of the observer. Finally, region I, which is to the future 
of the collision (occurring at 0), is the part of the space-time where the interaction of the waves occurs. In this problem, 
therefore, the data are given on the null boundaries u = 0 and v = 0 separating regions I and II and I and III, which coincide 
with the characteristics ofEqs. (3.5) and (3.6). The problem is to determine the evolution of the characteristic data, i.e., to de
termine X and tfJ at the arbitrary point C of the interaction region, from the values of X and tfJ on the null boundaries u = 0, 
O<v< 1 and v = Q, Q..;;u..;; 1, which are specified from the particular incoming gravitational and sound waves. Since the lines 
u = uoand v = Vo through C, the characteristics ofEqs. (3.5) and (3.6), intersect each of the null boundaries only once, there 
is no problem in applying the previously developed theory in the present setup. 

In the coordinates x,y [see Eq. (3.7) ] the situation of Fig. 2 is mapped into that of Fig. 3. The characteristic data are given 
on OA and OB and we would like to determine their evolution in the arbitrary point (xo,Yo) inside the triangle ABO on which 
region I of Fig. 2 is mapped by the transformation (3.7). After some elementary manipulations on the expression (3.18) we 
find that the solution of Eq. (3.8) is 

U(xo,yo) = U(1,l) V(1,I;.xo,yo) - t [(u.x + ~)v] dx - t [(u,y + ~)v] dy. (4.1) 
JXo x+y (y=l) Jyo x+y (x=l) 

Moreover, by substituting the Riemann function (3.14) and changing the arbitrary point of evaluation of the solution from 
(xo,yo) to (x,y) we get 

U(x,y) = 2"U(1,l) P -n (1 +Xy) _ 1 t [(u.
x 
+~) ](1 + $)np _ ,.(1 + 2($ -x)(1 - y) )d$ 

(x + yy x + y (x + y)" 1x 1 + $ ($.i) (1 + $)(x + y) 

_ 1 f.1 [(U,y +~) ](1 + $)"P _,,(1 + 2($ - y)(1-X») d$. (4.2) 
(x+y)" y 1+$ (I.S) (1+$)(x+y) 
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v=l u=l 

o 

u=o 

rv 

FIG. 2. The space-time diagram for two colliding plane gravitational waves. 
The gravitational waves are propagated along the null directions u and v. 
The plane of the wave fronts (on which the geometry is invariant) is orthog
onal to the plane of the diagram. The instance of the collision is the point 0 
(u = 0, v = 0). Region IV, which is flat, is the portion of the space-time 
prior to the arrival of neither wave. Regions II and III are the portions of 
space-time after the passage of one or the other of the waves. They are flat 
for impulsive waves and vacuum solutions for arbitrary plane waves. Re
gion I, which is to the future of the collision, is the interaction region. The 
problem is to determine the solution in region I from initial data given on the 
null lines OA and OB. The curve AB is where the focusing occurs and the 
singularity develops. 

The expression (45) provides the general solution for 
(U = X, n =!) for the metric function and for (U = ifJ, 
n = - ~) for the stream potential of the fluid. 
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FIG. 3. The interaction region I of Fig. 2 is mapped to the triangle OAB by 
the transformation (3.7). OB and OA are the boundaries between regions I 
and II, and I and III, respectively. We would like to determine the solution 
at C from initial data given on OA and OB. A singularity is expected to 
develop at AB. 
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APPENDIX A: THE INTRODUCTION OF NULL 
COORDINATES 

For the description of the collision of gravitational 
waves we also need to describe the space-time in null coordi
nates (u,v), related to 'T] andjl by 

'T] = u..rr=-vr + v~, jl = u..rr=-vr - v~. 
(AI) 

Then the Ernst equation reads 

(Z + Z *) Z - ,v ,u = 2Z Z [ 
uZ + vZ ] 

,uv I + _ u1 _ v1 ,u ,v (A2) 

or 

(1 - EE *) [E - uE,v + VE,u] = - 2E * E E . 
,uv 1 _ u1 _ v1 ,u ,v 

(A3) 

To integrate equations (2.9) for v + P3' is most convenient 
to introduce <I> by 

eV +1'3= [('T]1_p1)/(l_jl1)1/4(l_'T]1)3/4]e<l>. (A4) 

Then <I> is determined from E via 

(1 - u1 - v1) E,uE~ 

u (1 - EE*)l ' 
<I> = ,u (A5a) 

<I> = ,v (A5b) 
v 

where, in obtaining Eqs, (A5), we made use of the identities 

E''JE! + E~E,I' 

and 

= [1/2(1 - u1 - v1)] [(1 - u1)E,uE ~ 

- (1 - v1)E,vE~] 

(l-'T]l)E''JE~ + (l-p1)E,I'E! 

= H (1- u2)E,uE~ + (1- v1)E,v E :]. 

The stream-potential equation reads 

(A6) 

(A7) 

ifJ,uv + (uifJ,v + vifJ,u )/(1 - u1 - v1) = 0, (A8) 

and/is obtained from ifJ by 

2ifJ~ 2ifJ~ 
f.u = (1 1 2)' f.v = (1 2 2)' (A9) u -u -v v -u-v 

while the expression for the energy density reads 

(1- U1)1/2(1_ V2)1/1 
€= - e- 21'3- f ifJ ifJ (AlO) 

(I_U1 _V2 )1 ,u ,v' 

Note also the relationships 

AD = (1- u1 - V1 )2 (All) 

and 

(d'T])2 (djl)2 4(du)(dv) 
--a- - --D-= (I - U2)1/2(1 _ V2)1/2' (AI2) 

which are needed to express the metric (2.5) in the null 
coordinates. 

An intermediate step in the transition from the ('T],jl) to 
the (u,v) coordinates is the introduction of the angular co
ordinates (""tJ): 
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TJ = cos.,p, p = cos {}. (A13) 

In fact it was found that to describe the space-time of the 
collision of plane gravitational waves in a Newman-Penrose 
formalism and to evaluate the corresponding Weyl and Ricci 
scalars it is most convenient to work in the angular variables. 
The null coordinates are then obtained from the angular 
ones by 

u = cos(.,p + {})/2), v = sin({{} - .,p)/2). (A14) 

In the angular coordinates the Ernst equation reads 

(Z + Z *) (Z,# - Z,,'NJ + cot .,pZ,,,, - cot {}Z.o ) 

(A15) 

or 

(1 - EE *) (E,# E,oo + cot .,pE,,,, - cot {}E,o ) 

= - 2E *(E~", - E~o). (A16) 

From every solution of the previous equations the function 
¢I of Eq. (A4) is then determined from E by 

¢I _ sin {} sin.,p [IE,o + E.", 12 + IE,o - E,,,, 12] , 
,'" - (1 - EE*)2 sin({} +.,p) sin({} -.,p) 

(AI7a) 

¢I = sin {} sin.,p [IE,o + E.", 12 _ I~,o E,,,, 12] . 
,0 (1-EE*)2 sin({}+.,p) sm({}-.,p) 

(A17b) 

The equation satisfied by the stream potential becomes 

¢l,# - ¢l,oo - ¢l,,,, cot.,p + ¢l,o cot {} = 0, (AlS) 

while/is determined from ¢l by 

f = _ 2 [ (¢l,o + tP,,,, )2 + (~,o - tP,,,, )2] , 
,'" sin .,p sin {} sin ( {} + .,p) sm( {} - .,p) 

(AI9a) 

2 [ (¢l,o + ¢l,,,,)2 (tP,o _ ¢l,,,, )2] 
fo= - sin.,psin{} sin({} +.,p) - sin({}-.,p) . 

(AI9b) 

APPENDIX B: INTERPLAY BETWEEN SOLUTIONS FOR 
XAND+ 

Equations (3.3) and (2.10) or (3.5) and (3.6), or (3.S) 
for n = ! and n = -! are remarkably similar but not identi
cal. How are, therefore, their solutions related? The answer 
is given by the following three theorems, expressing the 
transformations of the solutions of these equations in the 
three different coordinate systems that we are using in the 
paper. 

Theorem 1: Let X (T/,p) be any solution of the equation 

[(1 -TJ2)X,7I1.7I - [(l - p2)X'1l ] oIL = O. (BI) 

Then 

¢l(T/,J.l) = (1_T/2)(1_p2)X,7I1l (B2) 

is a solution of the equation 

(1 - T/2)¢l,7I7I - (1 - p2)¢l'1l1l = O. (B3) 

Conversely, if ¢l( T/,J.l) is a solution of Eq. (B3) then 

X ( T/,J.l) = ¢l,7I1l (B4) 
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is a solution ofEq. (BI). 
By transforming to the (u,v) coordinates (3.4) we get 

the following theorem. 
Theorem 2: Let X(u,v) be any solution of the equation 

(1 - u2 - v2)X,uv - (vX,u + uX,v) = O. (B5) 

Then 

¢l(u,v) = (1 - u2 
- v2) [(1 - u2)X,uu - (1 - ~)X,w 

- uX,u + vX,v] (B6) 

is a solution of the equation 

(1 - u2 - v2 )¢l,uv + v¢l,u + u¢l,v = O. (B7) 

Conversely, if ¢l(u,v) is a solution ofEq. (B7), then 

X(u,v) = (1 - u2 - v2) -I [(1 - u2 )tP,uu 

- (I - v2)¢l,vv - u¢l,u + v¢l,v] (BS) 

is a solution ofEq. (B5). 
Finally, in the (x,y) coordinates (3.7) the transforma

tion is described by the following theorem. 
Theorem 3: Let X(x,y) be any solution of the equation 

2(x + y)X,Xy + X,x + X,y = O. (B9) 
Then 

¢l(x,y) = (x + y) [( I - x 2 )X,xx 

- (1 - y2)X,yy - xX,x + yX,y J (BIO) 

is a solution of the equation 

2(x + Y)¢l.xy - ¢l,x - ¢l,y = O. (BIl) 

Conversely, if tP (x,y) is a solution of Eq. (B 11 ), then 

X(x,y) = (X+y)-I[(l-x2)¢l.xx - (l-y2)¢l,yy 

- x¢l.x+y¢l,y] (BI2) 

is a solution ofEq. (B9). 
Theorem 1 was obtained by noting that Eqs. (B 1) and 

(B3) admit separable solutions in the ( T/ ,p) variables, which 
are expressible in terms of Legendre functions. These solu
tions are 

(BI3) 

and 

tP(T/,J.l) = (l-T/2)(I- p 2):Ym{TJ)Ym(P) (B14) 

(and any superposition of them) where the Y m 's are solu
tions of Legendre's equation of order m and the dots denote 
differentiations with respect to the corresponding argu
ments. 

The transformations of Theorem 1 map the solutions 
(B13) and (BI4) one onto the other by Legendre's equa
tion. The transformations of Theorems 2 and 3 express that 
of Theorem 1 in the systems of null coordinates (u,v) and 
(x,y). The three theorems can be proved directly as well, by 
substituting into the relevant equation to get a fourth-order 
expression and then reducing it by virtue of the other second
order equation. 

APPENDIX C: SEPARABLE SOLUTIONS IN TERMS OF 
BESSEL FUNCTIONS 

In Ref. 6, Sec. 7, we found thatEq. (3.6) admitssepara
ble solutions expressible in terms of Bessel functions, for 
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which Eqs. (A9) were explicitly integrated. We shall here 
show that Eq. (3.5) for X also admits separable solutions 
expressible interms of Bessel functions. 

The variables in which Eq. (3.5) separates are 

(CI) 

i.e., the same as for Eq. (3.6). Then Eq. (3.5) becomes 

X," - (X,58 + (l!s)XsI = 0, (C2) 

while Eqs. (AS) expressed in terms of 

X=lnx=ln[(l +E)/O-E)] 

and in the (r,s) variables become 

~,r + ~,s = (s/2)(X,r + X,s )2, 

~,r - ~,s = - (s/2)(X,r X,s )2. 

Hence 

(C3) 

(C4a) 

(C4b) 

~,r=sX,rX,s and ~,s=(s/2)(X~r+X~). (CS) 

The fundamental solutions ofEq. (C2) are 

X=e±ar!oUas) and X=e±iar!o(as), (C6) 

where ± a 2 is the separation constant and !oUas) [which 
can be either Ko(as) or Io(as») and !o(as) [which can be 
either Jo(as) or Yo(as)]) denote Bessel functions of order 
zero for an imaginary or a real argument, respectively. The 
general solution for X is expressible as an arbitrary linear 
superposition (of sums or integrals over the parameters) of 
the fundamental solutions with different separation con
stants. It remains to be investigated whether all of these fun
damental solutions are permissible. 

There is no difficulty in solving for the ~ corresponding 
to each of the fundamental solutions. By taking, for instance, 

By using that 

(1 + z)n ( Z - 1) Pn (z) = -2- F - n, - n; 1; z + I ' 

we obtain from Eq. (DI) the identity 

(C7) 
I 

Re(z) > 0, 

we have 

X,r = ±ae±arKo(as) and X,s = -ae±arK\(as). 
(C8) 

It can be readily verified that the corresponding solution 
for ~ is 

APPENDIX D: IDENTITIES AMONG LEGENDRE 
FUNCTIONS 

(C9) 

Several mathematical identities involving Legendre's 
"ring" functions can be obtained from the solution of the 
characteristic problem outlined in Sec, IV, They arise by 
using known solutions of Eq. (3.8) and substituting their 
characteristic data in the expression (4.2). We shall only 
give some examples. 

Equation (3.8) admits the solution U = const through
out the triangle AOB, which has characteristic data 
U = const, u'x = U,y = 0. Substitution gives the identity 

rx O+5')n IP_n(l+ 2(5'-X)(1-Y»)d5' 
JI (1 +5')(x + Y) 

+ ry 

(1+5')n- 1 p_ n(l+ 2(5'-Y)(1-X»)d5' 
JI (1+5')(x+y) 

= (x + y)n _ 2
n 

P _ n (I + xy ) , (D1) 
n n x+y 

for every index n, not necessarily an integer. Special cases 
like n = ± 1 or arbitrary n but x = I or y = I can be easily 
verified. But we do not know how to prove the identity gen
erally, except by the indirect method based on the theory of 
Sec. IV. 

(D2) 

(l +y)n r (1 +5')2n 1 F(n,n;l; (5'-x)(l-y) )d5' + (1 +x)n 
J\ (5'+y)n (5'+y)(1+x) 

x(v(1+5')2n-I F (n,n;1; (5'-y)O-X»)d5'=.l.O+X)n(1+y)n_ 122n F (n,n;1; O-X)O-y»), 
JI (5'+x)n (5'+x)O+y) n n O+x)(l+y) 

involving hypergeometric functions. (D3) 

More involved identities, involving integrals of products of Legendre functions, can be obtained by considering the 
solutions (Bl3) and (B14) ofEq. (3.8) for n = ±!. 

For instance, for n = -! 
U= (l-l'l)(1-,lP):Ym(1/)Ym(,u) (D4) 

is a solution for every index m, where the Ym's are solutions of Legendre'S equation of order m, and the dots denote 
differentiations. For simplicity we shall assume m to be a positive integer and take Legendre polynomials Pm's for the Y m 's. 
Then by using that 

x = l{::}u = 0{::}(1/ = V,,lL = - v), 

- - =1 (
a,lL ) 
av u=o ' 

(DS) 
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we find that 

(u _ U ) =k(_1)m- I o+t){P
m

(V) [2m(m+l)Pm(V)-VPm(V)]} 
.Y 2 (1 + t) (1.5) v v = J(I 5)/2 

Similarly, by using that 

y = l¢:?v = ()¢::}1J = ft = u, 

(~:)v=o =(:)v=o =1, 

(U.u )v=o = (U.
Tf 

+ U.Jl- )V=O = - 2m(m + 1) (1 - u2 )P m (u)p m (u), 

we obtain 

( U) {Pm (u) . } U.x - = A(1 + t) -- [2m(m + l)Pm (u) - u Pm (u)] . 
2(1 +t) (5.1) U u=J(I-5)12 

Moreover 

and 

(1 -1Jz) (1 - ftZ) = !(x + y)2 

{P~ (0), 
U(x = 1,y = 1) = U(1J = O,ft = 0) = 

0, 

for m = odd, 

for m = even. 

Substitution into Eq. (4.2) gives the identity in x and y, for every positive integer m, 

t ~ G (E:)P (1 + 2(t - x) (1 - y») dE: + ( _ 1)m - I 1x ~ m ~ liZ (1 + t)(x + y) ~ 

(D6) 

(D7) 

(DS) 

(D9) 

(DlO) 

xiI ~1 + t G
m 

(t)PIIZ (1 + 2(t - y) (1 - x) ) dt = 4{2P~ (O)PlIz( 1 + xy
) - 2(x + y)3/Zp m (1J)p m (ft), (Dll) 

Y (1 + t)(x + y) x + y 

where 

(D12) 

and 1J and ft are given by Eqs. (3.4) and (3.7). Note that the product Pm (1J ) Pm (ft) is rational in x and y. Forinstance, we 
have calculated that 

{

i (y - x), for m = 2, 

Pm (1J)Pm (ft) = M25xZ + 25yZ - 30xy - 16), for m = 3, 

H(Y - x)(49xz - 14xy + 49yZ - 4S), for m = 4. 

Similarly, for n = ! we know that 

U= Ym (1J)Ym (ft) 

(D13) 

(D14) 

is a solution of Eq. (3.S), where, again, the Y m 's are Legendre's functions of index m. And as before, we shall assume for 
simplicity that m is a positive integer and the Ym's are the corresponding Legendre polynomials. We now find that 

(u,v)u=O =2( -1)mpm(v)Pm(v), (U.u)v=o =2Pm(u)Pm(u), 

and therefore that 

( 
U) 1 [Pm (u)Fm (u) P~ (u) ] 

u,x + 2(1 + t) (5.1) = - 2' u - 1 + t (u = Jo - 5)/2) • 

Substitution into Eq. (4.2) gives the identity 
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(DI8) 

where 

P~ (t) ] 
I + g (t = [0=-';)12)' 

(DI9) 

The identity (BI8) is valid for every real x andy and any positive integer m. TheproductP m ('T/ ) Pm (/1) is rational inx andy as 
well. For instance, 

Pm ('T/)Pm (/1) = rt,(9x
2 + 9y2 - 6xy - 8), for m = 2, (D20) {

~(y - x), for m = 1, 

n(y - x)(25x2 + 25y2 + lOxy - 24), for m = 3. 

Note also that the expressions Gm (g) ofEqs. (DI2) and (DI9) are rational functions in g. 
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The Hagen model [C. R. Hagen, Ann. Phys. (NY) 157,342 (1984); Phys. Rev. D 31,331 
( 1985)] is studied using the method of constrained Hamiltonian formalism developed by Dirac 
[Po A. M. Dirac, Can. J. Math. 2,129 (1950); Lectures on Quantum Mechanics (Yeshiva U. P., 
New York, 1964) ] . The results recently obtained by Burnel and Van Der Rest-Jaspers [A. Burnel 
and M. Van Der Rest-Jaspers, J. Math. Phys. 26,3155 (1985)] are reexamined and modified. 
There appear two second-class constraints ~nd their choice is not crucial. The equivalence of 
different gauges is proved without referring to the current conservation law. 

I. INTRODUCTION 

Recently Burnel and Van Der Rest-Jaspers l examined 
the three-dimensional gauge theory proposed by Hagen2 by 
applying the Dirac formalism of the constrained Hamilto
nian systems. 3 They have concluded from some pathological 
aspects that there appear three second-class constraints and 
the structure is quite different from that of the usual gauge 
theories. However, as it seems there is no exceptional struc
ture in the gauge transformation, the straightfoward appli
cation of the Dirac formalism must be possible. In this paper 
we repeat the study in some detail since the model itself is 
also interesting as the prototype of the four-dimensional 
gauge theories. We found that there is no pathological prop
erty. There are three primary constraints and one secondary 
constraint. Two combinations of them are the first class and 
generate the gauge transformation. The remaining two are 
the second class though the choice is not unique. The differ
ent selections of second-class constraints give the same re
sult. The corresponding variables appearing in the different 
selections coincide with each other up to additional first
class constraints. The proof of equivalence of the different 
gauges is refined in the Hamiltonian formalism without us
ing the current conservation law in Abelian theory. In the 
case of the non-Abelian theory the same difficulty appears as 
in the Yang-Mills theories in four dimensions. 

II. HAMILTONIAN FORMALISM 

The Lagrangian of the model given by Hagen2 is 

.!f = ~¢I'El'vp JPcpv + ¢l'il" (1) 

where we use the notation of Ref. 1 ('T/I'v = ( + - - ), 
E012 = E 12 = 1, ... ). The action is invariant under the Abelian 
gauge transformation 

(2) 

Since it depends on l and A we expect one primary and one 
secondary first-class constraint in the Hamiltonian formal
ism. 

The momenta conjugate to ¢I' are 

J.? 
tTo=--=O, Jc/J0 

tT 0 = J.? = - 21 EJokc/Jk (j = 1,2) 
J Jc/Jj 

(3) 

and there are three primary constraints 

Ko=tTo = 0, K j = tT j + ~ Ejkc/Jk = 0. (4) 

The Hamiltonian is defined without using ( 4) (see Ref. 4) as 

K = J d 2x( tTl';Y- -.!f) 

= J d 2X(tTrl/J° + (tTj + ! Ejkc/Jk)~j 

- c/J0{J2c/J1 - J 1c/J2 + io} - c/Jj i j ). (5) 

The first two terms are linear combinations of primary con
straints and their coefficients are set to be undetermined 
functions in the Dirac Hamiltonian. The consistency condi
tion that the primary constraints are preserved gives 

Ko = J2c/JI - J 1c/J2 + io=K3 = 0, 
• . k k 0 . 

K j = Ejdc/J - J c/J ) + h = 0. 

The second equation determines ~j, 

~j = J jc/J0 + Ejkik' 

(6) 

(7) 

and the first one is the secondary constraint. It is preserved 
using the current conservation J I'il' = 0, which is the result 
of the equations of motion of the matter fields. No more 
constraints appear and ~o remains undetermined. Using (7), 
the Hamiltonian (5) becomes 

K= J dX[tTo~O_c/J0{JktTk +~(J2c/JI-Jlc/J2) +io} 

(8) 

The coefficient of c/J0 is a combination of the constraints 

JktTk +! (J2c/JI_Jlc/J2) +io=JkKk +K3-K4=0, 
(9) 

and it commutes with all constraints, therefore it is the first
class constraint. It is the Gauss law constraint in the usual 
gauge theories. Actually the gauge transformation (2) is 
generated by two first-class constraints Ko and K4, 

G = J dx[A Ko - AK4]· (10) 

Since K4 in (9) is the first-class constraint all of the three 
K/s (j = 1,2,3) cannot be second-class ones. In fact the 
rank of det{Kj , K/} is 2. The second-class constraints are 
two independent linear combinations of K I' K2, and K 3' Two 
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canonical variables are eliminated by using them after defin
ing the Dirac bracket. Taking KI and K2 as the second-class 
constraints, the Dirac bracket is defined as 

{A,B}* = {A,B} + {A,KI}{K2,B} - {A,K2}{KI,B}. 
(11 ) 

Eliminating 1T'j (j = 1,2), the values of the Dirac bracket for 
the remaining variables ~o, ~j, and 1T'0 are 

{~o(x),1T'o(x)}* = - {~I(X),~2(y)}* = 82 (x - y), 
(12) 

and the others are zero. Now the Hamiltonian, in terms of 
the reduced variables, becomes 

K* = f dx [1T'Jo - ~o(a 2~1 - a 1~2 + jo) - ~kjk ] 
(13) 

and the two first-class constraints are 

K~ = 1T'0 =0, Kt = a2~1 - al~2 + jo = O. (14) 

The choices of the second-class constraints and the 
elimination variables are a matter of convenience of the de
scription and irrelevant to the physics. In fact if we choose 
K 2 and K 3 as the second-class set and eliminate ~2 and 1T' 2' the 
Dirac bracket, constraints, and the Hamiltonian are 

{~I(x),17\(y)}* = 8(x - y), 

{1TI(X),~}* = {~I r(x),matter}, 

K~ = 1To = 0, Kt = a IKI = a 11TI +! (a2~1 + jo) = 0, 

(15) 

~ = J dX[1TJo - ~oKt 

- ~11 + (iTl - (1I2a I) (a 2~1 + Jo) lJ2]' 

They look different from (11) - ( 14) written in terms of ~ I 
and 1T'1 

{~I(X),1T'I(y)}* =! 8(x - y), {1T'I(x),matter}* = 0, 

K~ = 1T'0 = 0, Kt = K3 = 2a 11T'1 + (a2~1 + jo) = 0, 
(16) 

2* = f dx [1T'Jo - ~oK t - ~]I - 21T'lj2]' 

The difference comes from the ambiguity of the first-class 
constraints in various quantities. To take K3 as the second
class constraint means to take K I - (11 a I )K4 in place of K \0 

since 

(17) 

This change shifts the definition of the variables by a certain 
amount of an additional first-class constraint. In this case 
the quantities with tildas in ( 15) are related to the ones with
out tildas in (16) by 

A =A + {A,K2} ( lIa I)K4 , (18) 

or, more explicitly, 
- ...--..... 

~I = ~I, (matter) = (matter), 

1T'1 =1TI - (lI2a I )Kt (19) 

=! 1TI - (1I4a l)(a2~1 + Jo)' 
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We can show that (15) is derived from ( 16) and vice versa. 
The origin of ( 18) is understood from the fact that to define 
the Dirac bracket is equivalent to replacing A by its starred 
variable,s 

(20) 

where the K's are the second class constraints and Cap 
= {Ka,Kp}' The difference of A and A in the expression 
(18) is that of the starred quantities defined in (20). Since 
the difference is the first-class constraint, they are physically 
equivalent. In fact, when the gauge is fixed and the con
straints are eliminated the difference will disappear com
pletely. 

III. AXIAL GAUGE 

The gauge freedom is fixed by setting two gauge condi
tions; it makes two first-class constraints, generators of the 
gauge transformation, to be second-class ones. The axial 
gauge is defined by 

XI==nl~l+n2~2=0, (n~+n~=I). (21) 

The condition that X I is conserved in time further requires 

XI = (njaj)~O + (n l j2 - n2jl) = O. (22) 

It is the constraint on ~o [by assuming the inverse of (n . a) 

as in Refs. 1 and 2]; 

X2 = ~o + [lI(n . a)] (n l j2 - n2jl) = O. (23) 

The consistency determines ~o in the Hamiltonian. Now that 
all the four constraints are in the second class and all compo
nents of the gauge field are eliminated, we have (23) and 

0 ..1.1 - n2 • ..1.2 n l • 1T'0= , If' =--Jo, If' =--Jo' 
(n·a) (n·a) 

(24) 

In this choice of gauge, the values of the Dirac brackets coin
cide with those of Poisson brackets for the matter fields. The 
Hamiltonian in this gauge becomes 

2·* = fdx[(n2jl - n1j2) __ l_jo]. (25) 
(n . a) 

The different choice of nj gives a different form of the 
Hamiltonian. In Ref. I, Burnel and Van Der Rest-Jaspers 
proved the equivalence of the different gauges by a formal 
discussion using the current conservation a J1-j J1- = O. We give 
an alternative proof in the Hamiltonian formalism without 
referring to current conservation. By a small change of 
n l = cos 8 and n2 = sin 8, 

(26) 

It never vanishes and 2** itself is actually gauge depen
dent. The point is that the total Hamiltonian, the sum of 
2** and the matter Hamiltonian, is gauge independent. To 
see the gauge dependence of the matter fields we again use 
the starred variables introduced in (20). For the matter field 
,p it is 

,p* =,p - {,p,joH - lI(n . a)] (nl~1 + n2~2). (27) 

Under the change of nj , it is varied as 

8,p* = ie88 ( 1 ( _ a 2~1 + a 1~2»),p 
(n . a)2 

Kiyoshi Kamimura 2138 



                                                                                                                                    

(28) 

The conjugate momentum of '" is varied correspondingly. 
The change of the matter Hamiltonian is 

~JY M = fd 2X a~ ak (ie~() 1 2 jo)", 
aa '" (n . a) 

=fd2X(akA) 1 2j~(}, 
(n· a) 

(29) 

which cancels exactly with (26). Then the total Hamilto
nian is gauge independent. In other words, the change of 
Jrr* is absorbed into the matter Hamiltonian by the rede
finition of phase of the matter fields. The finite transforma
tion is obtained by integrating the infinitesimal ones. For 
example, consider the following transformation: 

'" = eie
(IIf1)

aJtf>J ;Po (30) 

In terms of;P, the matter Hamiltonian is written as 

JY (.")=JY (.")+fdx(a k' )~aln2-a2nl' 
M or M or ]k A (n . a) lo, 

(31) 

and the total Hamiltonian becomes, in the Coulomb gauge, 

JYtot =JYM(;P) + f dx[JI ~2 JO-J2 ~I Jo]. (32) 

It must be noticed that we are still in the axial gauge fixed by 
the constraints (20) and (21), though we have the form of a 
Coulomb gauge Hamiltonian. 

IV. SUMMARY AND DISCUSSIONS 

In this paper we have formulated Hagen model using 
the Dirac formalism. Two second class constraints ap
peared. Although their choice has an ambiguity of additive 
first-class constraints, it causes no physical inequivalence. 
We showed it explicitly for two cases examined in Ref. 1 
using starred variables. We also have given the proof of the 
equivalence of different gauge conditions. The proof of Ref. 
I uses the current conservation and is not within the canoni
cal formalism. In fact, the Hamiltonian Jrr* is not invariant 
by itself but the matter field Hamiltonian must be consid
ered. 

The non-Abelian theory is more interesting. Hagen2 has 
reported the Lorentz noninvariance of the axial gauges. He 
showed it in the Lagrangian formalism and the perturbation 
theory. The formal extension of the canonical formalism to 
non-Abelian theory is straightforward. Especially in the axi-
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al gauge, the non-Abelian nature of the constraint K : disap
pears, 

K: = a 2(J! - a 1(J; + gfabc(J~(J~ + jaa 

= a 2(J! - a I(J; + jaa, (33) 

and all components of the gauge field are solved explicitly as 
in (23) and (24): 

(J~ = [ - lI(n . a)] (nd2a - n2jla)' 

(J! = [-n2 1(n·a)]jaa, (J; = [nl/(n·a)]jaa· (34) 

The Hamiltonian takes the same form as Abelian theory in 
(25): 

~** - f d 2 .[ (. .) I .] t7l - X n2lia - nlha ---lOa' 
(n· a) 

(35) 

The non-Abelian nature appears only in the current commu
tators. 

The formal proofs that the different choices of the sec
ond-class constraints and the gauge-fixing constraints give 
an equivalent result, shown in the previous sections, seem 
valid for the infinitesimal transformations for the non-Abe
lian theory. For the finite transformations, for example, 
from axial gauge to Coulomb gauge, the equivalence is not 
evident due to the noncommutativity of currents. However 
these statements rpust be reexamined from the topological 
discussions of the non-Abelian gauge theory. 6 So far we have 
assumed the existence of (n • a) -I and its partial integra
tion. It is not allowed, however, for the non-Abelian theory 
generally. Even the pure gauge configuration does not mean 
the vanishing of the fields at infinity. It was shown 7 that no 
gauge fixing, Coulomb as well as axial gauges, can be al
lowed for the non-Abelian theories from the topological ar
guments. It will fail the previous formal proofs of equiv
alence and further investigations are required. 
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The construction of four infinite hierarchies of t-independent and t-dependent conserved 
functionals for the F ederbush model is given. A formal proof of the existence of these infinite 
hierarchies is given in Appendix B. 

I. INTRODUCTION 

In a recent paper 1 one of the authors constructed four 
infinite hierarchies of Lie-Backlund transformations of the 
Federbush model.2

•
3 Moreover he computed four creating 

and annihilating local (x,t)-dependent Lie-Backlund trans
formations that lead to these hierarchies. In this paper we 
show that to these four creating Lie-Backlund transforma
tions, we can associate four t-dependent conserved function
also By consequence the attempt to construct recursion4.5 

operators from these creating Lie-Backlund transforma
tions failed since they are Hamiltonian vector fields. By re
cursive action of the Poisson bracket with these functionals 
we construct infinite hierarchies of conserved functionals 
associated to the (x,t)-independent Lie-Backlund transfor
mations. This will be done in Sec. II. In Sec. III we construct 
four new (x,t)-dependent Lie-Backlund transformations 
from which we shall prove the existence of four infinite hier
archies of t-dependent conserved functionals, and conse
quently hierarchies of (x,t)-dependent Lie-Backlund trans
formations ofthe Federbush model. A formal proof is given 
in Appendix B, while a survey of the already known vector 
fields is given in Appendix A. 

We want to stress the fact that all computations have 
been worked out on a DEC-system 20 computer using RE

DUCE6 and a software package7
•
8 to do these calculations. 

Lie-Backlund transformations are vector fields V de
fined on the infinite jet bundle9 of M,N, J 00 (M,N) , where M 
is the space of independent variables and N the space of the 
dependent variables. A Lie-Backlund transformation of a 
differential equation is a vector field V defined on J 00 (M,N) 
satisfying the condition 

!i" v (D 00 I) CD 001, (1.1 ) 

where! denotes a differential ideal associated to the differen
tial equation at hand, while D 001 denotes its infinite prolon
gation to J 00 (M,N);!i" v is the Lie derivative with respect to 
the vector field V (Ref. 9). Since the vector fields V are 
supposed to depend only on a finite number of variables, 
condition (1.1) reduces to 

!i" vIeD 'I for some r. ( 1.2) 

Using this method we computed Lie-Backlund transforma
tion of the Federbush model. 1 

It can be shown that the Lie-Backlund transformations 
in this setting are just symmetries in the works of Magri,4 

Ten Eikelder,4.s and Fuchssteiner and Fokas,lo where (gen
erators of) symmetries of partial differential equations of 
evolutionary type are described as transformations on spe
cial types of infinite dimensional spaces. Suppose that 

du = 0.- 1 dH (1.3) 
dt 

is an infinite dimensional Hamiltonian system, where 0. is 
the symplectic operator, H the Hamiltonian, dB is the Fre
chet derivative of H. Then to each Hamiltonian symmetry 
(also called canonical symmetry) Y, there corresponds by 
definition a Hamiltonian F( Y) such that 

Y = 0. - 1 dF( Y), ( 1.4 ) 

and the Poisson bracket of F and B vanishes. 4.5 Suppose that 
Y1, Y2 are two Hamiltonian symmetries, then [Y1,Y2 ] is a 
Hamiltonian symmetry and 

FC[ Y2, Yd) = {F( Y1 ), F( Y2 )}, ( 1.5) 

where {.,.} is the Poisson bracket defined by 

{F(Y1),F(Y2 )} = (dF(Y1),Y2 ), (1.6) 

where (.,.) denotes the contraction of a one-form and a vec
tor field. These notions shall be used throughout Sec. II and 
III. 

II. CONSERVED FUNCTIONALS FOR THE FEDERBUSH 
MODEL 

We shall discuss conserved functionals for the Feder
bush model. This model is described by 

(
i<a t + ax ) - m (s) ) (tPS.I) 

- m(s) i(at - ax) tPs.2 

=4 :A, (ItP_S.21
2 

tPS.I) 
817: ItP_s.112 tPS.2 (s=±l), (2.1) 

where tPs (x,t) are two-component complex-valued func
tions.3 Suppressing the factor 41T (A.' = 41TA.) and introduc
ing the eight real variables UI,VI,U2,V2,U3,V3,U4,V4 by 

tPl,1 = U I + iv;o 

tPI.2 = U 2 + iv2 , 

tP -II = U 3 + iv3, m( + 1) = m l , 
. (2.2) 

tP _ 1.2 = u4 + iv4 , m ( - 1) = m2, 
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Eq. (2.1) is rewritten as a system of eight nonlinear partial 
differential equations for the functions U\, .•• ,V4; i.e., 

U\t + U\x - m\v2 =AR4v\, 

- V\t - Vtx - m\U2 = AR4u \' 

U2t - U2x - m\v\ = - AR3V2' 

- V2t + V2x - m\u\ = -AR3Uz, 

U3t + U3x - m Zv4 = - ARzv3, 

- V3t - V3x - m 2u4 = - AR2u3, 

U4t - U4x - m2v3 = AR \V4' 

- V4t + V4x - m2u3 =AR IU4, 

where, in (2.3), 

R\ = ui + vi, R2 = u~ + vL 

R3=U~ +vL R 4 =u; +v!. 

(2.3) 

Equation (2.3) can be written as a Hamiltonian system4
•
S 

~ = a-I dH, (2.4) 
dt 

'J 

o 

0= 
J (2.Sa) 

J 

o 
J 

and 

(2.Sb) 

(by f~ 00 we mean integration of the integrand with respect 
to x). In (2.4), dH is the Frechet derivative of H defined by 

~H(x + EY) I = (dH,y). 
dE £=0 

(2.6) 

In a previous paper l we constructed four first-order Lie
Backlund transformations Y 1+' Y ~ I' Y 1-' Y = I (Appen
dix A) that are Hamiltonian4

•
s vector fields; the associated 

Hamiltonian densities are given by 

F( Y t) = - !(U2x V2 - U2V2x ) + (A 14)R34R2 

- !m\ (u\UZ + v\vz), 

F( Y:- I ) = - !(ulxv\ - u\v lx ) + (A 14)R34R I 

+ !m\ (U IU2 + V\V2)' 

F( Y 1-) = - !(U4x V4 - U4V4x ) - (A 14)R\2R4 

- !m 2 (u3u4 + V3V4 ), 

F( Y = I) = - !(U3x V3 - U3V3x ) - (A 14 )R\2R3 

+ !m 2 (u3u4 + V3V4 ), 

(2.7a) 

while the Hamiltonian densities associated to the gauge 
transformations Y 0+ , Y 0- (see Ref. 1 and Appendix A) are 
given by 

F(Yo+) =!(R I +R2), F(Yo ) =!(R3 +R4)· 

(2.7b) 

In (2.7a), R 12, R34 are defined by 

R12 = RI + R z, R34 = R3 + R 4· (2.8) 

(Note that we use F for the density of the conserved func
tional F, so F = f~ 00 F.) The associated Lie-Backlund 
transformations can be derived from (2.7a) by the formula 

Y = a-I dF( y), (2.9) 

and for reasons of completeness they are surveyed in Appen
dix A at the end of this paper. The Hamiltonian densities 
associated with the second-order Lie-Backlund transforma
tions Y 2+, Y:!:2' Y 2-, Y=2 (see Ref. 1 and Appendix A) 
are computed, yielding 

F( Y /) = - !(ut + vix) + (A 12)R34(U2xV2 - U2V2x) 

-!m\(u2x v l -u\V2x ) -iA2R~4R2 

+ !m\AR34 (U IU2 + VIV2) - imiR\2' 

F( Y:!: 2) = - !(uix + vix) + (A 12)R34(UlxVI - u\vtx ) 

+ !m\ (U lx V2 - U2VIX) - iA zR i4R\ 

- !m IAR34 (U\UZ + vIVZ) - !miR\z, (2.10) 

F(Y;) = -!(u;x +v;x) - (A12)RI2(U4xV4-U4V4X) 

- !mZ(u4x v3 - U3V4x) - iA 2R i2R4 

- !m~R\Z(u3U4 + V3V4) - !mi R 34' 
- - 2 2 
F(Y -2) = -!(U3x +V3x) - (AI2)R12(U3xV3-U3V3x) 

+ !mZ(U3xV4 - U4V3x ) - iA 2R i2R3 

+ !m~R\Z(U3U4 - V3V4) - !miR34· 

The Hamiltonian densities associated to the vector fields 
Y 3+' Y:!: 3 (see Ref. 1) are computed to be 

F( Y 3+) = - (U2xx V2x - U2x V2xx ) - AR34(U2xxU2 + V2xx VZ) + (A 12)R34(Ut + vix) - m\ (U lx U2x + Vlx V2x ) 

- ~ ZR;4 (uzxVZ - UZV2x ) + !m\AR34(UlxVZ - U\V2x + U2x VI - UZVlx ) - ami (UlxVI - U\Vlx ) 

- !mi (U2x VZ - UZV2x ) - ami (u\UZ + VIVz) + iA 3R ~4Rz - !m\A 2R i4 (U IU2 + V\Vz) + !miAR34 (R\ + 2R2) 
(2.lla) 

and 
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- 2 2 F(Y ~3) = UlxxVlx - UlxVlxx + ,1,R34(ulxxUI + VlxxV I ) + (A !2)R 34 (U lx + vlx ) - ml(u lx u2x + Vlx V2x ) 

+ a,1, 2R ~4 (UlxV I - UIV lx ) + ~ml,1,R34(ulxv2 - UIV2x + U2x VI - U2Vlx ) + ~mi (utxv I - u\v tx ) 

+ !mi (U2xV2 - U2V2x) - 1m; (U\U2 + V\V2) - iA 3R ~4RI - !ml,1, 2R ~4 (U IU2 + VIV2) - Imi,1,R 34(2R\ + R2)· 
(2.l1b) 

Similar results are obtained for the Hamiltonians associated 
to the Lie-Backlund transformations Y 3- , Y :::. 3 • The vector 
fields Z 0+ , Z 0- (see Ref. 1 and Appendix A) are Hamilton
ian vector fields also, and the associated Hamiltonian densi
ties are 

F(Zo+) =x(F(Y t) -F(Y ~ \)) 

+ t (F( Y 1+ ) + F( Y ~ I )), 

F(Z 0- ) = x(F( Y I" ) - F( Y :::. I ») 

+ I (F( Y :::. I ) + F( Y :::. I »). (2.12) 

Now we arrive at the remarkable fact that the creating and 
annihilating Lie-Backlund transformations Z 1+' Z ~ I , 

Z 1- , Z :::. I' (see Ref. 1 and Appendix A) tum out to be 
Hamiltonian vector fields. The corresponding Hamiltonian 
densities are 

F(Z 1+ ) = x{F( Y 2+ ) - !mi F( Y 0+ )} 

+t{F(Y2+) +!miF(Yo+)}, 

F(Z ~ I ) = x{ - F( Y ~ 2) + ami F( Y 0+ )} 

+ t{F( Y ~2) + !miF( Yo+ )}, 

F(ZI-) =x{F(Y I-) -!m~F(Yo-)} 

+ t{F( Y 2-) + !m~F( Y 0- )}, 

F(Z:::.t> =x{-F(Y:::. 2) +!m~F(Yo)} 

+ t{F( Y :::. 2 ) + !m~ F( Yo)}, (2.13) 

The Hamiltonians F(Z 1+ ), ••• , F(Z :::. I) act as creating and 
annihilating operators on the t-independent Hamiltonians 
F( Y ~ 3 ), ••• , F( Y 3+ ), F( Y :::. 3 ), ••• , F( Y 3- ) by the action of 
the Poisson bracket (1.6), for example, 

{F(Z t), F( Yo+)} = 0, 

{F(Zt),F(Y~I)}=!mi{!RI +~2}=!mi F(Yo+), 
(2.14) 

{F(ZI+),F(Yt)}= -F(Yt), 

and similar results for F(Z ~ I)' F(Z 1-)' F(Z :::. I)' SO the 
Hamiltonians F(Z t ), ... ,F(Z :::. I) generate four hierar
chies of (probably commuting I-independent) Hamilto
nians 

F(Y~i) (i=0,1, ... ). (2.15 ) 

Note that due to results described in Sec. III, we are more 
likely to consider 

... ,F( Y ~ 3 ), ••• ,F( Y 0+ ), •.. ,F( Y 3+ ),... (2.16a) 

and 

... ,F( Y:::. 3 ), ••• ,F( Y 0- ), ••• ,F( Y 3- ), ••• 

as two hierarchies instead of four. 
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(2.16b) 

I 
III. INFINITE HIERARCHIES OF (x,t)-DEPENDENT LIE
BACKLUND TRANSFORMATIONS AND THEIR 
ASSOCIATED HAMILTONIANS 

In this section we shall prove by construction the exis
tence of infinite hierarchies of (x,t)-dependent Lie-Back
lund transformations 

Z 0+ ,Z t ,Z t ,z 3+ = [Z t ,Z 2+ ] , ••• , 

Since the Lie algebra of Lie-Backlund transformations is a 
direct sum of two Lie algebras, I we shall restrict our consid
erations from now on to the" + " part. First of all we con
struct the vector fields Z t , Z ~ 2 (cf. Table I). Second, we 
prove that [Z 1+ ,Z 2+] is independent of Z 0+ , Z t , Z t , 
and by an induction argument we obtain an infinite hierar
chy. The same arguments apply to the other hierarchies. 
Moreover we shall prove that the vector fields Z ~ i are Ha
miltonian vector fields, and the associated Hamiltonian den
sities are given. 

Motivated by the result of Z 0+ , Z t , Z ~ I (Ref. 1) we 
search for a local (x,/)-dependent Lie-Backlund transfor
mation, linear in x,t and of degree 4. The structure of such a 
Lie-Backlund transformation has to be 

X C=~3 aim;-lily/ ) + t C=~ 3 Pim;-lily/ ) + C, 

(3.2) 

where, in (3.2), ai,Pi (i = - 3, ... ,3) are constants and Cis 
(X,/) independent of degree 4. Eventually, after a huge com
putation, we obtained two Lie-Backlund transformations 

Z2+ =x(Y3+ +!miYt) +/(Y3+ -!miYt) +C 2+, 

Z ~ 2 = X ( - Y ~ 3 + !mi Y ~ I ) 

+/(Y~3 +!miY~I) +C~2' 
where, in (3.3), 

TABLE I. The Lie-algebraic picture of the Federbush model. 

Y,+ Y; 
Z2+ Y+ 

2 Y-2 I 
Z2-

Z+ Y+ Y
1
- Z-

1 1 I 1 

Zo+ - _I - Yo+- - -Yo- _1- - - Z-
I 0 

Z+ 1 Y+ Y- I Z-
-\ I 

-\ -I -I 

Z+ Y+ Y- I Z-
-2 -2 -2 -2 

Y+ 
-3 Y--3 

I 

P. H. M. Kersten and H. M. M. Ten Eikelder 

(3.3) 

deg = 6 
deg=4 
deg= 2 
deg=O 
deg=2 
deg =4 
deg=6 
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C 2+'u, = Am t( - 2V2x -AR34U2 + mtUt), 
C t ,VI = Am t ( - 2u2x - AR34V2 + mtVt), 

C 2+'u, = ~(- 4u2xx + 4AR34V2x + U(R34)xV2 - 2m tvtx 
(3.4a) 

c t ,V, = ~( - 4v2xx - 4AR34U2x - U(R34)xU2 + 2mtuIx 

+ A 2R ;4V2 - mtAR34Vt + miv2), 

c 2+,u, = (AI3)v~t, ct,v,= - (A!2)U~2+' 

ct,u<= (A!2)v4L 2+, ct,v<= - (A 12)u4Lt, 

and 

C "!:.iu, = ~( - 4u txx + 4AR34Vtx + U(R34)xVt + 2m tv2x 

+ A 2R ;4Ut + mtAR34u2 + miut), 

C "!:.~I = ~(- 4vtxx - 4AR34Utx - U(R34)xUt - 2mtu2x 

+A 2R ;4Vt + mtAR34v2 + mivt), 
C"!:. iU' = Amt (2v tx + AR34Ut + mtU2), 

C "!:.~, = Am t ( - 2u tx + AR34Vt + mtV2)' 

A C + ,v, - U L + 
-2 - -2 3 -2' 

(3.4b) 

c "!:. iU< = (A 12)v4L "!:. 2' 

while 

C"!:.~<= -(AI2)u4L"!:.2' 

L t = 2U2x U2 + 2V2x V2 - mt(u tV2 - u2vt ), 
(3.4c) 

L "!:.2 = 2utxut + 2vlx vt - mt(u tv2 - U2Vt)· 

Remarkably, the vector fields Z 2+ , Z "!:. 2 are again Hamil
tonian vector fields, and the associated Hamiltonian densi
ties are computed to be 

F(Zt) =x(F(Y3+) +!miF(Yt»)+t(F(Y3+) 
2 -- !mIF( Y t») - (A 12)R34(U2U2x + V2V2x ) 

+ (AI4)mtR34(UtV2 - u2vt ) - !m t(UtU2x 

(3.Sa) 

and 
F(Z "!:. 2) = x( - F( Y "!:. 3 ) + !mi F( Y "!:. t ») + t (F( Y "!:. 3 ) 

2-
+!mIF(Y"!:.t»- (AI2)R 34 (U tUIx +VtVlx ) 

+ (AI4)mtR34(UtV2 - U2Vt) -!m t(u tu2x 

Yo+ = -vlau, +ulaV, -V2 au, +u2av" 

(3.Sb) , 

Obviously, similar results will hold for vector fields Z 2- , 

Z = 2 and their associated Hamiltonian densities. A formal 
proof of the existence of infinite hierarchies of t-dependent 
Hamiltonians and corresponding Lie-Backlund transforma
tions is given in Appendix B by application of Lemma 1. 

Finally we computed the action of the vector fields Z t 
on the hierarchy (Y / ) ieZ by a calculation of the Poisson 
bracket of the associated Hamiltonians, which resulted in 

{F(Z 2+)' F( Y"!:. 2)} = -lm~F( Y o+), 

{F(Z "!:.2),F(Y2+)} = -!m~F(Yo+), 
{F(Z 2+)' F( Y"!:.I)} = - !miF( Y I+), (3.6) 

{F(Z"!:.2), F( Yt)} = -!miF(Y"!:.I)' 

{ F(Z t ), F( Y 0+ )} = 0, { F(Z "!:. 2 ), F( Y 0+ )} = 0, 

while the action on the F(Z ;+ ) ieZ hierarchy is 

{F(Zt),F(Z"!:.I)}= -~miF(Zt), 

{F(Z"!:.2),F(Z!I)}= -~miF(Z"!:.), (3.7) 

{F(Z t), F(Z"!:.2)} = - m~F(Zo+), 

a result which is twice the action of Z ~ I , being similar to the 
result obtained by Ten Eikelderll for the massive Thirring 
model. 

IV. CONCLUSION 

We obtained four infinite hierarchies of (x,t)-indepen
dent Lie-Backlund transformations and four infinite hierar
chies of (x,t)-dependent Lie-Backlund transformations, 
which are all Hamiltonian vector fields. The corresponding 
densities are given. 

ACKNOWLEDGMENTS 

The authors wish to thank Professor R. Martini and Pro
fessor J. de Graaffor stimulating this joint research. 

APPENDIX A: LIE-BACKLUND TRANSFORMATIONS OF 
THE FEDERBUSH MODEL 

We summarize the Lie-Backlund transformations ob
tained in Ref. 1, only giving the" + "part, Y 0+ , Y t , Y ~ 2' 

Z 0+ , Z ~ + , i.e., 

Y t = !m lv2 au, - !m lu2 av, + !(2u2x + mlv) - Av2(R 34 »)au, + !(2v2x - m)ul + AU2(R34»)av, 

- (A 12)V3R2 au, + (A 12)u3R2 av, - (A 12)v4R 2 au. + (A 12)u4R2 av., 

Y"!:. I = !(2ulx - m lv2 - AVI (R 34 »)au, + !(2vlx + m lu2 + AU) (R34 »)av, - !mlv) au, + !mlu) av, 

- (A 12)v3R I au, + (A 12)u3R I av, - (A 12)v4R) au. + (A 12)u4R I av<' 

Y 2+'u, = !ml{ + 2u2x -AV~34 + mlv)}, y 2+,v l =!m l{ + 2V2x + AU2R34 - mlul}' 
Y 2+ ,u, =!{ - 4V2xx - UU2(R 34 )x - 4AU2x R 34 + 2m)ulx - Amlv)R34 + A 2V2R;4 + m;v2}, 

y/,v'=a{+ 4U2xx - Uv2(R34 )x -4AV2xR34+2mlvlx +Amlu)R34-A2u2Ri4 +m;u2}, 

Y / ,u, = (A 12)V3K 2+' Y 2+ ,V, = - (A 12)u~ 2+' Y 2+ ,u< = (A 12)v~ 2+, Y 2+ ,v< = - (A 12)u
1
K t , 

where 
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K / = - 2ulx vi + 2U IVIx + m l (U IU2 + VIV2) + AR IR 34, 

Y~:t'=H-4vlxx -Uul(R 34 )x -4AulxR34-2ml~ +AmIV2R34+A2VIR;4 +m~vJ, 

Y ~ f' =!{ + 4ulxx - UV I (R 34 )x - 4AvlxR34 - 2ml~ - AmlU2R34 - A 2UIR;4 - m~ul}' 

Y ~ iU ' = !m l{ - 2ulx + AVIR34 + m lv2}, Y~ f' = !m l{ - 2vlx - Au IR 34 - mlu2}' 

Y~iuJ= (A/2)V3K~2' Y~fJ= - (A/2)U3K~2' Y~iu,= (A/2)V4K~2' Y~f'= - (A/2)U4K~2' 

where 

K ~2 = - 2ulx vi + 2U lVIx + m l(u lu2 + VIV2) +AR IR 34, 

while the (x,t)-dependent Lie-Backlund transformations are given by 

Zo+ =x(Yt - Y~I) +t(Yt + Y~I) +!( -ulau, -vlav, +U2au, +v2aV)' 

ZI+ =x( + Y 2+ -!m~Yo+) +t( + Y 2+ +!miYo+) +!( -2V2x +mlul-Au2R34)au, 

+!( + 2u2x + miv i - AV2R34)av" 

Z:I =x( - Y:2 -!miYo+) + t( + Y: 2 +!miYo+) +!( +2vlx +mlu2 + AuIR 34 )au, 

+!( - 2ulx + m lv2 - AvIR 34 )av" 

Y 3+ = [Zt'Y2+]' Y~3 = [Z~i'Y~d· 

Similar results have been obtained for the" - " part. I 

APPENDIX B: THE INFINITY OF THE HIERARCHIES 

We shall prove a lemma from which the existence ofinfi-
nite hierarchies of Hamiltonians 

F(Yo+ ),F(Yt ),F(Y/ ), ... , 

F( Yo+ ), F( Y ~ I)' F( Y ~ 2 ), ... , 
(Bl) 

F(Z 0+ ), F(Z 1+ ), F(Z 2+ ), ... , 

F(Zo+), F(Z ~ I)' F(Z ~2 ), ... , 

and their associated Lie-Backlund transformations 

YO+,Yt'Y~2'"'' ZO+,Z~I'Z/,,,,, (B2) 

immediately follow. In this lemma the lower indices of u, v 
refer to partial derivatives with respect to x (i.e., U I = ux ' 

U2 = uxx ,"')' 

Lemma: Let H" (u,v), K" (u,v), H" (u,v), and K" (u,v) 
be defined by 

H" (u,v) = I: '" (u~ + ~), 

K,,(u,v) = I:", (U,,+IVn -V,,+IU,,), 

Hn (u,v) = I: '" x(u~ + ~), 

K(u,v) = I:", X(Un+ I v" - Vn + I u,,), 

and define the Poisson bracket of F and L { F,L} by 

{F,L} =J'" (+ 8F 8L _ 8F 8L), 
- '" 8v 8u 8u 8v 

then the following results hold 

{HI,H,,} = + 4nK", 

{HI,K,,} = + 2(2n + l)H,,+ i' 

{HIP,,} = + 4(n -l)K", 
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(B3) 

(B4) 

(B5a) 

(B5b) 

(B5c) 

(B5d) 

Proof We shall prove relations (B5a) and (B5c) (the 
other proofs run along the same lines): 

8H" 8H" 
Tu= (-1)"2u2", &= (-1)"2v2n' (B6a) 

8H 8H 
8u" = ( - l)"2(xu" )("1, 8v" = ( - l)(")2(xv" )(n). 

(B6b) 

Substitution of (B6a) and (B6b) into (B4) yields 

{HI,Hn} 

= - I:", 4( - l)"u2n (xvl)(I) - 4( - 1 )"v2n (xu 1)(1) 

= 4( - 1 )2"f'" (xv )(")u - (xu )(,,)v I ,,+ I I ,,+ I 
- '" 

= +4nI:", V"U,,+I -U"V,,+I = +4nK", 

which proves relation (B5a). Substitution of (B6b) into 
(2.4) yields 

{HIP,,} = - I:", 4( - 1 )"(xvi )(I)(xu" ) (,,) 

_ 4( - l)"(xu l )(I)(xv" )(") 

= 4( - 1)"( -l)"I: '" (XVI)(")(xu" )(1) 

- (xul)(")(xv" )(1) 

= +4(n-1)J:", X(U"+IV,, -U"V,,+I) 

= + 4(n - l)K", 

which proves relation (B5c). This existence of infinite hierar
chies H ( Y ~ j) now follows from the explicit structure of 
H(Z ~ I ) [Eq. (2.12)] andH( Y ~ I) [Eq. (2.6)] by consid-
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ering the (A.,m\Omz)-independent parts and application of 
part a and b of this Lemma. The existence of the infinite hier
archies H(Z ~,,) follows from a similar argument using 
Hm (u,v),K" (u,v). 
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"Twist," which is necessary to remove awkward signs in the commutator of vertex operators, is 
explicitly constructed with string momenta for simply laced groups. For different embeddings of 
roots into Euclidean spaces as well as for roots in nonorthogonal space, existence and 
construction of "twist" are shown in detail. 

I. INTRODUCTION 

Recently, the superstring theories) have received much 
attention for cancellation of gravitational and gauge anoma
lies2 and for good quantum properties.3 The fundamental 
object in string theories is the vertex operator in the emission 
of tachyon, Yang-Mills particles, and so on. 

The vertex operators are known to satisfy the affine 
Kac-Moody algebra if the momenta in the vertex operators 
lie in the root spaces of simply laced groups (A n' D n , E6 , E7, 

and ES).4-6 Such momenta can be realized if the string is 
compactified to an appropriate torus. 

In construction of affine Kac-Moody algebras by using 
vertex operators, there appears an awkward sign in commu
tators. Frenkel and Kac4 have shown that the introduction 
of "twist" for generators of affine Kac-Moody algebras re
solves this sign problem. 

Two different constructions of "twist" are available. 
One is to use the Dirac r-algebra. Such "twist" has been 
constructed in Ref. 6. However, the r-algebra is foreign to 
the bosonic string theories. The other is to use the center-of
mass momentum operator of string theories. Such "twists" 
have been constructed in Ref. 7 for the An' D n' and Es 
groups. 

In this paper, we study the general form and properties 
of "twist" using the center-of-mass momentum operator of 
string theories, and construct "twists" for all simply laced 
groups, including E6 and E7• For different embeddings of 
roots into Euclidean spaces as well as for roots in nonortho
gonal space, the existence and the construction of "twist" are 
shown in detail. 

II. A SHORT REVIEW OF THE VERTEX OPERATOR1
•
6 

The vertex operator in string theories is 

V(r,O) = :exp[ir'Q(O)]: 

= exp[ir· Q< (0) ]exp[ir· (q + pO)] 

X exp [ir • Q> (0)], (1) 

where rand O( = 7" + u or 7" - u) are the momentum and 
the light-cone coordinate of a two-dimensional world sheet, 
respectively. The string coordinates QI"(O) (J.l = 1,2, ... ,d) 
are expanded as 

where a ~, a ~ + , q 1", and p I" satisfy the following Hermitian 
condition and commutation relations: 

a~+ =al"_n, (3) 

[a ~,a~] = mOm + n.ogI"V, (4a) 

[ql",pV] = igl"V, (4b) 

with Euclidean metric gl"V - (1,1'00.,1). The Q~ (e) and 
Q ~ (0) contain destruction and creation oscillators, respec
tively, as 

00 1 . 
Q~(O)=iL _a~e-Inll, 

n=) n 
(5a) 

00 1 . 
Q~ (0) = -i L -al"_nelnll. 

n=) n 
(5b) 

The momentum r in Eq. (1) is arbitrary for tachyonic 
emission vertex in the Veneziano model. However, when the 
d-dimensional string is compactified into a torus,s the al
lowed momenta are restricted. In this paper, we concentrate 
on compactifications where the allowed momenta satisfy 

(6) 

r's = - 1, ifr + S is a root. (7) 

We deal with cases where these momenta form a root space 
of a simply laced group. 

The product of two vertex operators with momenta r 
and s is rewritten as a normal ordered product: 

V(r,O) V(s,O') 

= [(e(i/2)(1I'-II»/(1_ei(II'-II»] -r·. 

X :exp[i{r' Q(O) + s· Q(O ')}]: . (8) 

The c-number coefficient in the right-hand side of Eq. (8) is 
computed by using 

~eB = ~~e[A,Bl, 

~eB = eA + Be< 112)[A.B I, 

(9a) 

(9b) 

where [A,B] is a c-number. Note that product 
V(s,O') V(r,O) of two vertex operators in reverse order is 

V(s,O') V(r,O) = ( - 1)r··V(r,O) V(s,O '). (10) 

The (anti)commutator of two vertex operators for distinct 
points ° and ° ' in the world sheet should vanish. This moti
vates an additional sign ( - 1) r·. in the definition of an (an
ti)commutator as 
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[ V(r,O),V(s,O)} 

= V(r,O)V(s,O') - (_l)r·"V(s,O')V(r,O). (11) 

The coefficient in Eq. (8) blows up for 0' = 0 for 
r • s < O. To handle such singularities, we take limit 0'-0 for 
r's<O in obtaining the (anti)commutator (11). The rel
evant (anti)commutators for simply laced groups are 

r' s~O, [V(r,O),V(s,O')} = 0, (12a) 

r's = - I, 

{V(r,O),V(s,O')} = 21T~(0 - 0') VCr + s,O), (12b) 

r's = - 2, 

[V(r,O),V(s,O')] = 21Ti~'(0 - 0') 

+ 21T~(0 - 0 ')r' p. (12c) 

The (anti)commutator in Eq. (11) is dependent on O. 
To obtain a O-independent algebra, one takes the Laurent 
expansion. It is more convenient to rewrite the vertex opera
tor in z = e

jfJ as 

VertZ) =exp[ir'Q< (z)]exp[ir'q+r'plnz] 

xexp[ir'Q> (z)], (13) 

which is singular at z = O. The coefficient in the Laurent 
expansion is 

Vn (r) = ~,( dz znV(r,z), 
2m 10 z 

(14) 

where the contour is taken around z = O. The Vn (r) forms 
an affine Kac-Moody algebra with a ( - 1)"· factor as in 
Eq. (11) (see Refs. 4-6). 

III. GENERAL PROPERTIES OF TWISf4,8 

To obtain the commutator in standard form, one intro
duces "twist" C(r) such that 

[C(r) V(r,z),C(s) V(s,z')] 

= E(r,s)C(r + s)(V(r,z) V(s,z') 

- ( - 1)r··v(s,z') V(r,z», (15) 

where 

C(r) V(r,z)C(s) V(s,z') = E(r,s)C(r + s) VertZ) V(s,z'). 
(16) 

From the associative law for Eq. (16), E satisfies the follow
ing two-cocycle condition: 

E(r,s)E(r + s,t) = E(r,s + t)E(S,t). (17) 

A "twist" C(r) can be constructed by using the y-matrix 
with the property6 

C(r)C(s) = ( - 1 )r'O+ r's'C(s)C(r). (IS) 

The C(r) formed the y-matrix commutes with the vertex 
operator. However, the y-matrix is not present in the bosonic 
string theories and should be introduced from outside. In 
this paper, we take an alternative method, where C(r) does 
not commute with vertex operator. A priori, C(r) can con
tain p, an' and a _ n' But the phase factor obtained from 
"twists" with an and a _ n will necessarily include az-depen
dent term, which does not agree with a z-independent 
(-1)"'. ThusC(r) containsonlythep-operator. 
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Equation (15) gives 

E(s,r) = ( - 1)r'"E(r,s), 

E(r,O) = E(O,r) = C(O). 

(19) 

(20) 

In our construction, we require that two-cocycle E(r,s) be a 
c-number. This requirement gives the linear property to both 
"twist" and two-cocycle: 

C(r + s) = C(r)C(s), 

E(r,s + t) = E(r,s)E(r,t), 

E(r + s,t) = E(r,t)E(s,t). 

We normalize "twist" and two-cocycle as 

C(O) = 1, 

E(r,O) = 1, 

E(r, - r) = 1. 

(21) 

(22a) 

(22b) 

(23) 

(24) 

(25) 

From these properties, we obtain the following form for 
"twist" and two-cocycle: 

(26) 

E(r,s) = exp[ - i1T(sTAr)], (27) 

with antisymmetric matrix A. Then Eq. (19) becomes 

L rjsj (N
j 
- Aij) = r' s (mod 2). 

i,j 

(28) 

The final equation (28) gives an even-integer lattice condi
tion for roots 

(29) 

(30) 

This even-integer lattice condition is satisfied for simply 
laced groups with Eqs. (6) and (7). For convenience, we 
define a phase K as 

K(r,s;A) = L rjsj (Nj - Aij), 
i.j 

with antisymmetric matrix A. 

(31) 

The root system ofrankL can be embedded in N-dimen
sional Euclidean space (N~L). For construction of the 
phase K(r,s;A) in Eq. (28), the relevant quantity is 
(Sj rj - rjsj ) A ij. While one can take L C2 equations for L C2 

independent choices of r and s in Eq. (28), there are N C2 

independent matrix elements for antisymmetric A. Since N 
is greater than or equal to L, A always can be constructed 
regardless of particular embeddings of roots in N-dimen
sional Euclidean space. 

IV. EXPLICIT CONSTRUCTION OF "TWISTS" FOR 
SIMPLY LACED GROUPS 

The explicit form of C(r) for a simply laced group de
pends on the representation of roots. First, let us consider an 
oblique system. As bases, one can take simple roots that are 
nonorthogonal. For simply laced groups, indices are raised 
or lowered with Cartan matrix A ij or its inverse, respective
ly. The explicit solutions of NJ for Eq. (28) are given as 
follows9

: 
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for An' 

a -1 a a a '" 

1 0 -1 0 a ... 
1 0 1 0 -1 0 '" 

A=-
0 (32) 2 0 1 0 -1 
0 0 0 1 a ... 

forD", 

0 -1 a a a ... 0 a a 
0 -1 a a ... 0 0 0 

0 1 0 -1 0 ... 0 a 0 
0 a 0 -1 0 0 0 

1 0 a 0 0 ... 0 0 0 A=- (33) 2 ... ... ... .., 
... .., ... 

0 0 0 a 0 .. , 0 -1 -1 
0 0 a 0 a .. , 1 0 0 
0 0 a 0 a ... 1 0 0 

for E6, 

a -1 a a a a 
1 a -1 0 0 a 

1 0 1 0 -1 a -1 (34) A=-
2 0 0 1 a -1 0 

0 0 0 1 a 0 
0 0 0 0 0 

for E7, 

0 -1 0 0 0 0 0 
0 - 1 0 0 0 0 

0 0 -1 0 0 -1 
1 

A=- 0 0 1 0 -1 0 0 (35) 
2 

0 0 0 1 0 -1 0 

0 a 0 a 1 0 0 

0 0 a 0 0 0 

and for Eg, 

0 -1 0 0 a 0 0 0 

1 0 -1 0 a 0 a 0 
0 0 -1 0 a a -1 

1 a a a -1 a 0 0 
(36) A=-

0 0 0 1 a -1 a 0 2 
0 0 0 a 1 0 -1 0 
0 0 0 0 a a a 
0 0 0 0 a a a 
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Second, let us deal with embedding of roots into Euclid
ean space. If all the coefficients in expansion of roots in Eu
clidean bases are integers, we can obtain easily a form of A by 
putting 

Aij - Ni = 1 (mod 2), 1 <J=I=j<,N. (37) 

The proof of this is 

K(r,8;A) = L risj (Ni - Aij) 
j.j 

= L r/sj (mod 2) 
j~J 

= (~ri)(~:SJ) - r· 8 

= (~ r; )( t sf) + r • 8 (mod 2) 

= r· 8 (mod 2), 

where r2 = 82 = 2 is used for the last equation. 
For An and Dn, we can have the following representa

tion of roots in Euclidean bases with integer coefficients: 

An: r = ei - ej, 1 <,i=l=j<,n + 1, 

Dn: r = ± ei ± ej, 1 <,i=l=j<,n, 

where e i is an orthogonal unit vector. For this representation 
of roots, we choose a form of A as 

0 -1 1 -1 -1 
0 -1 -1 -1 -1 -1 

-1 0 -1 -1 -1 -1 

1 1 1 0 -1 -1 -1 
A=-

0 -1 -1 2 -1 

1 1 0 -1 
-1 1 

1 

Another convenient representation of roots for E6, E7, 

and Eg is given as 

rg =!( - 2el - 2e2 - 2e3 + e4 + es + e6 + e7 + eg + e9 ), 

(44) 

with r i in the same form as in Eq. (41). For the choice (44), 

Aij - Ni = 9 (mod 18), 1 <,i =l=j<, 9, (45) 

satisfies Eq. (28). More generally if the coefficients of roots r 
and 8 in Euclidean bases are given as 

ri =N;ln 

and 

Si =M;lm, 

with N,M integers and n,m odd integers, 

Aij - Ni = nm (mod 2nm), i=l=j, 

gives 
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(46a) 

(46b) 

(47) 

0 

0 -1 -1 -1 
0 -1 -1 

1 1 0 -1 (38) A=-
2 1 1 0 

Then the explicit form of twists C(ej ) for an unit vector e j is 

C(el ) = exp[i(1T12){( PI + P2 + ... + Pi-I) 

-(PI+I+"'+PN)}]' (39) 

In the cases of E6, E7, and Eg, we cannot have integer 
coefficients for all roots in expansion by Euclidean bases. 
The following representations for simple roots are one of the 
convenient choices: 

E6: r = rl,r2,r3,r4,rS,rg, 

E7: r = rl,r2,r3,r4,rS,r6,rg, 

Eg: r = rl,r2,r3,r4,rS,r6,r7,rg, 

where 

r l =ei -el + l , i= 1,2, ... ,7 

and 

(40a) 

(40b) 

(40c) 

(41) 

rg =!( - e l - e2 - e3 + e4 + es + e6 + e7 + eg). (42) 

The following form is one of the convenient choices of A 
satisfying Eq. (28) for E6 , E7, and Eg: 

-1 
-1 
-1 

-1 
-1 

-1 
-1 

0 

K(r,8;A) = L risj(Ni 
- Aij) 

i,j 

= LNiMj (mod2) 
l'I'j 

= (~Ni)(tMj) -N·M 

= (~N;)(tMJ) + N·M (mod 2) 

= r· 8 (mod 2). 

This completes the proof for the solution (45). 
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For a class of Hamiltonian systems there exist infinite series of non-Hamiltonian symmetries. 
Some properties of these series are illustrated using a Boussinesq equation. It is shown that the 
recursion operators generated by these non-Hamiltonian symmetries are powers ofthe original 
recursion operator. A class of recursion formulas for the constants of the motion (not for the 
corresponding symmetries!) is given. 

I. INTRODUCTION 

For a certain class of Hamiltonian systems there exist 
so-called recursion operators for symmetries. Repeated ap
plication of such a recursion operator yields a series of sym
metries. Often it is possible to construct in this way infinite 
series of Hamiltonian symmetries (corresponding to con
stants of the motion) and infinite series of non-Hamiltonian 
symmetries. The most well-known example is the 
Korteweg-de Vries equation, where the Lenard operator 
generates an infinite series of Hamiltonian symmetries and 
an infinite series of non-Hamiltonian symmetries. In this pa
per we use a Boussinesq equation to illustrate some proper
ties of these series, in particular the series of non-Hamilto
nian symmetries. Similar results can be obtained for various 
other equations, see Ten Eikelder.I,2 In this paper we work 
within the framework of differential geometry. For defini
tions of various concepts (symmetry, recursion operator for 
symmetries, etc.) see, for instance, Ref. 2, where also nota
tions and conventions are given. 

II. SYMMETRIES OF A BOUSSINESQ EQUATION 

We study a Boussinesq equation of the form 

v, =wx ' 

w, = vVx + AVxxx ' 
- 00 <x < 00, t>O. (1) 

We consider (1) as an evolution equation in a topological 
vector space 'lr of pairs of smooth functions (v,w), which 
decay, together with their x derivatives, sufficiently fast for 
Ixl~oo. The spaces 'lr and 'lr* are constructed such that I 

Three infinite series of symmetries now can be defined by 

X k = AkXO' Yk = Akyo, Zk = AkZo, k = 0,1,2, .... 

It is shown by Fokas and Anderson4 that the Nijenhuis ten
sor of A vanishes (in their terminology, A is a hereditary 
symmetry). So for all vector fields A we have 2' AA A 

their duality map (.,.) is the L2 inner product. A possible 
choice is 'lr = .Y p X.Y p and 'lr* = ~ p X ~ p' where the 
function spaces .Y p and ~ p are described in Ref. 1. In terms 
of u = (v,w)e'lr we can write (1) as 

u =X(u) (U(t) = :t U(t»). 

A Hamiltonian form of ( 1) is well known. Let the function 
(functional) Fo on 'lr be given by 

Fo = f'" (..!.. v3 
- ..!.. AV! +..!.. w2)dX 

-'" 6 2 2 
and let the symplectic form 0 on 'lr be (represented by the 
linear mapping 0: 'lr ~'lr*) given by 

O=(a~1 a~). 
Then the vector field X can be written as X = 0 -I dFo 
(d = exterior derivative), so (1) is a Hamiltonian system. 

The invariance of ( 1) for translations along the t and x 
axis and for a scale transformation yields the following ele
mentary symmetries: 

Xo=X= ( Wx ), 
vVx + AVxxx (2) 

(
Vx ) (2V + xv", ) 

Yo = , Zo = 3 + 2tXo· 
Wx w+xwx 

A recursion operator for symmetries of ( 1 ), written in terms 
of the "coordinates" of a modified Boussinesq equation, has 
been given by Fordy and Gibbons.3 In terms of the "original 
coordinates" v and w this operator reads 

L A2' A A (2' A = Lie derivative in direction of A). This 
also can be verified by a straightforward computation. 

LetA andBbe vector fields on Ysuch that 2' AA = aA 
and .!f BA = bA for a,heR. Define Ak = AkA and Bk 
= AkB, for k = 0,1,2, .... Using the fact that the Nijenhuis 
tensor of A vanishes, it is easily shown (see, for instance, Ref. 
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2) that the Lie bracket [Ak,BI ] is given by 

[Ak,Bd =iaBk+l-kbAk+I+Ak+/[A,Bj. (3) 

A simple computation shows that 

.2" Xo A = 0, .2" Y" A = 0, .2" z" A = 3A, ( 4 ) 

[Xo,Yo] = 0, [Zo,xo] = 2Xo, [Zo,Yo] = Yo' 

Substitution in (3) yields that the only non vanishing Lie 
brackets between the elements of the series X k' Yk , and Z k 

are given by 

[Zk,Xd = (3/+2)Xk+ l , [Zk,Ytl = (3/+ l)Yk + l , 

[Zk,Ztl = 3(1- k)Zk+ I' (5) 

Since the Nijenhuis tensor of A vanishes, it immediately fol
lows that 

.2" X k A = 0, .2" Yk A = 0, .2" Zk A = 3A k + I, 

k = 0,1,2, .... (6) 

The first relation corresponds to the well-known fact that A 
is also a recursion operator for symmetries of the "higher
order Boussinesq equations" II = X k' The second relation 
shows that A is also a recursion operator for the equations 
11= Yk • 

Next we discuss some properties of the series of symme
tries Z k' For every non-Hamiltonian symmetry Z a nonvan
ishing recursion operator for symmetries is given by 
n - 1.2" Z n. If Z is a Hamiltonian symmetry this expression 
yields ° [because .2" zn = d(nZ) = 0]. Note that the re
cursion operators obtained in this way are always the prod
uct of a canonical operator n - I (also called Hamiltonian 
operator or implectic operator) and a closed operator 
.2" Z (n) (also called symplectic operator). Most interesting 
recursion operators have such a factorization, see, for in
stance, MagrV Fuchssteiner and Fokas,6 or Gel'fand and 
Dorfman. 7 In Ref. 2, we computed recursion operators for 
the massive Thirring model by this method. 

The symmetries Zo and ZI turn out to be non-Hamilto
nian. The corresponding recursion operators are found to be 

n -I .2" z" n = 31 (l = identity mapping: rr ---+ rr), 
n- l .2"z,n=6A. (7) 

So the recursion operator A can be reconstructed from the 
symmetry ZI' From (6) and (7) it is easily shown by induc
tion that 

.2"~,n=3k(k+1)!nA\ k=0,1,2,.... (8) 

Since the Lie derivatives and the exterior derivative com
mute, this relation yields a very simple proof of the well
known fact that all the two-forms nA k are closed. This prop
erty implies that 

LZkn=dcnZk) =dcnAkZo) = .2"zo(nAk) 

= (.2" z"n)Ak + n.2" Zo (Ak) = (3k + 3)nAk #0, 

k=0,1,2,.... (9) 

Thus we have proved that all the symmetries Zk are non
Hamiltonian and that the corresponding recursion opera
tors are powers of A (up to a multiplicative constant). 

Because Xo is a Hamiltonian symmetry .2" Xo n = 0. A 
simple computation shows that Yo = n -I dGo with 
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Go = S': 00 vw dx, so Yo is also a Hamiltonian symmetry. A 
computation similar to (9) shows that all the symmetries 
X k , Yk (k = 0,1,2, ... ) are Hamiltonian vector fields, i.e., 
there exist two series of constants of the motion Fk and G

k 

such that 

X k =n-IdFk, Yk =n-IdGk, k=0,1,2,.... (10) 

The corresponding symmetries commute, so all these con
stants of the motion are in involution. The existence of the 
series Fk is a standard property in this case, see, for instance, 
Ref. 6. It follows from (10) that 

nAkX = dFk, 

which can be considered as "pre-Hamiltonian" forms for 
X = Xo. The original Hamiltonian form is obtained for 
k = 0, while formally k = - 1 with F -I = S", 00 !w dx 
yields the second Hamiltonian form of the Boussinesq equa
tion. 

We now give a class of recursion formulas for the con
stants of the motion Fk and Gk • The Hamiltonian vector 
field corresponding to the function .2" z,Fk on rr is 

n -I d.2" z,Fk = n -1.2" z, dFk 

= .2" z, (n -I dFk ) - (.2" z,n -I )dFk 

= [ZI,xk] + n- I (.2" z,n)n -I dFk 

= (3k + 2)Xk+ 1 + (31 + 3)AIX k 

= (3k + 31 + 5)n- 1 dFk+ I' 

where we used (5) and (9). This yields the recursion formu
las 

F - 1 .2" F - 1 (d ) 
k + I - 3k + 31 + 5 z, k 3k + 31 + 5 Fk ,ZI . 

(11 ) 

In a similar way we get 

G - 1 .2"G 
k + I - 3k + 31 + 4 z, k 

1 (dG Z) 
3k + 31 + 4 k' I . 

(12) 
Note that in these recursion formulas it is not necessary to 
reconstruct a functional from its derivatives. The part of ZI 
with "coefficient" t is 2XI [see (2)], so this term can be 
omitted in (11) and (12). 

The symmetry ZI is given by 

where 

ZI.I = 12vw + 2wx a -IV + 2vx a -Iw 

+ 40Awxx + x(4(vw)x + 8Awxxx )' 

ZI.2 = 4v3 + 2vvx a -IV + UVxxx a - IV + 58Avv.u 

+ 45Av~ + 48,.1, 2vxxxx + 9w2 + 2wx a -Iw 

+ x( 4v2vx + 1Uvvxxx 

+ 24Avxvxx + 8,.1, 2vxxxxx + 4wwx ). 

The part of ZI with coefficient x turns out to be Y I • So ZI 
= C1 + xYI + 2tX1, where CI contains (also non10cal) 

terms not depending explicitly on x and t. Similar relations 
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turn out to hold for the other symmetries Zk' For 1 = 1 we 
obtain from (11) and (12) the recursion formulas 

F
k

+
1 

= __ I_fco (8Fk ZI,I + 8Fk ZI,2)dX, 
3k + 8 - co 8v 8w 

(13) 

I fco (8Gk 8Gk ) Gk + 1 =--- --ZI,I +--ZI.2 dx. 
3k + 7 - co 8v 8w 

(14) 

Starting with Fo and Go these relations enable us to generate 
the series Fk and Gk • In fact it is also possible to begin with 
F -I and G -I = J"': co v dx. 

A constant of the motion that depends explicitly on t is 
J = J"': co (xv + tw)dx. Constants of the motion of this type 
always exist if a conserved density (in this case v) has a flux 
that is also conserved, see Broer and Backerra.8 The Hamil
tonian symmetry corresponding to J is formally given by 

-I (0) Z_I=O dJ= 1 . 

It can be shown that (11) and (12) also hold for 1 = - 1 
and k~O. This yields the relations 

1 1 fco 8Fk 
Fk _ 1 =---"?z Fk=--- --dx, 

3k + 2 -13k + 2 _ co 8w 
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1 1 fco 8Gk Gk _ 1 =---"?z Gk=--- --dx 
3k + 1 -13k + 1 _ co 8w ' 

k = 0,1,2, .... 

While (13) and (14) allow us to go upwards in the series of 
constants of the motion, these two relations allow us to go 
downwards. 
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The solution spaces of massless field equations 0 IIJ = 0, with IIJ being a tensor, a (multi) spinor, or 
a Rarita-Schwinger field, are studied. They carry indecomposable representations of the 
Poincare group whose invariant subspaces are determined. There exist indefinite invariant scalar 
products that allow Gupta-Bleuler quantization for all spins. For particular cases like the third
rank tensor with mixed symmetry and the Rarita-Schwinger field for spin-~, additional field 
equations are discussed, which project on subspaces. 

I. INTRODUCTION 

For massive particles it is straightforward to assign field 
equations to irreducible representations of the Poincare 
group. For example, traceless symmetric tensors of rank s 
describe spin s particles. Yet the belief that fundamental 
physical theories are theories of massless particles gains 
ground. While high-energy physics deals with helicities 
IA I" 1, theories of gravitation require at least IA I = 2inaddi
tion for the description of gravitons. Traditionally a sym
metric two-tensor is used for this purpose. Clearly this is not 
the only possibility: in theories with torsion, I in locally Lor
entz-invariant theories,2 and in conformal helicity-2 theor
ies3 appear mixed tensors with rank 3; the Riemann and the 
Weyl tensors are used to describe gravitational waves. 

In spite of many applications even the simple question of 
which Poincare representations act on the solution space of 
massless field equations seems to be answered only for very 
few special cases. In electrodynamics, for example, the space 
of positive energy solutions of the field equations DAp = 0 
carries an indecomposable representation, which we label by 
(0)-( + 1, - 1)-(0). It contains an irreducible invariant 
subspace of gauge modes with helicity A = O. The invariant 
subspace ( + 1, - 1)---+0 satisfies in addition the Lorentz 
condition JpAp = 0, the physical modes lie in the quotient 
space over the gauge modes. The "scalar" photons 
<I>==JpAp form the upper helicity-O states in the Gupta
Bleuler triplet. 4 

In this example, some of the complications of massless 
field equations can be seen. We have to deal with indecom
posable representations in which the physical states lie in a 
quotient space with respect to the gauge modes. To define a 
free quantum field we need in addition "scalar" modes con
jugate to the gauge modes. Wigner's classification of the uni
tary irreducible representations (UIR's) of the Poincare 
groups is not sufficient to describe the solution space of 
gauge fields. 

There are several classes of indecomposable representa
tions of the Poincare group discussed in the literature.6 But 
they either do not describe the present situation (e.g., solu
tions of 0 2 <I> = 0), or they treat the case of a vector and 
symmetric two-tensor only. Some properties of the represen
tations considered here have been discussed by Barut and 
Raczka.7 

To tackle the problem of classifying the solution spaces, 

we first show that it is equivalent to reducing the tensor pro
duct of the massless scalar representation with finite repre
sentations of the Lorentz group. In Sec. III we use Wigner's 
little group E( 2) to discuss these tensor products in momen
tum space. To each finite irreducible Lorentz representation 
we get an indecomposable Poincare representation, whose 
invariant subspaces and whose leak structure will be calcu
lated. Using this result we obtain a group-theoretical classifi
cation of the solution spaces ofOIlJ = 0 with IIJ being a (mul
ti)spinor, a tensor, or a Rarita-Schwinger field. 

In Sec. IV, part of these solution spaces will be supplied 
with an indefinite scalar product, which is necessary for 
Gupta-Bleuler quantization of the corresponding fields. In 
Sec. V, some physically interesting examples will be dis
cussed more closely, specifically additional field equations 
that project on subspaces. The Appendix supplies some for
mulas for tensors that are used in Sec. V. 

II. CONNECTION TO TENSOR PRODUCT OF INFINITE 
AND FINITE REPRESENTATION 

The positive energy solutions of the scalar wave equa
tion 0<1> = 0, normalizable with respect to the scalar prod
uct 

;f <1>* ao<l> d 3X, (1) 

form a Hilbert space Ho. The Poincare group acts as 

<I>'(x') = <I>(x), x~ = AI' Yxy + 01' (2) 

on the scalar field <1>, with infinitesimal generators 

Pp=-iJp' (3) 

Mpv= -i(xpJy-xyJp )' (4) 

Here <I> carries the UIR with mass 0 and helicity 0, which we 
denote by (0). [The metric ( - + + + ) will be used.] In 
the sequel we will consider field equations 

OIlJ(x) = 0, (5) 

where IIJ carries spinor or tensor indices (or both), i.e., it 
transforms as 

1IJ'(x') = QIIJ(x). (6) 

The finite representation Q of the Lorentz group acts on a 
vector space V N' It is not unitarizable (except in the trivial 
case); in the case of a tensor it has an indefinite invariant 
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sesquilinear form, e.g., A :A I-' for a vector. The positive ener
gy solution space of 0'1' = 0 is just the product space 

HN =HOXVN. (7) 

On this space acts the tensor product representation 

(0) ®DN (8) 

of the massless helicity 0 and some finite representation of 
the Poincare group (translations act trivially in the finite 
representation). Due to this tensor-product structure we can 
deal with the spaces HN easily. 

Finite-dimensional representations of the Lorentz group: 
We label the finite-dimensional irreducible representations 
of the Lorentz group SO(3.1) -Sl(2,C) as D(jI,j2)' where 
thejl,j2 = O,p, ... are the angular momenta of the complex 
extension SU(2,C) XSU(2,C). Explicitly we use as the in
finitesimal generators of the fundamental representation 
D(~,O) the 2x2 matrices 

(9) 

with 0"0 = - 0'0 = 1, and 0"; = 0'; the Pauli matrices. They 
act on a two-spinor 'I' A' The conjugate fundamental repre
sentation D(O,~), whose generators SI-'V are obtained by ex
changing 0" v and 0' v' act on a dotted two-spinor 'I' A' The 
traceless multispinor 'I' A, ".A.,A, ... A

m
, symmetrized in the dot

ted and in the undotted indices, carries precisely the IR 
D( n/2, m/2). With these multispinors all finite-dimension
al IR's ofSl(2,C) can be realized. 

A vector Av carries D(!,!), the defining representation 
ofSO(3.1); the traceless symmetric tensors Tv, ... Vn carry 

D(n/2,n/2). (10) 

A general traceless tensor is obtained by acting with the 
Young symmetrizer, which has A I boxes in the first row and 
A2 boxes in the second row on the tensor Tv" ... 'Vn with 
n = A2 + A2 (a completely antisymmetric three-tensor, e.g., 
is equivalent to a vector). It carries, for A2 > 0, 

D(!(AI +A2 ), !(A I -A2 ») 

(11 ) 

The constant Rarita-Schwinger field 'I' Av, ... V n ' traceless and 
symmetric in the tensor indices, carries 

D(!,Q) ®D(n/2,n/2) 

= D(n/2 + !,n/2) ff)D(n/2 - !,n/2). (12) 

III. SOLUTION SPACES 

The aim of this section is to reduce the tensor product 
(8), resulting in an indecomposable representation. For this 
purpose we will define in momentum space subspaces that 
are not invariant under Poincare transformations only be
cause they are not invariant under the translations of the 
little group E (2). The leaks under action of these generators 
are used to read off the complete structure of invariant sub
spaces of the indecomposable representations, which are 
carried by the positive energy harmonic functions of various 
fields 'I' (x). 

A. Momentum space 

To get into contact with Wigner's classification of the 
UIR's of the Poincare groups we go to momentum space 
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(13) 

The scalar product ( 1 ) and the field equation guarantee that 
~ (p) has support on the positive light cone p2 = 0, pO> 0 
only; we have the orbit 0';:-= o. The Poincare group acts as 

dCA, a)~(p) = e-;paQ(A)q,(A -Ip), (14) 

where Q is the finite matrix representation from Eq. (6). We 
first reduce these representations for multispinors. The cases 
with q, being a tensor or a spinor-tensor will be obtained 
easily using Eqs. (10)-(12). 

B. Projection operators 

We define projection operators 

p + = - (O"p)/(2po)' P _ = + (O'p)/(2po), (15) 

which can act on each spinor index A; or ,,(. With their help 
we can decompose the vector space V of the multispinor field 
q,A''''An,A''''Am (p) into 2n·2m linearly independent subspaces 
V( ± , ... , ±; ± , ... , ± ), whose direct sum spans V. Here 
V( + ) is, for example, the space of the P + q, A (p), V( ..:.. ) is 
the space of the P _ ~ A (p). Explicit calculation shows that 
P + projects on an invariant subspace when acting on an in
dexA, but not when acting on an indexA. For P _ the situa
tion is reversed. V( + , ... , + , ..:.. , ... , ..:.. ) is the only irreduci
ble invariant subspace under the Poincare group. 

For example in the case of a spinor field ~ A' 

V( + ) = {p + ~(p)} = {~IP _ q, = O} is invariant. In con
figuration space these are the solutions of the Weyl equation 
(0' a) 'I' A (x) = 0, while the solution space of the equation 
(0" a) 'I' A (x) = 0 is not invariant. [0" a'l' A (x) = 0 is invar
iant.] Next we want to show that the noninvariance of most 
spaces V( .. ·) can be traced down to their noninvariance un
der the translations in the little group E(2). 

C. Reduction to E(2) 

Following Wigner, we decompose an arbitrary Lorentz 
transformation in three factors: 

A = a(p)a(p) -IAa(A -lp)(a(A -Ip»)-I. (16) 

Choosing a (p) such that it maps q to p guarantees that the 
factor a(p)-I Aa(A -Ip) belongs to the stability group 
E(2) oflightlike q. We take qI-' = (1,0,0,1) for definiteness. 
For the a(p) we use first a three-boost B(p), which maps q 
to (p,O,O,p) and then a rotation R (p), which maps in (P,p). 
Rotations act identically on dotted and undotted spinors. 
Therefore Q (R (p») leaves the subspaces V(· .. ) invariant. 
The same is true for the boosts Q (B(p»): by construction we 
only apply them on functions of (p,O,O,p). For these mo
menta the projection operators become P + = (1 + 0"3)/2, 
P _ = (1 - 0"3)/2, which commute with the generator 
S03 = (2i) -10"3 of the three-boost. So the subspaces V( .. ·) 
remain invariant under the Q (a (p ») defined above. It re
mains to investigate the action ofthe little group E(2). 

D. Action of the stability group E(2) 

The stability group of the lightlike momentum q is an 
E(2). Applied to the states q,(q) it acts only on the indices. 
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All we have to do is to restrict the finite SI(2,C) representa
tions to the E(2) subgroup. 

It consists of rotations around q with generator 

A = (~+ l:)SI2 = !(~ + l:)u3, (17) 

and of E(2) translations with the generators 

TI = ~(SOI + S31) + l:(801 + 8 31 ) 

= !~(U2 - iu l ) + !l:(u2 + iul ), 

T2 = ~(S02 + S32) + l:(802 + 8 32 ) 

= - (i/2)~(U2 - iu l ) + (i/2)l:(u2 + iu l ). (18) 

The sum ~ runs over all undotted indices and the sum l: runs 
over all dotted indices. Now we consider a subspace V( ••• ) 

with n+ times" +," n_ times" -," n+ times" +-," and 
n_ times" ..:.. ." Its basis vectors at momentum q are, e.g., 

where (A) denotes a E(2) representation with 
A(A) = A(A). 

It is clear that the action of T can change the helicity A 
only by I aA I = 1. Keeping this information in mind we can 
simplify the notation and get, e.g., from the vector D(!,P the 
reduction (0)---+( + 1, - 1 )---+(0), from a symmetric two
tensor D( 1,1) the reduction 

(0)---+( + I, - 1)---+( + 2,0, - 2)---+( + 1, - 1)---+(0), 

from a spinor D(!,O) we get ( - P---+( + D, and from a Rar
ita-Schwinger D( l,!) we get 

( - !)---+( -~, + !)---+( - !, + ~)---+( + D· 

E. Solution spaces of [}P = 0 

To each V( .. ·) we can define an isomorphic invariant 
quotient space 

- V(· .. ) ~ V'( .. ·) 
V( .. ·) = , 

V'(· .. ) 
(22) 

where V' ( ... ) is the vector space sum of all subspaces into 
which the E(2) translations leak from V(··.). On these 
spaces V act irreducible unitarizable representations of the 
Poincare group with helicity A given by Eq. (19). 

Now we are ready to state a main result of the present 
work: The reduction of the product representation 
(0) ®D(jI,j2) of the Poincare group is an indecomposable 
representation given by Eq. (21), where (A) denotes the 
massless representation with helicity A of the Poincare 
group. According to Sec. II this representation is carried by 
the positive energy solution space of the field equation 

2156 J. Math. Phys., Vol. 27, No.8, August 1986 

1+) = I+-) = (1,0) and I - ) = I ..:.. ) = (0,1). 

These basis states are eigenvectors of the E(2) rotation A 
with eigenvalues 

A = !(n+ + n+ - n_ - n_). (19) 

The E(2) translation T + = !(iTI - T2) maps components 
( ~ ) into ( + ), the translation T _ = -! (iTI + T2) maps 
( + )-components into ( ..:.. ). We have 

T +: V(n+,n_,n+,n_ )---+V(n+ + l,n_ - l,n+,n_), 

T _: V(n+,n_,n+,n_ )---+V(n+,n_,n+ - l,n_ + 1). 
(20) 

So the E(2) translations leak between different subspaces 
V( •. , ). They are responsible for having an indecomposable 
representation. We can now give the reduction of finite 
SI(2,C) representations D(jI,j2) on the E(2) subgroup as 

j 

0'1' = 0 with 'I' a multispinor withjl undotted indices andj2 
dotted indices. The positive energy solution spaces of har
monic tensors carry just the product representation 
(0) ®DN, where DN is given by Eq. (10) for symmetric 
tensors and Eq. (11) for all tensors. For Rarita-Schwinger 
fields with symmetric tensor indices, DN is given by Eq. 
(12). Explicit examples will be discussed in Sec. V. 

IV. INDEFINITE SCALAR PRODUCTS AND GUPTA
BLEULER QUANTIZATION 

Indecomposable representations can be used for the de
scription of physical particles in the framework of gauge the
ories in Gupta-Bleuler quantization. For this we need an 
invariant (indefinite) scalar product, whose zero norm 
states are gauge and "scalar" modes. The question of to what 
extent an indecomposable representation causes a scalar 
product (and the reverse) has been investigated by Araki.s 
In the case of tensors an invariant scalar product is simply 

(T,T') =iJ T~,".vn aoT,v,,,, vnd 3l. (23) 

In the case of a constant spinor there is an invariant bilinear 
form 'l'TU2'1', but no invariant sesquilinear form. Yet a ses
quilinear form does exist on a constant Dirac spinor 
'I' = ('I' A' 'I' A ), namely 

(24) 

So an invariant scalar product for a Dirac spinor field 'I'(x) 

is 
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('I'(x),'I"(x») = f ('I'~ ao'l'~ + 'I'~ ao'l'~ )d 3x (25) 

(we are dealing here with harmonic functions, not with solu
tions of the Dirac equation, which projects on a subspace). 
These scalar products can be used for Gupta-Bleuler quanti
zation of the corresponding fields. A closer investigation 
shows that the full positive energy solution space of harmon
ic functions contains physical modes (with positive norm) 
only in the case of symmetric tensors. In the other cases there 
are only norm-O gauge and "scalar" modes. It is possible to 
find scalar products on invariant subspaces. If, for example, 
a spinor field satisfies the Weyl equation iT a'l' A = 0, then an 
invariant scalar product is 

(26) 

For Rarita-Schwinger fields with iTa'l'Av, ... vn(x) =0, we 
have 

(27) 

On these subspaces we can formulate gauge theories with 
spin >~. No attempt has been made to discuss all Gupta
Bleuler quantum theories on invariant subspaces of the har
monic solutions. 

In the next section some particular cases will be treated 
explicitly. 

v. ADDITIONAL FIELD EQUATIONS 

We can project on any invariant subspace of the inde
composable modules (21) using the projection operators of 
Sec. III. Yet the corresponding equations in configuration 
space, which are of the form (ua)···(iTa)···'I' = 0, are in gen
eral of higher order. This approach does not seem to be very 
attractive. Instead I will discuss first- and second-order field 
equations for some particular examples, especially for spin-~ 
and -2. 

A. Neutrino 

The positive energy harmonic spinors 0'1' A = 0 carry 
( - !)---+(p. Imposing the Weyl equation (iTa) 'I' (x) = 0 
projects on the invariant irreducible subspace (P, the wave 
equation becomes superfluous as (ua)(iTa) = o. On this 
subspace we have the positive definite invariant scalar prod
uct (26). 

B. Photon 

The positive energy solution space of DAp = 0 carries 
(0)---+( + 1, - 1)---+(0). The scalar field <I> =aPAp carries 
the upper (0) (scalar modes), the Lorentz condition aPAp 
= 0 projects on ( + 1, - 1) ---+ (0). The pure gauge fields 

Ap = apr, Dr = 0 carry the lower (0). The physical pho
tons lie in the quotient space {aA = O}/{A = arlo Another 
way to describe photons irreducibly uses field strengths Fpv. 
The harmonic functions carry ( + 1)---+(0)---+( - 1)) 
Ell ( - 1 )---+(0)---+( + 1»). Here Fpv = apAv - avAp and 
aPFpv = o project on the lower ( - 1) Ell ( + 1), which de
scribes physical photons. All these statements (besides being 
well known) can be proved easily by transforming to mo-
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mentum space and applying the field equations on explicit 
statesatqv = (1,0,0,1) (see the Appendix). 

c. Rarlta-5chwlnger fleld for spln-! 

The constant spinor-vector 'I' Ap carries the finite 
SL(2,C) representation D(~,~) ®D(~,O) =D(1,!) 
EIlD(O,p. So the positive energy solution spaceofO'l'AP = 0 
carries, according to Sec. III, 

( - ~)---+( -~, + ~)---+( -!, + D---+( + P) 

EIl(+P---+(-!»). (28) 

The Rarita-Schwinger field equation (iTa) 'I' = 0 projects 
on the subspace 

(29) 

[The upper ( + !) is a superposition of the corresponding 
spaces in the two components ofthe representation (28).] 

The indecomposable module (29) has an invariant sca
lar product 

f'l':!'I"Pd 3X. (30) 

The ( +!) modes have norm 0, the ( -!, +~) modes have 
positive norm. So we can perform a Gupta-Bleuler quanti
zation with a spin-~ and a spin-~ particle in the physical sec
tor. Here ap'l' p = 0 projects on ( - !, + ~)---+( + !); it cor
responds to the Lorentz condition. The spinor-trace 
condition (jP'I' p = 0 projects on ( + ~)---+( + p, i.e., on the 
helicity + ~ and the gauge modes. The latter are of the form 
'I' Ap = ap <I> A' iT a<I> = O. The helicity + ~ modes lie irredu
cibly in the quotient space 

{(iT'I') =o}/{'I'=a<l>}. (31) 

D. The symmetric two-tensor 

The constant traceless symmetric two-tensor tranforms 
as aD( 1, I) ofSO(3.1). So the positive energy solution space 
of Ohpv = 0, h p p = 0 carries the Poincare representation 

(0)---+( + 1, - 1 )---+( + 2,0, - 2)---+( + 1, - 1 )---+(0). 
(32) 

The vector Bp = a vhvp carries the upper 

(0)---+( + 1, - 1 )---+(0); 

the Lorentz condition a vhvp = 0 projects on the subspace 

( + 2, - 2)---+( + 1, - 1)---+(0). (33) 

The pure gauge field h pv = a p 1] v + a v 1] p' if' 1] p = 0 carries 
the lower ( + 1, - 1 )---+(0); the physical spin-2 modes lie in 
the quotient space 

{avh vp =O}/{hpv =ap1]v +av1]p}. (34) 

The fourth-rank tensor 

Cpvpu = ap auhpv - ap avhpu - ap auhvp + ap avhpu 
(35) 

vanishes for pure gauge fields. Ifwe impose the Lorentz con
dition a vhpv = 0 it carries the physical modes irreducibly. It 
is the field strength of the spin-2 field. In free linearized grav
ity, h is the traceless part of the metric, Oh the traceless part 
of the Ricci tensor, and C the Weyl tensor. 
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E. Mixed three-tensor 
The three-tensor \fI JLVp with mixed symmetry 

\fI vpp = - \fI Jtvp' \fI Jtvp + \fI pJtv + \fI "P/l = 0, and trace 
\fI /lV v = 0 transforms asD(M) $D(M) under SO(3.1). (Its 
YoungdiagramhasA I = 2andA2 = 1.) The positive energy 
solution space of O\fl JL'1' = 0 carries 

( + 1)---+( + 2,0)---+( + 1, - 1)---+(0, - 2)---+( - 1)) 

$ « - 1)---+(0, - 2) ---+( + 1, - 1)---+( + 2,0)---+( + 1)). 
(36) 

So helicity + 2 and - 2 representations appear twice each. 
The upper spin-2 modes are also carried by the symmetrized 
divergency 

H/lv==ap\fIp/lV + ap\fIpV/l' (37) 

which carries the upper 

( + 1, - 1)---+( + 2,0, - 2)---+( + 1, - 1)---+(0). 
The lower spin-2 modes lie in the gradient field of a symmet
ric two-tensor, 

\fI/lVP =op.hpv -avhp/l' Ohp.v =0, 

which carries 

(0)---+( + 1, - 1)---+( + 2,0, - 2)---+( + 1, - 1). 

(38) 

To get another characterization of the spin-2 modes we 
introduce a traceless tensor 

C/lVPU = all. \fI pvu + a v \fI up.p + au \fI vpp. + ap \fI /lUV 

+ !('rJp.vHpu - 'rJppHuv - 'rJuvHpp + 'rJupHp.v)· 
(39) 

(Its Young diagram has Al = 2, .12 = 2.) Here C carries 
(+ 1, -1)---+(0)---+( + 1, - 1)---+( + 2,0, - 2). 

If we impose for the antisymmetric divergence 
Ff.LV =ap\fl pp.v - a P\fl pvp 0, then C carries the lower spin-2 
modes only. 

Next we want to describe the upper spin-2 modes. Ifwe 
require 

Cpvpu = 0, (40) 

then \fI p.vp carries 

( + 2,0, - 2)---+( + 1, - 1 )---+(0,0)---+( + 1, - 1), 

that is, the upper spin-2 modes and the pure gauge field of the 
form 

\fI/lVP = 2 ap/p.v + avl/lp - a/llvp ' Ivp. = - /p.v' 
(41) 

The upper spin-2 modes only lie in the quotient space 

{C = O}/{\fI = pure gauge}. (42) 

In linear conformal gravity such an equation C = 0 projects 
on the physical (and part of the gauge) modes, i.e., on the 
conformal gravitons. Therefore the conformal gravitons are 
just the upper spin-2 modes in the solution space of 
O\fl p.vp = o. 
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APPENDIX: ACTION OF E(2) ON TENSORS 

In this appendix we reduce explicitly tensor representa
tions ofSO(3.1) to their E(2) subgroup. The explicit states 
were used in Sec. V to calculate the action of additional field 
equations. 

The defining vector representation of the Lie algebra of 
SOC 3.1) has a basis 

(M/lv)pu - i('rJIlP'rJvu - 'rJvp'rJ/lu)' 

'rJ/l/l = ( - 1, + 1, + 1, + 1). (AI) 

The stability group E(2) of qV = (1,0,0,1) is generated by 

A M 12, Ti M3i +Moi> i= 1,2. (A2) 

For the vector AJL we define new basis states 

1 ± ) = 112(0, ± l,i,O), 

Is) = 112(1,0,0, - 1), 

Ig) = - 112(1,0,0,1), 

which are eigenvectors of A with 

(A3) 

AI ±) = ± I ±), Als) =0, Alg) =0. (A4) 

TheactionofE(2)-translations T ± = 112( - T2 ± iTI ) on 
this basis is 

T ± Is) = I ±), T ± 1 ±) = 0, T ± 1 +) = Ig). 
(AS) 

The reduction of the vector representation ofSO( 3.1) to the 
E(2) subgroup gives the indecomposable representation 
(0)---+( + 1, - 1 )---+(0), with the states 

Is)---+(I + ),1- »---+Ig)· (A6) 

For tensors the generators are just a sum of matrices (A 1 ) , 
each acting on one of the indices. As for the vector we intro
duce a basis l,ul, ... ,,un), where,ui can take the values 
s, + , - ,g. The eigenvalues of the helicity operator are sim
ply AI",) = (n+ - n_)I .. ·), where n± is the number of 
( ± ) components. The action of T ± is given by Eq. (AS) 
for each component. 

So for the antisymmetric two-tensor we get 

Is + )---+( 1 - +) + Isg) )---+1 - g), (A7) 

i.e., the E(2) representation ( + 1)---+(0)---+( - 1), and 

Is - )---+( I + -) + Isg) )---+1 + g), (A8) 

i.e., ( - 1)---+(0)---+( + 1). 
Similarly the states in the E(2) representation 

(0)---+( + 1, - 1 )---+( + 2,0, - 2)---+( + 1, - 1 )---+(0) of 
the traceless symmetric two-tensor are 

Iss)---+(Is+ ),Is-» 

---+(1 + + ),1 + -) + 2Isg),I- -» 
---+(lg+ ),Ig- »---+Igg)· (A9) 

The trace-O condition gives 1 + -) - Igs) = O. 
In the case of a three-tensor with mixed symmetry we 

first have to choose a basis of 20 independent components 
(out of the 64 of a general three-tensor). The trace-O condi
tion puts four linear combinations to zero. The action of the 
E(2) generators on the remaining 16 components can be 
calculated, giving an indecomposable representation 
( + 1 )---+( + 2,0)---+( + 1, - 1 )---+(0, - 2)---+( - 1) and an 
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inequivalent one with the signs of all helicities reversed. One 
possible choice of states is 

I +ss)-<Is+ + ),Igss) + Is- +) -2Is+ -» 
_<1- + +)+lsg+)+ls+g), 

1 + - -) -2Isg-) + Is-g» 

-(Ig+ -) - 2\g- +} + Isgg}, 

Ig- -})-I-gg)· (AIO) 

For the other one, I + ) and 1 - ) have to be exchanged. 
From this calculation it is obvious that the spinor formalism 
employed in Sec. III is far superior for obtaining the reduc
tion of finite S1(2,C) representations to E(2). 

In the case of a vector-spinor I{I J<A we introduce for the 
vector index the values (s, + , - ,g), for the spinor index the 
values ( + , - ) ofthe projection (15). The action ofE(2) 
on the latter is given by Eqs. (19) and (20). The explicit 
states in the reduction 

are 

Is- )-(1- - ),1 + -) + Is+» 

-(Ig-) + I + ),1 + + »-Ig+), (All) 

and in D(O,!) IE(2) = (D-( - D they are 

(I + -) - Is + ) )-( Ig - ) ! - + ». (AI2) 

The wave functions T ... (q) at the stability point 
qV = (1,0,0,1) of tensors in momentum space are precisely 
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the states given above. Any invariant field equation in mo
mentum space, which is satisfied by one of the states T( q), is 
also satisfied by the full module that can be reached from this 
state. The results of Sec. V can be checked by straightfor
ward calculation. 
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Geometry of hyperbolic monopoles 
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The hyperbolic monopoles of Atiyah [M. F. Atiyah, Commun. Math. Phys. 93, 471 (1984); 
"Magnetic monopoles in hyperbolic space," in Proceedings o/the International Colloquium on 
Vector Bundles (Tata Institute, Bombay, 1984)] and Chakrabarti [A. Chakrabarti, J. Math. 
Phys. 27, 340 (1986)] are introduced and their geometric properties and relations to instantons 
and ordinary monopoles clarified. A key tool is the use of the ball model of hyperbolic space to 
construct and examine solutions. 

I. HYPERBOLIC MAGNETIC MONOPOLES 

Monopoles and instantons are now of central impor
tance to the study of Yang-Mills theories. It is well known 
that certain topological and geometrical aspects occupy a 
position of prominence. In this paper we deal with some of 
these aspects by considering what are called hyperbolic 
monopoles 1 (these, as we shall see below, are solutions of the 
Bogomolny equation in a hyperbolic space). One generates 
thereby immediate links connecting three kinds of classical 
solutions to field equations: instantons, ordinary monopoles, 
and hyperbolic monopoles. Furthermore, in most cases this 
link provides a method of constructing an ordinary mono
pole from knowledge of the hyperbolic monopole. In this 
section we describe the problem and give some of the details; 
Sec. II provides a solution, while the last two sections deal 
with the geometry and asymptotic properties. 

To construct a hyperbolic monopole recall that an ordi
nary Bogomolny2 monopole is a Yang-Mills instanton inde
pendent of the time coordinate xo, i.e., it is an instanton in
variant under time translations. If one replaces time 
translational invariance by some other space-time invar
iance one produces another kind of classical solution. 

To be specific let us take the space-time transformation 
to be rotation about some axis through an angle B. Now 
consider the flat line element in R 4: 

ds2 = dx~ + dxi + dx~ + dx~ . 
If we choose the rotations to be in the X o-x 1 plane and let r, e 
be polar coordinates in that plane we have 

ds2 = d~ + ~ dB 2 + dx~ + dx~ 
= ~{de2 + (d~ + dx~ + dx~ )/~}. (1.1) 

Now because of the conformal invariance in R 4 of the self
dual equations F = * F, a conformal change of metric leaves 
these equations invariant. Thus we can take as well 

ds2 = de 2 + (d~ + dx~ + dx~ )/~. ( 1.2) 

This is the line element for the space SiX H 3, where H 3 is 
the three-dimensional hyperbolic space, 0 < r < 00, 

- 00 < x 2 < 00, - 00 < X3 < 00, with metric determined by 
( 1.2). It is important to note that the H 3 metric is singular at 
r = 0 and that r = 0 is both a plane R 2 in R 4 and the "axis" of 
the rotation in R 4. Therefore in passing from (1.1) to ( 1.2) 
we have made use of the conformal equivalence: 

(1.3 ) 

It is worth noting in passing that this conformal equivalence 
is in turn just a special case of the more general equivalence 

Rn_Rm-.:::::=.sn-m-IXHm+t, m<n. (1.4) 

To derive (1.4) we ask that a connection in Rn be invariant 
under rotations specified by I angles I < n. Then for the line 

elementsds2 inRn we can write (r = ~xi + ... X7+ 1,01 rep
resents the solid angle in R n 

) 

ds2 =dxi + ... +dxT+l +dx7+2 + ... +dx~ 

= d~ + ~ dOT + dXT + 2 + ... + dx~ 
=~{d07+ (d~+dxT+2 + ... dx~)/~}. (1.5) 

Deleting the conformal factor ~ in (1.5) amounts to the 
conformal correspondence R n _ R n -/- I-.:::::=.S / XH n - /, 

from which we have (1.4). This correspondence would be 
relevant if one were to study SO(3)-symmetric instantons 
(cf., for example, Refs. 3 and 4). One would then choose 
n = 4, m = I, for which we have 

R 4 _ R 1-.:::::=.S2XH2. (1.6) 

For the present we turn to the solution of the Bogo
molny equation in the hyperbolic space H 3. The equation is 

dA) = - *F, (1.7) 

where dAis the covariant derivative with respect to the con
nectionA acting on the Higgs field t/J, Fis the curvature on H 3 

of A, and the * operation is with respect to the hyperbolic 
metric on H 3 implied by (1.2). We work throughout with 
gauge group SU (2). Equation (1. 7) requires a boundary 
condition, which we take to be the usual one: It/J I = D at 
infinity, D a nonzero constant. S Now we can produce a solu
tion to ( 1. 7) either by producing an axially symmetric solu
tion toF= *FinR 4, or by solving (1.7) directly onH3. We 
choose to do the latter.6 To this end we make use of the fact 
that H 3 is a space of constant negative curvature with an 
alternative representation as the interior of a ball of radius 2, 
and with H 3 metric defined by 

ds2= (dx
2

+dy2+dz
2
) r=~x2+y2+z2. (1.8) 

(1 - ~/4)2 ' 

The "ball" model of hyperbolic space is in fact isometric to 
the "upper half-plane" model and the transformation from 
the former to the latter is given by i, where 
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i = a- l/3a, (1.9) 

where a is stereographic projection from R 3 onto 
S 3 - {north pole} and /3 is a certain 'IT /2 rotation of S 3 into 
itself. The precise definitions of a and /3 are as follows: Let 
(XI, ••• ,x4) be coordinates in R4. Represent the S3 and R3 
mentioned above by a sphere of unit radius and center 
(1,0,0,0) and the hyperplane Xl = 0, respectively. The 
sphere S 3 is then tangent to this R3 at its south pole, which is 
the origin of R4. The map a is then simply a stereographic 
projection from R3 onto S3. To define/3, let xeR4, 
X= (xl

, ••• ,x4).Then/3x= (l +x2,I-xl ,x3,x4);/3isa17"/2 
rotation of S 3 about the two-plane Xl = 1, x2 = 0 that passes 
through its center. More concretely, a maps the ball ofradi
us 2 in R3 onto the lower hemisphere of S3, /3 rotates this 
lower hemisphere into the side hemisphere Xl> 0 from 
which it is then mapped onto the upper half-plane by a-I. 
For future reference one should also use (1.9) to show that, 
under i, the boundary r = 2 of the ball is mapped onto the 
"axis" r = 0 in R 4. 

II. THE BALL PICTURE 

From now on we work with the ball model of H3. Next 
we make an ansatz for a solution A = A; (0" /2i)dxP' to 
(1.7): it is 

A~= [(P-1)/r]Eiakx\ A9 =(r=Qxa/r, (2.1) 

where P and Q are unknown functions depending on r only. 
In local coordinates we get 

DkifJa = ( - 1/2..J7)EijkF~j' (2.2) 

with f = (1 - ,z /4) - 2. This ansatz gives the pair of equa
tions 

(2.3) 

This system of equations can be reduced to the system [T 
= In P, s = 2 tanh-I (r/2) ] 

d 2T . _ dT 
~=slnh 2s(e2T -1), Q=-. 
d~i- ds 

(2.4) 

We now can recognize this system as being the same as that 
found in Ref. 7, though we have arrived at them from a 
different starting point and purpose, and thus we have as 
general solution the expression 

T = In{(B sinh s)/[sinh(Bs + C) n, (2.5) 

with the constants Band C yet to be determined, and the 
boundary condition yet to be implemented. The constant C 
is zero in order to have a regular solution and the constant B 
is determined by the boundary condition lifJl = D at infinity. 
The value of B is then related to that of D by the condition 

D=B-1. (2.6) 

The positivity of D requiresB > I; apart from this restriction, 
D and B can take a continuum of values. Nevertheless, to 
retain the dual interpretation of our solution, as both a hy
perbolic monopole and an axially symmetric instanton, we 
shall find that D and B are restricted to a discrete set of 
values. To establish this, letA be an instanton on a principal 
SU(2)-bundle P and let ei8 eU(l). Then U(l) acts on A 
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leaving it invariant if A is axially symmetric, but U ( I) also 
acts on any other bundle V, say, with the same base R 4 and 
transition functions but a different fiber. Choose V to be the 
associated vector bundle with fiber C2

• Then the action of ei8 

produced by rotation through an angle () in the Xo-X I plane 
also acts on V. However, if we restrict V to that part of R 4 

that is left fixed by the rotation, then U ( 1 ) just acts on the 
fibers ofthis restricted bundle V', say. Here U ( 1 ) acts as a set 
of unitary matrices M8 and hence we have a two-dimension
al unitary representation of U ( 1 ). So we write, relative to a 
suitable basis, 

[
e

in8 0] M= 
8 0 e- in8 ' 

(2.7) 

for some (positive) integer n. Thus axially symmetric in
stantons now have two integer invariants: nand c2 (P) the 
second Chern class of P. It is also clear from (2.7) that the 
bundle V' is a sum of two line bundles, in fact 

V'=LfIJL-I, (2.8) 

where L is a line bundle over the axis R 2. This line bundle is 
completely characterized by c I (L), its first Chern class. 
These three integers c 1 (L), C2 (P), and n are not independent 
and are related8 according to 

(2.9) 

Note that this forces C2(P) to be a point to which we shall 
return. The integers nand C I (L) correspond, in the hyperbo
lic monopole picture, to I ifJ I as' the asymptotic norm of the 
Higgs field, and k, the magnetic charge, respectively. To es
tablish this consider first n and I ifJ I as and proceed as follows: 
Take a vector Yand consider the Lie derivative Lx Yand the 
covariant derivative V x Y. The difference of the two deriva
tives for arbitrary Y is a measure of the X-component of the 
connection A. Nexttake an S 1 orbit so that the Lie derivative 
corresponds to X = J / J() and the X-component of A corre
sponds to the Higgs field ifJ. Now we are interested in lifJlas 
and this corresponds in the hyperbolic picture to evaluating 
lifJl on the sphereS 2, which is the boundary JH 3 of the hyper
bolic spaceH 3, i.e., lifJlas = lifJl aH 3' Further, as we saw above, 
this S 2':::::!.JH 3 corresponds to the axis of rotation under the 
transformation i of (1.9). Thus to calculate lifJ las , we restrict 
the difference Lx Y - V x Y to the axis. But since the axis is a 
fixed point of the group action, the parallel transport leaves 
the fibers fixed and V x Y vanishes. So we select a point p on 
the axis-any p will do since the axis is fixed under the group 
action. We know how the group acts on Yand therefore we 
have the equality [here ifJas = ifJ(p) just denotes the Higgs 
field evaluated on peaH 3] 

=~(M8YMil)1 . 
d() 8=0 

(2.10) 

Thus we can identify M8 as e04> ... Now we use the identities 

ifJ2n = ( _ !)nlifJI2nI, 

ifJ2n + 1 = ( _ vnlifJl2nifJ. 
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These give 

/Jif> .. = cos( () ItPl ... )1 + sin( () ItPl ... ) 2t/Jas. 
2 2 ItPl ... 

But we also have 

= cos nO [~ ~] + sin nO [~ ~ J 
= en8u

, u = [~ _ ~]. 
Hence ItPlas = 2n and we have the relation between ItPlas and 
n. [The matrix u defines the su(2)-direction in which tPas 
points, it looks like U3 but will not in general coincide with it 
because we have loosely assumed that the su(2)-basis in 
which M 8 is diagonal coincides with that used for tP. Actual
ly, if Tis the matrix of the change of basis in the underlying 
space C 2

, then TuT- I is the true direction oftPas.] 
The connection between C I (L) and the magnetic charge 

k is obtained by recalling that, for a solution to the Bogo
molny equation, the energy E = 417'ltPlask. Also, integrating 
the action S over 0 gives S = 217'E. But S = 8rc2 gives 
C2 =E/417'. These facts, together with Eq. (2.8), give 
C2 = ItPlask, so that cl(L) = k. 

We are now in a position to calculate the quantities k, C2' 

and ItPlas for our solution-thereby producing an indepen
dent check of the relations between them. 

The magnetic charge k is given by (a and{3 denote an
gular coordinates on aH 3 ) 

k = - _1 r tr{~ d~l\d~}, ~ = I~I' 
217'JaH' 'I' 

=_l_r tr(ndnl\dn), 
I 617'iJaH , 

(2.11 ) 

n = sin a cos{3ux + sin a sin{3uy + cos auz , 

and this integral is easily verified to be unity. 
Next we calculate C2 = E /41T, but 

= -2 r tr(tP*dtP)=41T(B-l), 
JaH 3 

(2.12) 

where we have used the Bogomolny equation, the Bianchi 
identities, and various properties of covariant derivatives. 
We obtain, therefore, C2 = (B - I). 

To calculate ItPlas is to evaluate ItPl on aH 3
, where r~2 

or equivalently s~ 00. Explicit calculation yields 

lim ItPl = B-1 = ItPlas· (2.13) 
S~OO 

We see that we do indeed havec2 = ItPlask, consistent with 
C2 = 2nk and ItPlas = 2n. 
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III. CONNECTION WITH INSTANTONS AND R3-
MONOPOLES 

It is useful here to pursue further the role of the integer 
invariant n in the construction of axially symmetric instan
tons. Takethec2 = I instantonA, which resuIts if we choose 
B = 2. Recall that then A is given by the simple expression9 

X2 xol + iux. 
A = 2 2 g - lal'gdxl', g(x) = ' '. 

x +A. R 
(3.1 ) 

This form may seem to be independent of the angle O. How
ever, it is not. This is becausegis not invariant under rotation 
through 217'. To understand this we note that n = ! and that 
A, being the one-instanton, is a connection on P, where P is 
half of the spin bundle corresponding to one of the SU (2)
factors in the decomposition 

Spin(4) = Spin(3) XSpin(3) = SU(2) XSU(2). 

More concretely we can regard g(x) restricted to the equa
tor S 3 of S 4 as being the transition function of the bundle P. 
Then we can write the x,.. in terms of the Euler angles 0', tP'. 
1// according to 

Xo = Rsin( ~')sin( 1f' ; tP} 

X3 = RSin(~')cos(1f' ; tP'). 

X2 = Rcos(~}in(¢'; tP} 

XI = Rcos(~')cos(¢' ; tP} 

(3.2) 

The factor of ~ in the arguments of the trigonometric func
tions produces a change in sign of the transition function 
under a 217' rotation that will account for the noninvariance 
of A. The fact that n = ! is because, on restricting the base 
space to a circle S I. SU (2) becomes the double cover of S I 

and can therefore have a half-integral weight n. Similar re
marks apply to n = M. etc. This is why we found above that 
C2 was even. 

A further matter of geometrical interest is the role 
played by the curvature of the hyperbolic space H 3. We can 
import a parameter R into the metric ds2 if we write 

ds2 = :2 {R 2d0 2 + ~2 (dr +dx~ + dX~)}. 
When we delete the conformal factor this corresponds to 
working onS I (R) XH \R), whereS I (R) is a circle ofradi
us R, and H 3 (R) is a hyperbolic space of scalar curvature 
- 6/R 2. The "ball model" for H 3 (R) is now the interiorofa 

ball of radius 2R. OnS I (R) XH 3 (R) the Bogomolny equa-
tion is 

(3.3 ) 

wherefR = (1 - r/4R 2) -2. With a similar ansatz to the 
previous one we can again exactly solve the field equations. 
For the Higgs field tP we find 

(3.4) 
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with T as before but with s = 2 tanh -I (r/2R). To evaluate 
1~las we let r_2R and we obtain 

1~las = (B - l)/R = 2n/R. (3.5) 

We see that by choosing r appropriately we can satisfy any 
boundary condition for 1~las' In particular if we choose 
R = 2n we have 1~las = 1. If we then let R-oo, with 1~las 
fixed, H 3 becomes the flat space R3 and our solution becomes 
an ordinary R3 -monopole. We shall now prove that this ac
tually happens by carefully evaluating the limit. From 
above, 

~a=J... dT x
a 

R ds r 

1 { 1 =----
R tanhs 

B } x
a 

tanh (Bs) -;. 
(3.6) 

Now it is important to evaluate the limit R-oo atfixed r. 
Sincer = 2R tanh(s/2), for largeR, tanh(s/2)-o. Thus we 
must replace s by SR' where 

sR/2 = r/2R. 
The result of this is 

lim ~a = lim J...{ 1 (R + 1) } ~ 
R~oo R~oo R tanh(r/2R) - tanh( (1 + R )r/2r) -;. 

(3.7) 

The limit is straightforward and gives the result 

~~ = {J... _ _ l_}Xa. (3.8) 
r tanhr r 

This is precisely the Higgs field for the Prasad-Sommerfield 
monopole. \0 An exactly similar result holds for the connec
tion A ~. Thus we have verified that the limit of a hyperbolic 
monopole in H 3 (R) as R _ 00 is indeed an ordinary mono
pole. This precise limiting procedure above is natural in 
Atiyah's approach and corresponds to the rescaling mecha
nism of Chakrabarti. 

Now we return to hyperbolic spaceH 3 and would like to 
examine the question of the location of the monopole. This is 
really the same [for SU(2)] as discussing the zeros of the 
Higgs field ~. The ~xistence of a zero of ~ is forced by the 
nonvanishing of the magnetic charge k. The magnetic 
charge is the winding number of the map~: aH 3

-S;u(2l' 

where S ;u(2) is a sphere in the Lie algebra. A standard homo
topy argument shows that ~ only extends to the interior H 3 

in a singularityfree manner if the winding number k is zero. 
Hence for k = 0, ~ has a zero, and in general k counts the 
zeros of~. We find that there is one zero of ~ at the origin of 
the ball H 3. Because of the dual interpretation of a hyperbo
lic monopole as an instanton, it is of interest to ask for some
thing in the instanton picture to which the zero of ~ corre
sponds. First of all, the origin of the ball is transformed, 
under i, to the point r = 2, X 2 = 0, X3 = ° in the upper half
plane model. This in turn corresponds to a circle of radius 2 
in R4 centered at the origin and lying in the XO-XI plane. To 
describe the axially symmetric instanton, it is appropriate, 
because of the use of the conformal correspondence ( 1.3 ), to 
use the Jackiw et al. II conformally invariant construction. 
This constructs an instanton with index C2 by choosing 
C2 + 1 centers Yi and sizes Ai with 
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(3.9) 

where we use the notation of Ref. 11. Now C2 is proportional 
to k via the weight n, and, just as the integral (2.11) for k is 
actually all concentrated in a small sphere around the zero of 
~, the integral for C2 is concentrated around small spheres 
encircling each center Yi' This leads to the following form for 
A: to construct an axially symmetric A of weight none 
should choose all the sizes Ai to be equal, and all the centers 
to lie equally spaced on the circle of radius 2 in the Xo-X I 
plane. For a general R one works on H 3 (R) and the circle of 
radius 2 above has radius 2R. Further as R-oo, the centers 
Yi become more and more numerous, and their angular sepa
ration smaller and smaller. Thus an ordinary monopole is 
like a ring of instantons. In this connection cf. also Chakra
barti. 1 

IV. HYPERBOLIC MONOPOLES AND INSTANTON 
SINGULARITIES 

It is natural to consider the properties of a hyperbolic 
monopole for a general value of 1~las' We have seen how a 
half-integral n corresponds with an instanton but not one 
with axial symmetry. Now let n be such that n/2 is noninte
gral, i.e., so that 1~lasElZ. Then the hyperbolic monopole 
(~,A) exists-but the corresponding instanton A does not. 
Indeed were A to exist it would have nonintegral C2' For an 
example of an instanton with nonintegral C2' cf. Ref. 12. We 
shall now show that this state of affairs gives rise to an in
stanton A with a singularity. Recall that, regarded as an in
stanton, ~ = A e, and that then I~I is no longer an invariant. 
This is because of the freedom to make O-dependent gauge 
transformations. 

Now all along the "axis" R2 we have 
I~I = 1~las = B - 1. Also for an instanton to have finite ac
tion there exists a gauge in which A" _g-I a"g at infinity. 
This suggests that, if we approach infinity along R2, there 
exists a gauge for which A e -0 at infinity. We now construct 
this latter gauge. 

Choose as gauge group element g(x) with 

g(X) = exp[ - O~as]' 

Under g(x), ~ transforms to ¢r with 

¢r = g-I~g + g-Iaeg 

=~ -~as' 

(4.1 ) 

(4.2) 

So 1081as is zero as required. The important point is that this 
gauge transformation has to be implemented on the Ai as 
well. The gauge transform A r of Ai is given by 

(4.3) 

With the effort of some linear algebra we eventually find that 

A r =Aj cos (0 1~las) - [Ai' ~as ]sin(O 1~las) 

+ 2 tr(Ai~as )cos(O 1~las) - 2tr(Aj~as )~as. 
(4.4) 

Thus A r has acquired 0 dependence of a special kind. It is 
immediate that, for 1~lasElZ, A r is not single valued and 
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therefore possesses a branch singularity that will be located 
on the "axis" R2. 

So the notion of a hyperbolic monopole is wider than 
that of an axially symmetric instanton. This makes it more 
plausible that the conversion of hyperbolic monopoles into 
ordinary R3-monopoles has a rigorous basis as this conver
sion requires a continuous variation of I~I. Also the question 
of whether there is a connection between the solutions of the 
second-order equations in H 3 and those of the second-order 
equations in R3 is of considerable interest. These matters are 
currently being investigated. 
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The Rayleigh-SchrOdinger perturbation treatment accompanied by a multipole expansion of the 
interaction potential can be used in the quantum-mechanical studies oflong-range intermolecular 
forces. The total third-order interaction energy in a system of N molecules separates into several 
induction and dispersion categories. Only some of them are purely pairwise additive. In the 
present paper the closed expressions for all possible categories of the third-order anisotropic 
interaction energy in a collection of N arbitrary molecules are derived, in which the orientational 
dependence is pushed to its limits. The derivation is based on the spherical tensor formalism. The 
formulas for the induction energies are directly related to the spherical multipole moments and 
irreducible (hyper)polarizabilities of the interacting molecules in body-fixed frames. The same is 
achieved for the dispersion categories after employing some simple approximations. The present 
paper can be treated as an extension of the spherical tensor description of the two-body long-range 
molecular interactions for the most important quantum-mechanical pairwise nonadditive forces. 

I. INTRODUCTION 

The Hamiltonian H for a system of N interacting mole
cules can be written as 

N 

H= L H~O)+ V, (1) 
;= I 

where H ~O) is the Hamiltonian for the ith isolated molecule 
and Vis the operator for the interaction energy. The opera
tor V can be expressed as follows: 

I N 
V= - L Vij (Vij = Jj;. Vii =0), (2) 

2 ;.j= I 

where Vij is the potential energy operator including Cou
lomb interactions between molecules i and j. In the present 
paper we consider long-range intermolecular interactions, 
i.e., each molecule is far enough away from the other mole
cules so that neither exchange effects nor charge overlap 
among molecules is important, and close enough to the other 
molecules so that very long-range retardation effects I can be 
ignored. In this case we can obtain a very good approxima
tion of the real potential Vby expanding each V;j in a multi
pole series. Such an expanded potential V can be used in 
quantum-mechanical calculations oflong-range forces. 2 For 
example, we can apply simple Rayleigh-Schrodinger pertur
bation theory for the description of long-range interactions, 
treating this multipole approximation of V as a perturba
tion.3-6 

In such a formulation of the problem, the application of 
the spherical tensor formalism seems to be very convenient. 
It was shown that in the case of two molecules, this tech
nique leads to the separation of interaction energy into the 
terms including irreducible tensors localized on interacting 
molecules, providing closed expressions for the interaction 
energy in all orders of the perturbation.7- 14 In these expres
sions the orientational dependence is simplified to the ut
most and thus they are very suitable for studying the anisot
ropy of the interactions between two molecules. IS It was also 

shown that from orientationally dependent interaction ener
gy expressions one can easily obtain clear orientationally 
averaged (i.e., isotropic) formulas.7.8.12 These formulas are 
convenient for the understanding of some properties of the 
rare gases and liquids, where the molecules rotate more or 
less freely; they also can be important for the description of 
the interactions in molecular crystals, where a given mole
cule often sees surrounding molecules with many different 
orientations and the anisotropic interactions cancel to a 
large extent. 16 

However, long-range interactions in a system of N mole
cules (N#3) are not pairwise additive,6.17.18 so this clear de
scription based on the spherical tensor formalism concern
ing long-range interactions between pairs of molecules is 
inadequate when the interactions between N molecules are 
considered. The long-range interaction energy arising in the 
first order of the perturbation is, of course, pairwise additive, 
because it represents classical electrostatic interaction ener
gy. The second-order interaction energy separates into a 
purely pairwise additive dispersion term and an induction 
term, which contains pairwise additive as well as pairwise 
nonadditive components. 19 So the nonadditivity can first oc
cur in the second order of the perturbation, and in such sys
tems as molecular crystals it is not negligible and even can be 
important. 20 Recently we have extended the use of the 
spherical tensor formalism for these nonadditive induction 
terms appearing in the second-order interaction energy. 18 
Therefore we have generalized the spherical tensor descrip
tion oflong-range molecular interactions in the first two or
ders of the perturbation to a system of N interacting mole
cules. This generalization once more shows that the 
spherical tensor formalism gives us the best method for the 
theoretical description of long-range intermolecular forces. 

To obtain a more complete theoretical picture of the 
long-range interactions in a system of N molecules we must 
consider the third-order interactions where, in contrast with 
the second order, the nonadditivity of the dispersion forces 
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appears. 17 It should be noted that the third-order nonaddi
tive dispersion interactions are not only interesting from the 
theoretical point of view; they are worth consideration be
cause of their importance at physically meaningful interme
diate intermolecular distances. Although these nonadditive 
dispersion effects are often small, it has been known for some 
time that many interesting physical properties or phenome
na may be under their control. They are important for the 
understanding of several properties of imperfect gases (e.g., 
third virial coefficients of inert gases21 ) because they have 
influence on their equation of state22; they also have influ
ence on the effective pair potentials and radial distribution 
functions in low density gases.21 The third-order nonaddi
tive dispersion forces become important when the interac
tion between two molecules embedded in a nonpolar medi
um is considered. This fact can be applied for the 
understanding of the interactions between base pairs in a 
single DNA double helix as well as for the explaining of the 
reduction of the effective intermolecular pair potentials in 
homogeneous nonpolar liquids.21.23 This fact is also mean
ingful when the interactions between molecules immersed in 
a liquid solvent are considered. Such considerations, in 
which the nonadditivity of the dispersion forces is assumed, 
show that the solvent plays a crucial role in the modification 
of two-body intermolecular potentials. Obtained in this way, 
effective pair potentials are very suitable for the description 
of the thermodynamical properties of solutions, solute
solute, solute-solvent, and solvent-solvent interactions; 
they are also useful when the importance of the solvent ef
fects in molecular associations between long polymer chains 
in various solutions, particularly in biological systems, is ex
amined.21.23.24 The nonadditive dispersion forces are an im
portant contribution to the lattice energy and other proper
ties of the rare gas solids, i.e., elastic constants.21.25.26 They 
also can play any role in the polymorphism in the solid 
state.27 Finally these forces contribute very strongly to the 
physical adsorption and the interactions between adsorbed 
molecules21 .28; they are also large in the interactions of col
loids.29 

Stogrynl7 has proved that the total third-order interac
tion energy in a system of N molecules W3 separates into five 
categories 

(3) 

where WB and WA represent induction interactions, while 
WD , WBA , and WCD represent dispersion interactions. In 
formula (3) only the last dispersion term W CD is purely 
pairwise additive; the remaining terms include pairwise non
additive components. 17 Taking into account the necessity of 
considering the third-order interactions for a system of N 
molecules, together with the advantages of the spherical ten
sor treatment of two-body long-range interactions in all or
ders of the perturbation theory and similar advantages of the 
spherical tensor description of long-range forces between N 
molecules in the first two orders of the perturbation, in the 
present paper we extend the application of the spherical ten
sor formalism for the third-order long-range anisotropic in
teraction energy expressions in a system of N arbitrary mole
cules. As we will see, the closed equations for WB , WA , W D' 
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WBA , and WCD derived in this paper have the same nice 
properties as the previous results for two interacting mole
cules and N interacting molecules, when perturbation treat
ment up to the second order is used, i.e., they are related to 
the irreducible tensors localized on interacting molecules in 
body-fixed frames, and the orientational dependence that 
appears in them is pushed to its limits. Our formulas describ
ing the third-order electric induction interactions in a collec
tion of N molecules are directly expressed in terms of the 
irreducible tensors describing electrical properties of each 
isolated molecule [spherical multipole moments and irredu
cible spherical (hyper) polarizabilities30] in the local coordi
nate system fixed in it. This fact is important from the practi
cal point of view, because spherical multipole moments and 
(hyper)polarizabilities are very convenient when higher
order electric interactions are considered.9-J4.18.3o.3J So in 
the last section of the present paper we briefly describe how, 
by using simple approximations, we can simplify the exact 
formulas for the third-order dispersion interactions between 
N molecules and connect them with the above-mentioned 
molecular properties. At the end of this section let us notice 
that the set ofthe expressions obtained in the present paper, 
together with the earlier results concerning the interactions 
between N molecules in the first- and the second-order per
turbation theory,7-10.I3.J8 form a practically complete 
spherical tensor description of the long-range molecular in
teractions including quantum-mechanical many-body ef
fects, because in a certain sense all possible kinds of long
range forces appear when perturbation treatment up to the 
third order is used (viz., classical electrostatic forces 
between molecules having permanent multipoles, pairwise 
additive as well as pairwise nonadditive induction forces, 
and pairwise additive as well as pairwise nonadditive disper
sion forces). In higher orders only more complicated cate
gories of the above types of interactions occur32 and we can 
expect that they are much smaller than the above-mentioned 
categories. In the near future we will demonstrate that this 
practically complete spherical tensor description of long
range interactions between N arbitrary molecules can be use
ful not only when the anisotropy of the intermolecular forces 
is considered, but also when the isotropic interactions in
cluding quantum-mechanical many-body effects are exam
ined.33 This fact again shows that the spherical tensor for
malism is the best and a very effective way to describe the 
long-range intermolecular forces. 

II. INTERACTION ENERGY OPERATORS AND 
MOLECULAR PROPERTIES OCCURRING IN THE 
SPHERICAL TENSOR THEORY OF LONG-RANGE 
INTERACTIONS BETWEEN N MOLECULES 

As we have explained in the previous section, in the case 
oflong-range intermolecular forces, we can replace each in
teraction energy operator Vij (i,j = 1,2, ... ,N) by its multi
pole expansion. Many forms of the multipole expansions are 
known in the literature.6.34-41 However, for our purpose the 
most suitable is the following one7-13.18.35-37,42.43: 
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"" "" I (2/; + 2/j) 112 
Vij = (417-)1/2 L L (- 1)1 2/' 

4=0~=0 , 

li+li A 

X L (-l)'7ljYI~+'7t(Rij) 
'71)= -Ii-I} 

X [Qli • DI,(ro;- I) ® QI} • DI}(roj- I) ] 2~ Ii' (4) 

Here Qli and Qli are the spherical multipole moment opera
tors for molecules i and j, respectively, defined as usu
al. 7-11,13,18,30 They are related to the local coordinate systems 
fixed in molecules. The intermolecular vector Rij points 
from i to j and (Rij ,Rij) are the spherical components of Rij 
in the global coordinate system fixed in the space; ro; and roj 
are the sets of the Euler angles describing the orientations of 
the local coordinate systems fixed in molecules i and j, re
spectively, with respect to the space-fixed local coordinate 
systems with axes parallel to the axes of the global space
fixed frame; D j (ro) is the matrix, which represents a rota
tion ro in the (2j + 1) -dimensional irreducible representa
tion ofthe SO(3) group; and Yf denotes the usual surface 
spherical harmonic according to the phase convention given 
by Condon and Shortley.44 The irreducible tensor product 
between two sets of irreducible tensors T k , = {Tt:: ql 
= - kl, .. ·,kl} and Tk2 = {Tt: q2 = - k2,· .. ,k2} is de

fined as follows45 : 

where (k lql,k2q2Ikq) denotes the Clebsch-Gordan coeffi
cient. According to the Wigner abbreviation, 

[j1,j2, ... ,jd = [(2jl + 1 )(2j2 + 1) ... (2jk + 1)] 1/2. 

Equation (4) can be obtained from all forms of the multipole 
series described earlier. IO,43 It can be also derived direct
ly.7,13,35-37,42 In the previous considerations concerning the 
spherical tensor description of long-range intermolecular 
forces, it has been proved that the multi pole expansion ( 4) is 
very usefuI.7- 13,18 Therefore it seems to be natural to use it in 
the considerations presented in this work, which can be 
treated as an extension of the spherical tensor theory oflong
range molecular interactions for a system of N interacting 
molecules. 

As it was pointed out in the Introduction our theory 
requires several kinds of molecular properties describing the 
behavior of a polarizable molecular charge distribution in an 
external electric field. These are the following: spherical 
multi pole moments Q/' irreducible polarizability tensors 
«I {I' I "}, and irreducible hyperpolarizability tensors 
aL {(l'I")/,I"'}[(1+2l+31' aL{(l"I"')/,I'}[(2+3l+11' and 
aL{(l"'I')/,I"}[(3+1l+21' We must notice that here and 
elsewhere in the present paper, the above spherical tensors 
are defined in molecular (body-fixed) frames. Multipole 
moments QI and irreducible polarizabilities «I {I , I"} are 
defined in the usual way in accordance with the classical 
work of Gray and L030 published in 1976. To define the 
irreducible hyperpolarizabilities aL {(l'I" )/,1 "'}((1 + 2l+ 31' 
aL{(l"I"')/,I'}[(2+3l+11' and aL{(l"'I')/,I"}[(3+1)+21' 
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we must first introduce the unsymmetrized spherical reduc
ible hyperpolarizability tensors a 1'1 "I"' They are defined in 
the following way: 

{3~/,:;::'" = L (gIQ~'w) (pIQ;,!"lq) (qIQf!."lg) 
p,q¥-g €(p)€(q) 

- L (glQ ~'W)Q;,!" (pIQ f!."lg) , 
p¥-g €(p)2 

(5) 

where Ig) denotes the ground eigenstate of a given molecule, 
while W) and Iq) are the excited molecular eigenstates; 
€(p) =Ep -Eg and€(q) =Eq -Eg' whereEg , E p ' Eq are 
the molecular energies corresponding to the states Ig), W), 
Iq), respectively. We see that this definition differs from the 
analogous one introduced by Gray and Lo in their classical 
paper.30 However, if we symmetrize the tensor al'I"I" given 
by Eq. (5) in the way described by Gray and Lo, ~e get the 
symmetrized spherical hyperpolarizability tensor al'I"I" in
troduced by these authors30; indeed 

- m'm"m" {f3m'm"m"} 13 1'1"1" = S 1'1"1" , (6) 

where S implies a summation over all possible terms in 
which the (i) pairs are permuted. Therefore the difference 
between our definition of the unsymmetrized spherical hy
perpolarizability tensor al'l"l" and the analogous one given 
by Gray and L030 is unimportant, because in the description 
of physical phenomena, which are based on the interaction 
between the molecule and the external electric field, sym-

. h ) I . b'l't 2173032 Irre metnzed ( yper po anza 11 y tensors occur.' , , -
ducible hyperpolarizabilities aL {(/' I" )/,1 "'}((1 + 2l+ 31' 
aL{(l"I"')/,I'}[(2+3l+11' and aL{(l"'I')/,I"}[(3+1)+21 
can be obtained by standard coupling methods from the re
ducible tensors al'l"l" defined by Eq. (5) in the following 
way: 

f3f{(l'I" )/,I"'}[(I + 2) + 31 

= L f3~;":';::'" (/'m',I"m"l/m)(/m,I"'m"'ILM), 
m'm"m"'m 

f3f{ (I" 1"')/,1 '}(2+ 3l+ 1 I 

= L f3~;,,:,;"m" (/"m",I'"m"'l/m) (/m,I'm'ILM), 
m'm"m-m 

f3f{(l"'I')/,1 "}(3+ I) +21 

= L f3~;,,:,;"m" (/"'m"',l'm'l/m) (/m,l"m"ILM). 
m'm"m"'m 

(7) 

Here we have used square brackets in aL { ... }[ ... I to indi
cate the order of couplings. For a convenience, at the end of 
this section we introduce the following abbreviation: 

PL {(/'I" )/,I"'} 
= aL {(/'I" )/,1"'}[(1 + 2 + 31 + aL {/'I" )/,1 "'}(2 + 3) + II 

+ aL {(/'I")/,I"'}[(3+ 1) +21' (8) 
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Note that III. INTRODUCTORY REMARKS ON THE THIRD-QRDER 
INTERACTIONS BETWEEN N ARBITRARY 
MOLECULES 

Pf{(l'I")/,I"'} 

I ( P 'Nr;;mm~ + P f.~,:![~m' + P 'f..~'?r"m") 
m'm"m"'m 

X (I'm',! "m"llm) (Im,I"'m"'ILM) 

1 '" p- m'm'mm = - £.. ['['[m 

2 m'm"m"'m 

X (I'm",I"m"llm) (Im,/"'m"'ILM), (9) 

In this section we prepare ourselves to the derivation of 
the formulas describing the third-order anisotropic interac
tions in a collection of N molecules. Application of the Ray
leigh-Schr6dinger perturbation method to the "ground 
state" eigenfunction I G) of the unperturbed Hamiltonian 
H (0) = 1:;"= \ H 1°), namely the product 

where13 'Nr;;mm- are the symmetrized spherical hyperpolariza
bilities defined by Gray and L0 30 [see Eq. (6)]. This means 
that aL {(I' I" )/,I"'} can be called symmetrized irreducible 
spherical hyperpolarizabilities. 

IG) = Ig\g2 ···gN) = Ig\)lg2) · .. lgN) 

of the ground states of the Hamiltonians H ~O), H iO) , ... , H~) 
leads to the following expressions for the third-order interac
tion energies l7

: 

WB = a'b'~ = \ L.#g~.¥g. (gagb I Vab ~a gb) (P;t;~ ~;c(I:: ~c) (qa gd I Vad Iga gd) 

_ I (ga gb I Vab Iqa gb) (ga gc I Vac I;a gc) (qa gd I Vad Iga gd) ] , 

q.¥ g. €(qa) 

~ '" (ga gb I Vab Iga Pb) (Pb gc I Vbc 19b qc) (qc gd I Vcd Igc gd) 
WA = 2 £.. £.. 

a,b,c,d = \ Pb¥ g", qe¥ ge €( Pb )€(qc) 

~ '" (ga gb I Vab ~a Pb)(Pb gc Wbc 19b Pc)(Pa Pc I Vac Iga gc) 
WD = £.. £.. 

a,b,c= \ P.¥ g.,Pb¥ g",Pc¥ ge [€( Pa) + €( Pb)] [€( Pa) + €( Pc)] 

W
BA 

= a,bI,N
c 

= I [2 p.,qI • .J. g. (ga gb I Vab ~a Pb) (Pa Pb I Vab Iqa gb) (qagc I Vac Iga gc) 
r [€(Pa) +€(Pb)]€(qa) 

Pb¥gb 

_ 2 I (ga gb I Vab ~a Pb) (ga Pb I Vab Iga gb) (Pa gc I Vac Iga gc) 

P.# g. [€( Pa ) + €( Pb)] €( Pa ) 
Pb¥ gb 

+ 
(ga gb I Vab ~a Pb) (Pa gc I Vac Iqa gc) (qa Pb I Vab Iga gb) 

[€( Pa) + €( Pb)] [€(qa) + €( Pb)] 

_ ( IV I ) '" (gagblVab~aPb)(PaPblVablgagb)l 
ga gc ac ga gc £.. [() + ( ) ] 2 ' 

Po# g. € Pa € Pb 
Pb¥ gb 

-2 I 
pa.qa# ga 

Pb# gb 

(ga gb lVab IPa Pb) (Pa Pb lVab Iqaqb) (qaqb lVab Iga gb) 

(ga gb I Vab ~a Pb)(Pa Pb I Vab Iqa gb)(qa Pb I Vab Iga gb) 

[c( Pa) + €( Pb) ][ €(qa) + €( Pb)] 

( I V I ) '" (ga gb I Vab ~a Pb) (Pa Pb I Vab Iga gb) 1 
+ ga gb ab ga gb £.. [() + ( ) ] 2 • 

P.¥ g. € Pa € Pb 
PboF gb 

( 10) 

(11 ) 

(12) 

(13) 

(14) 

Use ofEq. (4) in formulas ( 10 )-( 14) together with some algebraical manipulations involving the summation indices46 leads 
to the following expressions for WB , WA , WD, WBA , and WeD: 

2168 

n~n:: n~" nbncnd 

m~m:: m::' mbmcmd 
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where {3 ~~;f;:; is the spherical hyperpolarizability of molecule a defined by Eq. (5); 

N 

WA =2 L 
a.b.c.d= 1 

"anbn;: n;n;' lid 

mam;,m;: m;m;' md 

(16) 

where a~~;: and a~~".:~ are the unsymmetrized spherical polarizabilities of molecules band c, respectively, defined by Gray 
". bee 

and Lo30
; 

where 

and 

where 

n;,,:; n;,n;: n;n;' 
m;m;; m;,m;: m;m;' 

C ";ni,cn:;nl:cn;;nc BA m;m:;m;;m",";;mc 
/'1' /"/" /",/ t ['/"/"'/'/"l 

n;":; n;" nbn;: lie 
m;m;: m;; m;,m;; me 

ab ab ac aaabbc 

A m'" A m' A m" A , A " 

(ga IQ I: !Pa) (Pa IQ 1~·lqa) (qa IQ Ii Iga) (gb IQ ~b!Pb) (Ph IQ ~llgb)Q Zc 
+ L 

2169 

1 N 
WCD = - L 

2 a.b= 1 

q •• P."" g. 
Pb"" gb 

+ L 
PtJ' q,,:F go 

Pb"" gb 

n;":; n;; n;"';: nb' 
m:,m:;m;;mbmbmb' 

[€(qa) + €( Ph )]€( Pa) 

A m" A mIN A m' A , A " 

(ga IQ li!Pa) (Pa IQ I: Iqa) (qa IQ 1~·lga) (gb IQ ~b!Pb) (Ph IQ ~llgb)Q Zc 
[€( Pa) + €( Ph) ] [€(qa) + E( Ph) ] 

A m' m" A m'" A , A " 

(ga IQ 1~·!Pa)Q Ii (Pa IQ I~= Iga) (gb IQ ~b!Pb) (Ph IQ ';'! Igb)Q Zc 
[€(Pa) +€(Ph)]€(Pa) 

Am'" m' A m" A m' A " 
(ga IQ I: !Pa)Q I~·( Pa IQ Ii Iga )(gb IQ It!Pb) (Ph IQ ';'! Igb)Q Zc 

[€(Pa) +€(Ph)]€(Pa) 
A m" m'" A m' A m' A II 

(ga IQ li!Pa)Q I: (Pa IQ 1~·lga) (gb IQ It!Pb) (Ph IQ ~llgb)Q Zc 
[€(Pa) +€(Ph)]2 
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where 

(ga IQ~~lPa) (Pa IQ ~flqa) (qa IQ 7i'lga) (gb IQ ~blPb) (Pb IQ;f Iqb) (qb IQ ~!"Igb) 
[E( Pa) + E( Pb) ] [E(qa) + E(qb) ] 

[E( Pa ) + E( Pb) ] [E(qa) + E( Pb) ] 

A. m' m" A. m'" A. m' A " A '" 

(ga IQ l~alPa)Q l;:a (Pa IQ l~: Iga) (gb IQ ItlPb) (Pb IQ ~llqb) (qb IQ 2- 19b) 

[E( Pa ) + E( Pb) ] [E(qb) + E( Pa)] 

For brevity in Eqs. (15)-( 19) we have introduced the quantities C~;J (i,j = 1,2, ... ,N, i=l=j), which are defined as ll
,I2,l8.4

7 

(20) 

The general sum over a, b, c, and d in Eq. (15) can be divided into three parts corresponding to the quantum-mechanical 
two-, three-, and four-body interactions, viz., 

N 

W B = L ( ... ) = W B,2 + W B,3 + W B,4' (21) 
a,b,c,d= 1 

where 
N N N 

WB,2 = L ( ... ), WB,3 = L ( .. , ) + L ( ... ) 
a,b,c,d= 1 a,b,c,d= 1 a,b,c,d= 1 

(b=c=d) (b=c,o,d) (c=d,o,b) 

N N N 

+ a.b,~ = 1 ( ... ) = 3 a,b,t; = 1 ( ... ), L 
a,b,c,d= 1 

( ... ). 

(b=d,o,c) (b=c,o,d) (b ,o,c,o,d) 

Here we have used the obvious fact that the three summations that occur in the three-body part WB,3 are equal to each other 
[see Eq. (15)]. Analogously, Eq. (16) for the energy WA can be decomposed into particular contributions corresponding to 
the two-, three-, and four-body interactions: 

N 

W A = L ( ... ) = W A,2 + W A,3 + W A,4' (22) 
a,b,c,d= 1 

where 
N 

W A,2 = L ( ... ), W A,3 = W~,3 + W~I,3' 
a,b,c,d= 1 

(a=c,b=d) 
N N N 

W~,3 = L ( ... ) + L ( ... ) = 2 a,b'~=1 ( ... ), 
a,b,c,d= 1 a,b,c,d= 1 

(a = c, b ,o,d) (a,o,c, b = d) (a = c, b ,o,d) 
N N 

W H -A,3 - L a,b,c,d= 1 

( .. , ), W A,4 = a'b'~=1 ( ... ). 

(a".c,a=d) (a".c,d; b ".d) 

Here we have used the fact that the two summations that appear in W~,3 are equal [see Eq. (16) ] . Note that the category W A 

includes two completely different three-body contributions W~,3 and W~,3' The energy W D given by Eq. (17) is purely 
pairwise nonadditive and contains only three-body terms. However, the summation over a, b, and c in Eq. ( 18) for WBA can be 
divided into two contributions corresponding to quantum-mechanical two- and three-body forces: 

N 

W BA = L ( ... ) = W BA ,2 + W BA,3' (23) 
a,b,c= 1 

where 
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N 

WBA,2 = ~ ( ... ), 
a,b,c= 1 
(b=e) 

N 

WBA,3 = ~ ( ... ), 
a,b,e= 1 
(b ,oe) 

Finally the category WeD described by Eq. (19) is purely pairwise additive. 
Equations (15 )-( 23) form the set of the initial formulas for the considerations presented in this work. They define all 

possible types of the third-order interactions in a collection of N arbitrary molecules. In the next two sections we derive the 
closed expressions for them possessing the advantages described in the Introduction. 

IV. DERIVATION OF THE GENERAL EXPRESSIONS FOR THE ENERGIES WB • WAf Wo• WBA.AND WeD 
Our derivation consists of two steps: At first we modify the general equations (15 )-( 19) for the energies WB , WA , W D' 

WBA , and WeD' extensively applying the spherical tensor formalism. This is realized in the present section. Then we make 
further simplifications for those parts of the general interaction energy expressions that correspond to the particular categor
ies of the third-order long-range forces defined by Eqs. (21 )-( 23 ). These additional simplifications are demonstrated in the 
next section. 

If we reduce the products of the matrix elements D ~n (ro;- I), which occur in Eqs. (15 )-(19), by the well-known 
formula for the Kronecker product of two irreducible repr~~ntations of the SO (3) group given by48 

D~,I'; (ro)D~'1'2 (ro) = ~ (jl J.t1,j2J.t2ijJ.t)(jIlJ,; ,j2J.ti ijJ.t')D~I" (ro), 
jl'l" 

(24) 

, A "A " 

then expand the products of the two spherical harmonics Y /--:+'1a:. (Rab ) Y /-:' '1+a~ .. (R ab ), which appear in Eq. (18) in C ;~;~ 
a b a b ab 

n"n" 11' A TJ" A 11'" A 

C I:'I!' and the products of the three spherical harmonics Y 1--: a:. (R ab ) Y 1-:' a~ .. (Rab) Y 1--:" abl",(Rab ), which appear in Eq. 
ab a+b a+b a+b 

n'n' n"n" n'"n'" 48 
(19) in C I~I~C I:'I!C I':..I~'" according to the Gaunt formula 

ab ab ab 

A A A 

Yf.'(R) Yt,'(R) = ~ (417) -1/2[jI,j2][ j] -I (jl J.t1,j2 J.t21jJ.t) (jIO,j20 IjO) Yf(R), (25) 
jl' 

and finally rewrite the resulting formulas in terms of the irreducible tensors describing the electrical properties of the 
interacting molecules in body-fixed frames, discussed in Sec. II, we get the following expressions for WB , WA , WD, WBA , and 
WeD: 

WB = .!... (417)3/2 f 
3 a,b,e,d= 1 

where 

X (21 ~ + 21b) 112 (21;: + 21e) 112 (21;:' + 21d) 112 
21b 21e 21d 

X [I ~ + Ib,l;: + Ie ,I ;:' + Id ] -I Y I;:a:. (Rab ) Y I; :-~c (Rae) Y I: '1:\ (Rad ) 

X [ilLa {(l~/;:)la,/~"}. DLa(roa-
l

) r a [ Qlb • Dlb(rob-I) rb[ Qle • DIc(roe-
I)] nC[Qld' Dld(rod-

I)] nd 

X CB (I ~ ,I ;:,1 ;:',Ia ;LaNa,lbnb,lene,ldnd;1Jab ,1Jae,1Jad)' 

N 

WA = 2( 417)3/2 ~ 

2171 

a,b,e,d= 1 lal;'1 ;:I"I;I ::lc1d 

"a"lI'cn tP'1ab1'fbc"lcd 

X ( 21a + 21 h) 112 (21;; + 21 ;)112 (21; + 2Id)1I2 
21a 21;; 21d 

X [/a + I h,l;; + 1;,1; + Id ] -I Y 1-+'1~~ (Rab ) Y 1-:' '1+~. (Rbc ) Y I-:' +'1edl (Red) 
a b bee d 

X [Qla • Dla(roa- I) ra [ alb {I hi;;} • Dlb(rob- I) rb [ ale {/;I;} • Dle(roe- I) re [Qld • Dld(rod- I) ] nd 

X CA (I h,1 ;;,1 ;,1 ;;Iana ,lbnb,lene,ldnd;1Jab,1Jbc,1Jcd)' 
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where 

X (I ;n;,1 ;n; II; + I; 1Jbc) (I ;n;',ldnd 11;' + Id1Jcd)' 

W
D 

= ~(41T)3/2 i I (-I)'~+/;'+/~Ra-;,/;;-/;'-IR,;;/;;-/~-IRc:/~-/~-1 
3 a,h,c = 1 1;1::101;'1;; fbl;I;' Ie 

n anbn c·1}ab"'bc"1ca 

X (21;; + 21 ~)1I2 (21; + 21 ;)112 (21; + 21 ~)1I2 
u;; u; u; 

X [I;; + I~,/; + 1;,/; + 1 ~] -I y/:: :a~;, (R ab ) Y/i::~~ (R bc ) Y/~ ~~~ (Rca) 

(28) 

where 

= ( _ 1) 'lab + '1be + 'lea 

X (/;;n;;,/ ~n~ II;; + I ~1Jab)(/;n;'/ ;n; II; + I ;1Jbc)(1 ;n;',1 ~n~ II; + I ~1Jca)' 
N 

( _I)/;'+/;;+/eR -/~-/;'-/;;-/;;-2R -/;;'-/e- I 
WBA = 41T I I ab ac 

a,h,c = 1 I ~/;; I;:' laLal;'1 b [hie 

labnab'Y/ac.Nanbnc 

X (21 ~ + 21 ~)1I2 (21;; + 21 ;)112 (2/;;' + 2/c) 112 
21 ~ 21 ;; 21 ;;' 

(29) 

where 

CBA (/ ~,I;;,/ ;;',1 ~I ;'/a;LaNa'/bnb'/cnc;lab - nab ,1Jac) 

I ( - 1) '1~b + '1;;b +'7
ae(1 ~n~,/ ;;n;; Iia na )(Iana'/ ;;'n;;' ILaNa) (I ~n~,1 ;n; Ilbnb) (I ~n~,1 ~n~ II ~ + I ~ 1J~b) 

n~n:: n:;' nilri:. 7J~bl1::b 

X (/ " "I" "1/"+1" ")(/"''''1 11"'+1 )(/' +1' , 1"+1" "II n) a n a' b n b a b 1J ab a n a , c n c a c 1J ac a b - 1J ab' a b - 1J ab ab - ab , 

WeD = ~ (41T)I!2 i I (-1)/;'+/;;+/;;'Ra-;,/~-/;'-/;;-/;;-/;;'-/;;'-3 
2 a,b= 1/;I;:I::'laLalbl;;lb'/~bla~a,;vaNt!lab 

(
21 ~ + 21 ~) 112 (21;; + 21 ;) 112 (2/;;' + 21 ;') 112 L _I 

X 21 ' 21 " 21 ", [ ab] a a a 

(30) 
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where 

( _l)"~b+"::b+";:;'(/'n' l"n"ll n ) a a' a a a a 

x (lana ,I ;'n;'ILaNa) (I ;'n;,,1 ;n; I/bnb) (/bnb,1 ;'n;'ILbNb) 

X (I ~ n~ ,I ;'n;' II ~ + I;' 7J~b) (I ;n;,1 ;n; II; + I ;7J;b) (I ;'n;',1 ;'n;'I/;' + I ;'7J;;') 

X (I ~ + I;' - 7J~b,l; + I; - 7J;b I lab - nab) (lab - nab'!;' + I;' - 7J;;' ILab - Nab)' 

It is seen that all the above operations lead to the simplification of the orientational dependence of the expressions for W B' WA , 

W D' WBA , and W CD' However, at the same time they introduce any number of Clebsch-Gordan coefficients, which are 
collected in the quantities CB ( ... ), CA ( ••• ), CD ( '" ), CBA ( ••• ), and CCD ( .•. ), and which define the respective coupling 
schemes. Now we replace these coupling schemes by the other ones, which are physically appealing and allow us to express 
each of the equations for WB , WA , WD, WBA , and WCD as an interaction between irreducible tensors localized on interacting 
molecules. We realize this modification of the quantities C x ( ... ) (X = B,A,D,BA,CD) by applying very elegant and powerful 
graphical methods of the quantum theory of angular momentum described by Yutsis et al.49 (see also Ref. 50). 

A. Cs ( ... ) 

Replacing the Clebsch-Gordan coefficients occurring in CB ( ••• ) by the Wigner 3-j symbols51 and making use of the fact 
that in CB ( ••• ) only the terms with n~ + n; = na, na + n;' = Na are nonzero, we easily find that49,50 

C (...) = ( - 1) I ~ + I:: + I ~" + Ib + Ie + Id [I,L I' + I I" + I I'" + I ] 
B a a' a b' a c' a d 

I +1 ' '+1" " 1m m ( _ 1) a - no a - na a - no + a - no 

X C~ I" 
la ) Ca 

I II' 
La ) ( I~ , Ib a a 

n' n" - na na n'" -Na -na -nb a a a 

X( I; Ie I; + Ie) ( I;' Id 

- n;: -nc TJac - n;:' -nd 

where C ~ is represented by Fig. 1 (a). Here 

denotes the Wigner 3-j symbol. Thejm-coefficient C ~ can be 
decomposed and rewritten in terms of generalized Wigner 
coefficients49.so.s2 in the following way49,50: 

C ~ = L RB VB [lbe,lbed,labe,Labed] 2, (32) 
I~bc~.~.bcd 

where the generalized Wigner coefficient VB is represented 

(a) 

+ 

l~+~ 

(b) + 

lo 

labc 

l~+lc 

lbe 

lc 

l"'+ a 

c' B 

FIG. 1. Graphic representation of (a) ca. (b) VB' 

2173 J. Math. Phys., Vol. 27, No.8, August 1986 

I;' + Id) 

7Jad 

(31) 

I 
by the diagram shown in Fig. 1 (b), while the j-coefficient R B 

has a graphic representation illustrated in Fig. 2(a). Let us 
recall that according to general rules of diagrammatic ap
proach49,50 one obtains the diagram R B joining the lines La' 
Ib,lc,ld,1 ~ + Ib,l:: + Ie ,I ::' + Id of the diagrams C ~ and VB 
and leaving their directions as they were in diagram C ~. We 
see that if we change the direction of the line labe in the 
diagram R B' this diagram can be divided into two parts by 
the lines I abe ,I be ,I a' The change of direction of a given line j 
introduces the phase factor ( - 1) 2j (see Refs. 49 and 50); in 
our case all parametersj are natural, so the change of direc
tion of the line labe in RB does not introduce any phase fac
tor. The fact that the set of the three lines labe,lbe,la divides 
RB into two parts with a smaller number ofparametersj, i.e., 
XI andX2 shown in Fig. 2(b), means that49.SO 

(33) 

The diagrams XI and X 2 can be redrawn in the forms pre
sented in Fig. 2 (c). Now let us compare these new shapes of 
XI and X 2 with the graphic representation of the Wigner 9-j 
symbol illustrated in Fig. 2 (d). We see that we must change 
the directions of some lines in XI and X 2 to express them in 
terms of the 9-j symbols. But as we have explained earlier 
such changes do not introduce any additional phase factors 
in our case. So 
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(0) 

(e) 

FIG. 2. (a) Graphic representation ofR B • The dotted line denotes how this 
diagram divides into parts X, and X2• (b) Graphic representations of X, and 

(b) 

(e) 

X 2• The forms are obtained directly from the diagram illustrated in Fig. (d) 
2(a). (c) Redrawn forms of the diagrams X, andX2• (d) Graphicrepresen-
tation of the Wigner 9-j symbol 

{ ~; ~: ~J;': ) . 
j'3 j24 

C' 'A 

FIG. 3. (a) Graphic representation of C~. (b) Graphic representation of 
V~'). (c) Graphic representation of R ~'). (d) Graphic representation of 
the 15-j symbol of type {2,2}, 

Xl = {;t ~: ~~: ~:}, X 2 = {:~' ~: I;~a: Id}' 

la Ibe labe La lbed Labed 

k' , 

j 

k 

where the expressions between curly brackets are the Wigner 9-j symbols. 5 1 Of course, VB can be written as49,SO 

2174 

7Jae 

labe ) (Iabe I;' + Id 

- nabe nabe 7Jad 

L ( - 1 ) Labcd - Nabcd[ labe,Labed,lbe,lbed,Labed ] -1 (I ~ + Ib - 7Jab,l; + Ie - 7Jae Ilabe - nabe) 
nabc"bc"~abcd 

x (Iabe - nabe,I;' + Id - 7Jad ILabed - Nabcd )(Ibnb ,Iene I lbe nbe ) 

X (Ibenbe,ldnd libednbed ) (LaNa,lbednbed I Labed Nabed ), 
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because48 

( 
jl j2 j3) = (-I)j,+},+j,(j1 j2 j3). 

-PI -P2 -P3 \PI P2 P3 
From Eqs. (31 )-( 35) we get the following modified formula for C B ( ••• ): 

CB ( ••• ) = (- 1)1;+I;+I;"+lb +lc+ld '5' (_1)L.bcd-N.bcd[/~ + Ib,l;; + le,I;;' + Id,la,La,lbe,lbed,labe] 
I.~~.bcd 

B.CA (···} 

nabt!'JJcllbcdNabcd 

r-
Ib 1:+1.}r lbe 10k } 

X I~ Ie I;; + Ie I;;' Id I;;' + Id (I ~ + Ib -1Jab,l;; + Ie -1Jae I/abe - nabe ) 

la lbe labe La lbed Labed 

X (/abe - nabe,I;;' + Id -1Jad ILabed - Nabed ) (lbnb,lene l/benbe ) 

X (/benbe,ldnd l/bednbed) (LaNa ,lbednbed ILabedNabed)' (36) 

Similarly as in the case of C B ( ••• ), after replacing the Clebsch-Gordan coefficients occurring in Eq. (27) for C A ( ••• ) by 
the 3:isymbols and making use of the factthat in CA ( ••• ) only the terms withnb + nl: = nb, n; + n; = ne arenonvanishing, 
one obtains49.50 

(37) 

where the jm-coefficient C ~ is represented by Fig. 3 (a). Again C ~ can be decomposed and rewritten in terms of generalized 
Wigner coefficients.49.50.52 In particular,49.5o 

C ~ = '5' R ~l) V~l) [iae,lbd,labe,Labed ] 2, 

IQcl~abcd 
(38) 

where the generalized Wigner coefficient V~l) is represented by the diagram shown in Fig. 3(b), while thej-coefficient R ~l) 
has a graphic representation illustrated in Fig. 3 (c). In Fig. 3 (d) we have given a graphic representation of the 15:i symbol of 
type {2,2} described by Yutsis and Bandzaitis,53 which is proportional to the 15:i symbol of the third kind considered 
byYutsis et al.54 [in Fig. 3(d) we have left arrows that denote the directions of lines, because, as we have explained in Sec. 
IV A, they are immaterial in the case of aj-coefficient with naturalj's]. If we now compare the diagrams presented in Figs. 
3(c) and 3(d) we see thatR ~I) can be expressed in terms of the 15:isymbol. To do this we must only change the orientations of 
the loops (/ ;',1 1:,lb), (/b,ld,lbd ) and (/ae,lbd,Labed) in the diagram R ~l). This means that49.5o 

(

I I: Id I; I; I I: + I; I; + Id) 
R~l) = Ib Ie labe (_1)l b+lb'+ld+loc +L.bcd, 

I b Ibd la lac la + I b Labed 

(39) 

where the expression between brackets ( ) is the 15:isymbol of type {2,2}. One can easily check that V~l) can be put into the 
following form48-50: 

V (1)=(_I)I.+lc+l.c+L.bcd[l,L I I,L ]-1 ~ ( I)N.bcd(1 + I' 1"+1' II ) 
A abe abed' ae' bd abed ~ - a b -1Jab' b e -1Jbe abe - nabe 

nacnbd"a~abcd 

X (Iabe - nabe,l; + Id -1Jed ILabed - Nabed ) (/ene,lana I lac nae )(lbnb,ldnd I/bdn bd ) (/aenae,lbdn bd ILabedNabed)' (40) 

Therefore from Eqs. (37)-(40) we get the following modified formula for CA ( ... ): 

CA ( ... ) = ( - 1)1; + I;' + Ic[ la + 1;,,1 I: + 1;,1; + Id,lb,le] '5' ( - 1)N.bcd [iae,lbd ,labe] 
I.,j~.bcd 

nacnbd"abtlVabcd 

xC 
Id I' I" II: + I; I~ +1') e e 

Ib Ie labe 
I' Ibd la lac la + I b Labed b 

X (Ia + I b -1Jab,1 I: + I; -1Jab I/abe - nabe ) (/abe - nabe,I;' + Id -1Jed ILabed - Nabcd ) 

X (lene,lana I lac nac ) (lbnb,ldnd I/bdn bd ) (laenae,lbdnbd ILabedNabed)' (41) 

However, we can decompose and rewrite C ~ in terms of generalized Wigner coefficients in another way, which also will be 
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V12) C' Vo 
A (0) 0 (b) 

Ie 

lbe IO'I~ 
10 Ie I~+I~ 

t;:+ld ~bc 
I~+I~ 

I" a ~ lao laOc 

I' 
R12) I~.I~ I~+I~ 10 10 I~.I~ Itle - 0 - A 

(b) 

Ro 
+ I" 

0 

(c) 

FIG. 4. Graphic representation of (a) V~2), (b) R ~2). 

FIG. 5. Graphic representation of (a) C;" (b) VD , (c) RD' 

interesting for us, viz.,49.50 

C ~ = L R ~2) V~2) [lad,lbe ,labed,Labed ] 2, (42) 
ladJbiabc~abcd 

where the generalized Wigner coefficient V ~ 2) is represented by the diagram shown in Fig. 4 ( a) and the j-coefficient R ~ 2) has a 
graphic representation illustrated in Fig. 4(b). If we again compare Fig. 4(b) with the graphic representation of the 151 
symbol of type {2,2} given in Fig. 3(d), we find that49,50 

Ib lad Ibe Id 

c" R (2)_ 

A - la + I ~ 
I' b L abed I" e I') ( _ 1) I b + I; + 10 + Id + lod + lobed + Lobed. 

II: labed 11:+1; I; + Id I' e 

It is evident that48-5o 

V(2) = (_I)Ii,+I:;+lod+lobed+LOIxd[1 I L I L ]-1 
A ad' be' abed' abed' abed 

x L ( - 1 ) NObCd(1 ;' + Id - 1Jed,la + I ~ - 1Jab I/abed - nabed ) 
nadnbcna~abcd 

From Eqs. (37) and (42)-(44) we obtain the alternative modified expression for CA ( ... ), i.e., 

CA ( ... ) = [fa + I ~,I I: + 1;,1; + Id'/b'/e] L ( - 1 ) Nobcd [ lad'/be,fabed ] 
ladl'xiabcdLabcd 

nad"bc"abcdNabcd 

4 ~ ~ ~ 

I ~ L abed 

I I: labed I I: + I; I;' + Id 

x (I;' + Id -1Jed,la + I ~ -1Jab I/abed - nabed ) (Iabed - nabed ,/ I: + f; -1Jbe ILabed - Nabed ) 

X (Idnd'/ana I/adnad) (lbnb,lene I/benbe) (lad nad,lbe nbe ILabedNabed)' 

2176 J. Math. Phys., Vol. 27, No.8, August 1986 Piotr Piecuch 

(43) 

(44) 

(45) 

2176 



                                                                                                                                    

c. Co ( ... ) 

From the defining relation for CD ( ... ) [see Eq. (28)] we immediately have49
,5o 

C ( ) -(-I)/~+I:;+I;'+I;;+/~+I::[IIII"+I'I"+I'I"+I']C' D··· - aJ h' c' a h' b c' c a DJ 

where the jm-coefficient C ~ is represented by Fig. 5 (a). As in the case of C ~ and C ~ we can write49
•
50 

C~ = L RDVD[/ab,labe,Labe]2, 
laJao.Labc 

(46) 

(47) 

where the generalized Wigner coefficient V D is represented by the diagram shown in Fig. 5 (b), while the j-coefficient R D has a 
graphic representation given in Fig. 5(c). If we compare Figs. 3(d) and 5(c) we get49

•
50 

\

Ib I; lab Ie la I; ) 
RD = I;; Labe I~ (_l)/~+I::+I;'+I;;+/~+I::+Labc. 

I ~ I;; + I; I; + I ~ labe I; I; + I ~ 
(48) 

It is clear that the algebraic expression corresponding to the diagram VD given in Fig. 5 (b) is48
-

50 

VD = [lab,Labe,labe,Labe] -I L ( - l)
L

abc+
N

abc(la na'!b nb I/abn ab ) 
n"lI'atHJVabc 

x (labnab,lene ILabeNabe) (I;; + I; - 'TJbe,!; + 1 ~ - 'TJea I/abe - 'TJabe) (I; + 1 ~ - 'TJab,labe - nabe ILabe - Nabe ). (49) 

From Eqs. (46)-(49) we obtain the following modified formula for CD ( ... ): 

CDC .•• ) = [I; +/~,I;; +1;,1; +/~'!a,lb,le] L (-I)Nabc [/ab ,!abe] 

D. eSA ("') 

I' e 

laolao.Labc 
n"III"txJVabc 

I' a 

I" a 

X (lana ,Ibnb I lab nab ) (lab nab ,Iene ILabeNabe) (I;; + I; - 'TJbe,!; + I ~ - 'TJea I/abe - nabe ) 

X (I; + I ~ - 'TJab ,Iabe - nabe ILabe - Nabe )· 

It is easy to see that49,5o 

C ( ...) = ( - 1) I ~ + I:: + I;; + I;' + I;; + Ie [I,L I I' + I' I" + I" 1 III + I I ] C ' 
BA a a' b' a b' a b' a c' ab BAJ 

(50) 

(51 ) 

where thejm-coefficient C~A is represented by the diagram illustrated in Fig. 6(a). In language of diagrams we can write 
that49,5o 

C~A = L RBAVBA[lbe,Labe]2, 
lo.Labc 

(52) 

where the generalized Wigner coefficient VBA has a graphical representation given in Fig. 6 (b), while the j-coefficient R BA is 
represented by the diagram shown in Fig. 7 (a). As in the case of R B (see Sec. IV A) after changing the direction of the line lab 
in the diagramRBA we find that the three lines la ,lb,lab divideR BA into two parts XI andX2 with less numbers ofparametersj, 
which are illustrated in Fig. 7(b). This means that49,5o 

RBA =XI .X2· (53) 

The diagrams XI andX2 can be redrawn in the new forms presented in Fig. 7 (c). Ifwe compare these new shapes of XI and 
X 2 with the diagram representing the Wigner 9-j symbol [see Fig. 2(d)], we get 

la } {Ia I ;' La } 
I;; Ib' X2 = Ib Ie Ibe . 

I; + I;; lab lab I;' + Ie Labe 
{ 

I ~ 
I' 

I~ ; I~ 

I" a 

(54) 

According to the usual interpretation of the diagram VBA given in Fig. 6(b) we obtain48-50 

VBA = ( - l)
Labc[ lbe,Labe,Labc] -I L (- 1) Nabc(lb nb,!e ne libenbe ) 

n~abc 

(55) 
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(a) 

(b) 

FIG. 6. Graphic representation of (al C 8A> (bl VBA • 

RBA +A--~-oiL'--~---->l.' 

~ 
(a) 

(b) 

(c) + Q-----+------'----<> 

FIG. 7. (al Graphic representation of RBA • Dotted line denotes how this 
diagram divides into parts X I and X 2• (b l Graphic representations of Xl and 
X 2• Forms obtained directly from the diagram illustrated in Fig. 7 (al. (cl 
Redrawn forms of the diagrams Xl and X 2• 

From Eqs. (51 )-( 55) we get the following modified expression for C BA ( ••• ): 

C BA ( '" ) = ( - 1) I ~ + I: + I~" + I b + I;: + Ie [l ~ + I i, ,I; + 1;,1;' + Ie ,lab ,la,La ,Ib ] 

(56) 

E.CcD ( ••• ) 

Let us notice that the quantity CeD ( ••. ) given by Eq. (30) is defined in the same way as the quantity C( ... ), which 
occurs in the spherical tensor theory of the third-order interactions between two molecules. 11,12 This is no wonder, because the 
energy WeD represents purely pairwise additive interactions. Therefore we can directly apply the result of the considerations 
concerning the quantity C( ... ) (see Refs, 11 and 12) to CeD ( ... ). In this way we find the following modified formula for 
CeD ( ... )55: 

C ( ... )=(_I)I;+I:+I:'+lb+li:+It:'+Lab+Nab[/' +1' 1"+1"1"'+1"'1 I I ,L L] 
CD a b' a b' a b'a'b'ab a' b 

{ 

I~ 
X Ii, 

I ~ + Ii, 

I" a I'" a 

I;' 

1;'+1;' 

(57) 

Inserting the modified formulas for the quantities Cx ( ... ) (X = B,A ,D,BA ,CD) obtained in Secs. IV A-IV E [see Eqs. 
(36), (41), (45), (50), (56), and (57)] into the respective expressions for the energies Wx (X = B,A,D,BA,CD) given by 
Eqs. (26)-(30) we obtain clear general formulas describing the third-order interactions in a collection of N arbitrary 
molecules. According to our program, these formulas, together with some supplementary simplifications, are discussed in the 
next section of the present work. 

V.RESULTS 
The mathematical considerations described in the previous sections yield the following final expressions for the energies 

WB , WA , WD, WBA , and WeD: 
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or 

2179 

W
B 
=~ (417")3/2 f L (-l)/;+I:;+I;;Ra~/;-lb-IRa-;I:;-lc-IRa~/;"-lrl 

3 a.b.c.d = 1 1 ;1:; I;; 1.L.r"l.,l';,,)b .. ia~abcJ 

(
21 + 21' )112 (21" + 21 ')112 (21" + 21 )112 

a b bee d [I I I I I ] 
X 21a 21;; 21d b' cO ae' bd' abe 

X(/;; 
I' b 

I' e I; + Id) 
labe 

Labed 

I" e 

N 
W

A 
=2(41T)312 L L (-l)/i,+I;+ldRa"7,la-Ii,-IR;;;lb-I;-IRe-:;I;:-lrl 

a,b.c,d = 1 lQI;'1 ;: Ibl :1 ~ lcldladlbcla~abcd 

WD = ~ (417")3/2 f L 
3 a.b,c = 1 I ~I :: lal ;'1 ;: fbi ;1 ~ 1)"blaocLabc 

(
21" + 21' )112 (21" + 21 ')112 (21" + 21' )112 

a b bee a [I I I I I ] 
X 21 " 21 " 21 " a' b' e' ab' abc abc 

x( I' lab Ie la 
I" ) 

e 

I: ~/: I;; Labe I' a 
Ii, 1;;+1; 1::+Ii, labe I" a 

Labe N A. A. A. 

X L (-1) abe[Y/"+I.(Rab )® [Y/"+I.(Rbe)®Y/"+I.(Rea)]1 ];Nabe 
Nabc= - Labe 

ab be co abeah<: 
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where 

D T~;~{( (/ ~ I;;)fa' (/ ~/;)fb )/ab' (l;I; )/J 

= L D[[[(gaIQ/~!Pa)®(PaIQ/;lga)h oD/a(roa-
l

) 

Pa#oga' Pb#ogb' Pc #0 gc 

® [(gb IQ/.;!Pb) ® (Pb IQ/;;lgb) h 0 D/b(rob- I) Lb 

® [(gc IQ/~!Pc) ® (Pc IQ/;,lgc) h 0 D/C(roc- I) ] ~::, 

x (21 ~ + 21 ~)1I2 (21;; + 21 ;)112 (2/;;' + 2/c)1I2 
21 ~ 21 ;; 21 ;;' 

I II, 
a 

Labe 
X L ( - 1 )Labe - Nabe [Y lab <i~ab) ® Y /;. + Ic d~ac) ] r::abe BAT~:~{((l ~/;; )Ia ,I ;;')La ,((l ~/; )lb,lcl1bc}' (61) 

Nabc = - Lobe 

where 

BAT~abe{( (l ~I ;;)fa ,I ;;')La ,( (l;'1 ;)fb,lc)/bJ abe 

2180 

XD;; N (roa- I) (I ~m;,,1 ;m; I/bmb)D ~ n (rob- I)D ~ n (roc- I) (LaNa ,Ibcnbc ILabcNabc) (Ibnb '!cnc I/bcn bc ) 
tr~a b b c--c 

= L [E(Pa) + E(Pb)] -IE(qa) -I [ [ [(ga IQ/~!Pa) ® (Pa IQ/;lqa) h ® (qa IQ/;.lga)] La 0 DLa(roa- I) 

Pa.9a#ga 

® [ [(gb IQ/,;!Pb) ® (Pb IQ/;;lgb)] Ib 0 D/b(rob-
I) ®Qlc 0 D/C(roc-

I)] lbe ] ~:: 

- L [E(Pa) + E(Pb)] -IE(Pa) -I [ [ [(ga IQ/~!Pa) ® Q/; h ® (Pa IQ/;.lga)] La 0 DLa(roa- I) 
Pa'l"ga. Pb#ogb 

® [ [(gb IQ/,;!Pb) ® (Pb IQ/;;lgb) h 0 D/b(rob- I) ®Qlc 0 D/C(roc-
l

) ]/J ~:: 
+ L [E(qa) + E(Pb)] -IE(Pa) -I [[ [ (Pa IQ/~ Iqa) ® (qa IQ/;lga) h ® (ga IQ/~"!Pa) ] La 0 DLa(roa- I) 

pa,qa#ga 

A A I I N 
® [ [(gb IQ/.;!Pb) ® (Pb IQ/;;lgb)] Ib 0 Db(rob-

I
) ®Qlc 0 DC(roc-

l
) ]/be ] L:: 

- L [E(Pa) + E(Pb)] -IE(Pa) -I [ [ [Q/~ ® (Pa IQ/;lga) h ® (ga IQ/~"IPa) ] La 0 DLa(roa- I) 

pa#oga' Pb#ogb 
A A I I N 

® [ [(gb IQ/.;!Pb) ® (Pb IQ/;;lgb) hoD b(rob- I) ® Qlc 0 DC(roc-
I
)] IJ L:: 

+ L [E(Pa) + €(Pb)] -I [€(qa ) + €(Pb)] -I 
Pa.qa#ga 

Pb'l"gb 
A A A La -1 

X [[ [(qaIQ/~lga) ® (gaIQ/;!Pa)h ® (PaIQ/;.lqa)]La oD (roa ) 
A A I I N 

® [ [ (gb IQ/.;!Pb) ® (Pb IQ/;;lgb) hoD b{rob- I) ® Qlc 0 D C(roc- I) hJ L:: 

- L [E(Pa) + €(Pb)] -2 [ [ [(Pa IQ/~ Iga) ® (ga IQ/;!Pa) h ® Q/;'] La 0 DL·(roa-
l

) 

p.'I"ga' Pb'l"gb 
A A I I N 

® [ [ (gb IQ/.;!Pb) ® (Pb IQ/;; 19b) ] Ib 0 D b( rob- I) ® Qlc 0 D C(roc- I) ] IJ L::' 
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(
21 ~ + 21 b)1I2 (21; + 21 ;:)112 (2/;' + 21 ;:')112 

X 2/' U" U m 
a a a 

I;' La} 
I;:' Lb 

Im+lm L a b ab 
Lab 

X ~ ( - 1 ) Naby - Nab(R ) CDTNab{(/' I ")1 I m)L (/'1 ")1 I m)L } 
~ Lob ab Lab a a a' a a , b b b' b b' 

(62) 
Nab= -Lab 

where 

CDTNab{(/'I")1 Im)L (/'1")1 Im)L} 
Lab a Q a' a a' b b b' b b 

= 

X (I bm~,1 i:mi:l/bmb) (lbmb,1 i:'mi:'ILbMb)D;;~b (rob I) (LaNa.LbNb ILabNab) 

= L [E(Pa) +E(Pb)]-I[E(qa) +E(qb)]-I[ [[(gaIQI~lPa)®(PaIQI;lqa)h ®(qaIQI~.lga)]La 'DLa(roa-
l

) 

Pa,qa#ga 

A. A A Lb _ 1 Nab 

® [[ (gbIQIblPb) ® (PbIQIblqb) h ® (qbIQIb'lgb) ]Lb ,D (rob ) ] Lab 

- L [E(Pa) +E(Pb)]-I[E(qa) +E(Pb)]-1 
pa.qa#-ga 

Pb#-gb 
A. A A La -1 

X [ [ [(ga IQI~ lPa) ® (Pa IQI;lqa) h ® (qa IQI;,lga)] La ,D (roa ) 

® [ [(gb IQIb IPb) ® QIb] Ib ® (Pb IQIb"19b ) hb 'DLb(rob- I) ] ~:: 
A - L [E(Pa) +E(Pb)]-I[E(qb) +E(Pa)]-I[ [[(gaIQI~lPa)®QI;h 

Pa#-ga 

® (Pa IQI~.lga) ]La 'DLa(roa-
l

) ® [[ (gbIQIi,lPb) ® (Pb IQI;;lqb) h ® (qbIQIb'lgb) ]Lb 'DLb(rob-
l

) ]~:: 

+ L [E(Pa) + E(Pb)] -2 [ [ [(ga IQI~ lPa) ® QI; h ® (Pa IQI;,lga)] La 'DLa(roa- I) 

Pa#-ga' Pb#-gb 

® [ [(gb IQIb IPb) ® Q Ib h ® (Pb IQIb,lgb) ] Lb ' DLb(rob- I) ] ~::. 
In the case of WCD we have applied the following identity: 

(I ~ + I ~o,!; + I ;:Ol/abO) (lab 0,!;' + I ;:'OILabO) ( _ 1 )I~ + I; + I;; + Ib + I;; + I;;' + Lab 

= (I ~ + I bO,I; + I ;:Ol/abO) (Iab0,!;' + I tOILabO), 

which results from the well-known property ofClebsch-Gordan coefficients of type (jIO,j20 IjO), i.e.,48 

(jIO,hOljO) = ( - 1 )j, +j, -j(jIO,j20IjO). 

(63) 

(64) 

We have used curly brackets in DT~abc{ .. , }, BAT~abc{ ... }, and CDT~ab{ ... }, which appear in the formulas (60)-(62) for the 
abc abc ab 

dispersion energies WD, WBA , and WCD' respectively, to indicate the coupling schemes. 
Now we briefly describe simplifications in the general interaction energy expressions (58)-(62), which are possible for 

some specific parts of them corresponding to the particular categories of the third-order long-range forces defined by Eqs. 
(21)-(23). These simplifications can be made for WB.2, WB.3, WA.2, W~.3' W~~3' and WBA.2. 

In the case of the pairwise additive category WB •2 we must first relabel the indices that occur in the terms of Eq. (58) 

whereb = c = d as follows: lb-l b, Ie-I;:, ld-l ;:', lbe-lb' lbed-Lb' labc-lab' Labed-Lab' Nabed-Nab' UsingEqs. (24) and 
(25) we can easily derive the following formulas: 
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A A A 

[ [YI~ + I;' (Rab ) ® Y I:; + 1;;(Rab )] lab ® YI:; + 1;;,(Rab ) ] Lab 

= (41T) -I [l ~ + 1",1; + 1;,1;' + I;'] [Lab] -1(1 ~ + 1,,0,1; + I ;Ol/abO) (/abO,1 ;' + I ,,"OILabO)YLabRab)' (65) 

[ [QI" 0 DI"(rob-
l

) ®Qli: 0 D
I
;; (rob-I) h ® QI,," 0 D

I
,," (rob- I) ] Lb = [ [Q/" ® Q/;; h ® Q/;;, ] Lb 0 DLb(rob-I). (66) 

If we now substitute Eqs. (65) and (66) into this part ofEq. (58), which corresponds to WB,2' i.e., contains the terms where 
b = c = d, and apply the identity (63) we get the final maximally simplified expression for the two-body category WB,2' 

From Eq. (21) it follows that the three-body category WB,3 is completely determined by this part ofthe sum over a, b, c, 
and d in Eq. (58) that contains the terms where b = c=j:.d. Therefore to obtain the maximally simplified expression for WB•3 

we first relabel the indices that appear in the terms ofEq. (58) where b = c=j:.d as follows: Ib-I", Ie-I;, lbe-Ib' lbed-Ibd' 
labe-Iab' Labed-Labd' Nabed-Nabd' Then using the same arguments as in the case ofEqs. (65) and (66) we can write that 

[Y/~+I,,(Rab)®YI:;+I;;(Rab)hb = (41T)-1/2[/~ +1",I;+/n[lab]-I(/~ + 1,,0,1; +1;Ol/abO)Y/a.(Rab)' (67) 

[Q/" 0 DI"(rob-
l

) ® Q/;; 0 Dlb' (rob-I) h = [Q/" ® QI;; h 0 Dlb(rob- I). (68) 

According to Eq. (21), if we insert Eqs. (67) and (68) into this part ofEq. (58), which includes the terms where b = c=j:.d, 
and multiply the resulting formula by 3, we obtain the final maximally simplified expression for the three-body category WB•3 • 

In the case of the pairwise additive category WA,2 we first relabel the indices that occur in the terms ofEq. (59a) where 
c = a, d = b as follows: 1;-1;, 1;-1 ;', Ie-la' la-/~, lac-La, Id-I ;', Ibd-Lb' labe-Iab' Labed-Lab' Nabed-Nab' Then 
applying the same arguments as in the case of Eqs. (65) and (66), we can write the following expressions: 

A A A 

[ [ Y/' +1' (R ab ) ® Y/" +1"(Rba )] I ® Y /.., + 1",(Rab )]L 
ab ab ab Q b ab 

=(-1)/:;+1;;(41T)-1[/' +1' I"+I"I"'+I"'][L ]-1(1' +1'01"+1"01/0) a b' a b' a b ab a b' a b ab 

X (/abO,I;' + I ;'OILabO) Y L (R ab ), ab 

[ ala {/;I ;'} 0 Dla(roa- I) ® Q/~ 0 D/~(roa-l) ] La = [ala {/;I ;'} ® Q/d La • DLa(roa- I), 

[alb {/ "I;} 0 D/b(rob-
I) ®Qlb" 0 D/;;' (rob-I) ]L

b 
= [alb {/ "I;} ®Qli:' ]Lb 0 DLb(rob-

I). 

(69) 

(70) 

(71) 

Inserting Eqs. (69)-(71) into this part ofEq. (59a), which corresponds to WA ,2' i.e., contains the terms wherec = a, d = b, 
we get the final maximally simplified formula for the two-body category WA,2' 

According to Eq. (22), to obtain the maximally simplified formula for the three-body energy W~,3 we have to examine 
this part of the sum over a, b, c, anddin Eq. (59a), which includes the terms wherec = a, b =j:.d. Therefore in this case we first 
relabel the indices that occur in thetermsofEq. (59a) wherec = a, b =j:.din the following way: la-/~, I ;_1;, I ;-.1 ;', Ie-la' 
lac-La' labe-Iab' Labed-Labd' Nabed-Nabd' Using Eqs. (24) and (25) we immediately find that 

[Y/~+I,,(Rab)®YI:;+Ii:(Rba)hb = (-1)/:;+1;;(41T)-1/2[/~ +11,,1;+1;] 
A 

X [lab] -1(1 ~ + 11,0,1; + I ;Ol/abO)Ylob (R ab ), 

[a {l"I"'}oD/a(ro-l)®Q oD';(ro- 1)] = [a {l"I"'}®Q ] oDLa(ro- l ) 
la a a a I ~ a Lq la a a I ~ La Q. 

(72) 

(73) 

From Eq. (22) it follows that if we substitute Eqs. (72) and (73) into this part ofEq. (59a), which contains the terms where 
c = a, b =j:.d, and multiply the resulting expression by 2, we get the final maximally simplified formula for the three-body 
category W~,3' 

Contrary to the energy W~.3' in the case of W~.3' which also represents three-body interactions, we must apply Eq. 
(59b), which differs from Eq. (59a) by the order of couplings. According to Eq. (22), we first relabel the indices that appear 
in the terms ofEq. (59b) where c=j:.a, d = a as follows: Id-./~, la-I;, lad-la' labed-Iabe> Labed-.Labe' Nabed-.Nabe' Then 
with the help of Eq. (24) we can write 

(74) 

Inserting Eq. (74) into this part of Eq. (59b), which contains the terms where c=j:.a, d = a, we find the final maximally 
simplified expression for the category W~.3' 

The last category of the third-order interactions between N molecules, for which further simplifications can be made, is 
the pairwise additive part ofthe energy WBA , i.e., WBA•2 • According to Eq. (23), in this case we must first relabel the indices 
that occur in the terms ofEq. (61) where b = c in the following way: le-.I ;', lbe-Lb' Labe-Lab' Nabe-Nab' Then making 
use of Eqs. (24) and (25) we simply obtain the following equations: 
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[ [(gb IQlblh) ® (Pb 1QIb'lgb)]r. • D/b(rob- I) ®Qlb'· D/b' (rob-I) ]Lb 

= [ [(gb IQlb ~b) ® (Pb 1QIb'lgb)]r. ® Qlb' ] Lb • DLb(rob- I), (75) 

[Y/ab (Rab ) ® Y/: +1b'(Rab ) ] Lab = (41r)-1/2[lab,/~" + I;'''] [Lab] -I (labO,1 ;' + 1;'''OILabO)YLab (Rab ). (76) 

Ifwe now insert Eqs. (75) and (76) into the part ofEq. (61) that contains the terms whereb = c and apply the relation (63), 
we get the final maximally simplified formula for the two-body dispersion category WBA•2 • 

From Eqs. (21 )-(23) and (58)-(62) it follows that any further simplifications are not possible for the remaining third
order energies WB•4 , WA,4' WD, WBA,3' and WCD' Therefore the maximally simplified formulas for them are directly given by 
the adequate parts of the general equations (58)-(62). 

Our expressions for all possible categories of the anisotropic long-range molecular interactions arising from the third 
order of the perturbation theory described in the present section have very readable, formally and physically appealing forms, 
viz., the respective irreducible tensors localized on interacting molecules are first coupled together. At the same time the 
geometric factors describing the orientations of the intermolecular vectors Rij (i,j = 1,2, ... ,N) are also coupled together to a 
tensor that contains all the information about the geometry of a system. Then both these resultant tensors, which have the 
same order, are coupled to a scalar by the phase factor of type ( - 1)L - N or ( - 1 )N, because48,52 (L - N,LN 100) 
= (_ 1)L-N[L ]-1. 

It should be pointed out that the present formulas for the pairwise additive parts of the third-order interaction energies in 
a collection of N molecules, i.e., WB,2, WA,2' WBA,2' and WCD' are in complete agreement with the previously obtained 
expressions describing the adequate categories of the third-order interactions between two molecules. 11,12,14 One can easily 
verify this statement in the case of WB,2' WBA,2' and WCD ' To prove that it is also true for WA,2' we must apply the identity (63) 
and the relation 

C 
I;;' I" I'" 1;+1;; 1:+lj a a 

Ib la lab 

I' Lb I' La I~ + I;' Lab b a 

r I;' 1:+I'Jr" Ib I~ J =~[I~1)]2 I; I;; I; + I;; I;' I;''' 1;'+1;;' 
I~ ) I (I) Ib lab La Lb Lab a 

{
I; 

X L 
a 

I'" a 

I' a 

which simply follows from the definition of the 15-j symbol 
oftype {2,2} given by Yutsis and Bandzaitis.53 (Here 

{ ~I ~2 ~3} 
i4 i5 i6 

denotes the Wigner 6-j symbol. 5 
I) For more details see the 

Appendix. 
In the end of this section we would like to mention that 

the present formulas for 

WB = WB,2 + WB ,3 + WB,4, 

WA = WA ,2 + W~,3 + W~3 + WA ,4' 

WD,WBA = WBA,2 + WBA,3' and WCD' given by Eqs. (21)
(23), (58 )-( 63), (65 )-(76), are the closed spherical tensor 
analogsofEqs. (2.13), (2.16), (2.21), (2.32), and (2.38) in 
Stogryn's 1971 paper,17 where the Cartesian notation is ap
plied. Let us recall that the electric induction categories WB 

and WA , which arise from the third order of the quantum
mechanical perturbation theory, 17 are classical in nature and 
can also be found using only classical electrostatic argu
ments, as described by Kielich41 and Stogryn.32 Stogryn's 
energy W D (see Ref. 17) is the maximal generalization of all 
earlier results on purely pairwise nonadditive three-body 
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(77) 

I 
dispersion forces. 21.22,25,56-64 WBA = WBA,2 + W BA,3 de-
scribes a category of the third-order dispersion interactions, 
which had not been considered in the literature before the 
publication ofStogryn's work. 17 Finally, the purely pairwise 
additive category of the third-order dispersion interactions 
W CD had been considered in the literature before the publi
cation ofStogryn's paper, 17 but only for spherically symmet
ric molecules. 65 

VI. CONCLUSIONS 

Let us summarize the preceding results. It is seen that 
the application of the spherical tensor formalism leads to the 
closed, physically appealing expressions for all possible 
types of the anisotropic interactions between N arbitrary 
molecules that occur in the third order of the perturbation 
theory, i.e., WB,2' WB,3' WB,4' WA,2' W~,3' W~.3' WA,4' WD, 
WBA,2' WBA,3, and WCD ' In contrast with the analogous for
mulas for them, when the Cartesian notation is used,17 they 
have the following advantages: (i) the dependence on the 
orientations of the molecules in the space and the depen
dence on the orientations of the intermolecular vectors that 
occur in them are completely separated and pushed to their 
limits, and (ii) the physical parts of them are also separated 
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and related to the irreducible tensors localized on interacting 
molecules in molecular (body-fixed) frames [in the case of 
the induction categories these tensors are directly connected 
with the molecular spherical multi pole moments and irredu
cible (hyper) polarizabilities]. From the above nice proper
ties of our energy expressions it follows that they can be 
additionally simplified if at least one molecule in a system 
has finite symmetry group; this remark is the same as in the 
case of the use of spherical tensors to the description of two
body long-range interactions.9,1O.12-14,66,67 So demonstrated 

in this paper formulas for WB,2' WB.3, WB,4' WA,2' W~,3' 
W~I,3' WA,4, WD, WBA,2' WBA,3' and WeD should be very 
convenient in practice; in the case of the dispersion categor
ies WD, WBA,2' WBA,3' and WeD' this will be seen more clear
ly in the next section of the present work, where we apply 
simple approximations to express them through molecular 
spherical multipole moments and (hyper)polarizabilities. 
Let us recall that similar advantages are also valid for the 
spherical tensor theory of the long-range interactions 
between two molecules in all orders of the perturbation the
ory7-14 and for the spherical tensor description of the long
range forces between N molecules, when perturbation treat
ment up to second order is used.7- IO,13,18 Therefore the 
spherical tensor formalism really provides the best and a 
very effective method for the examination of long-range 
pairwise additive as well as pairwise nonadditive molecular 
interactions. 

VII. CONNECTION OF Wo, WSA,2 WSA,3, AND Weo WITH 
ELECTRICAL PROPERTIES OF INTERACTING 
MOLECULES 

In this section we briefly describe some useful approxi
mations for the exact formulas for the dispersion energies 
WD, WBA,2' WBA,3' and WeD obtained in the present paper. 
They are similar to those described by Stogryn,17 so we do 
not report the details here. 

Let us apply the Unsold68 or, more precisely, the Buck
ingham approximation2 to formula (60). This means that 
we must replace the D that occurs in DT~::{ ... } by 

(Ua + Ub + Ue)UaUbUe 

(Ua + Ub)(Ub + Ue)(Ue + Ua)E(Pa)E(Pb)E(Pe) , 

(78) 

where Ua, Ub, and Ue are the characteristic energies asso
ciated with molecules a, b, and c, respectively (in the zeroth 
approximation, their first ionization potentials). In this way 
we obtain the following approximated form of DT~abc{ ... }: abc 

DT~;:{((l ~I ;)/a,(I;'1 ;;)/b)/ab,(l;1 ;)/e} 

(Ua + Ub + Ue ) Ua Ub Ue 
z----~----~--~--~~---

(Ua + Ub )( Ub + Ue)( Ue + Ua ) 

X [ [ala {I ~/;}' ola(ooa-
I) 

® alb {I;, I;} • olb( oob- I) ] lab 

®a {/'1"}'OIC(oo-I)]Nabc . (79) 
Ie C C C Lobe 

Equation (60) together with Eq. (79) represent a useful 
approximate expression for WD , related to the irreducible 
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polarizabilities ai, {l;/;'} (i = 1,2, ... ,N) of interacting mole
cules in molecule-fixed frames. 

A similar approximation for BATNLabc{ ... } is not so sim-abc 
pie but also possible.17 Here, [E(Pa) + E(Pb) ] -IE(qa)-1 
and [E(qa) + E(Pb)] -IE(Pa) -I, which occur in the first 
and third terms of BAT~;:{ ... }, respectively, can be re
placed by 

(80) 

while [E(Pa) + E(Pb)] -IE(Pa )-1, which occurs in the sec
ond and fourth terms ofBAT~abc{ ... }, can be replaced by abc 

(Ua + Ub )E(Pa )2E(Pb) . 
(81) 

However, [E(Pa) + E(Pb)] -I [E(qa) + E(Pb)] -I, which 
occurs in the fifth term ofBAT~abc{ ... }, can be replaced by abc 
U ~ / ( U ~ + Ub ) times (80), where U ~ is a certain charac
teristic energy associated with molecule a, which can be oth
er than Ua [U ~ is connected with the presence of E(qa ) in 
the fifth term of BAT~::{ ... }] . Finally [E(Pa) 
+ E(Pb) ] -2, which occurs in the sixth term of 
BAT~::{ ... }, can be replaced by Ua/( Ua + Ub ) times (81). 

In order to obtain an approximate form of BAT ~abc { ... }, we abc 
first ignore the additional factors U ~ / ( U ~ + Ub ) and 
Ua / (Ua + Ub ), which occur in the fifth and sixth terms of 
BAT~::{ ... }, use the definitions of the molecular irreducible 
tensors described in Sec. II, and then correct the omission of 
the above factors by the insertion of a factor s. In this way we 
find 

BAT~::{( (I ~/; )/a ,I ;')La,( (l i,l;; )/b ,Ie )/be} 

U Ub -
zl' a [1.1 {(I'I")I IIII} 

~ (U
a 
+ U

b
) "La a a a' a 

• oLa(ooa- I) ® [ alb {l;'I;;} • Olb(OOb- I) 

®Q .Olc(oo-I)] ]Nabc. 
Ie C lbe Lobe (82) 

Employing Stogryn's estimate for s,17 we can write that 

(83) 

The application ofEqs. (23), (61), (63), (75), and (76) 
together with Eq. (82) leads to the useful approximation for 
WBA = WBA,2 + WBA,3' related to the spherical multipole 
moments and irreducible (hyper)polarizabilities of interact
ing molecules in body-fixed axis systems. 

WeD can be simplified by using analogous approxima
tions as in the case of WBA ,2 and WBA.3, i.e., 
[E(Pa) + E(Pb)] -I [E(qa) + E(qb)] -I is replaced by 
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( 
Ua Ub )2 1 

X 2 2 • 
Ua + Ub E(Pa) E(Pb) 

(87) 

and [E(Pa) + E(Pb) ] -2 is replaced by 

If we use Eqs. (5), (7), (8), (62), and (84)-(87), and ig
nore the differences between Ua and U ~, Ub and U ~, we 

obtain the following simplified expression for CDT~::{ ••• }: 

CDTNab{(/'I")1 I"')L (/'1")1 I"')L} Lab a Q a' a a , b b b' b b 

;:::;;;( U~:~b r [(3La {(I ~l :;)la,1 :;'}[(\ + 2) + 3 J • oLa(roa- I) ® (3Lb {(I ~I ;;)lb,1 ;;'}[(\ + 2) + 3 J 0 OLb(rob- I) ] ~=: 

_~( UaUb )2 [ii {(/'I")l 1'''}.oLa(ro-I)®ii {(/'I")I l"'}oOLb(ro-I)]Nab (88) - 9 U U I-ILa a a a' a a I-ILb b b b' b bLab' 
a + b 

Ifwe insert Eq. (88) into Eq. (62) we obtain a useful approximate expression for W CD' related to the irreducible hyperpolari
zabilities (3L,{ (1;1 ;,)/;,1 t}[ (I + 2) + 3 J or PL, {(l;I;' )/;,1 ;"} (i = 1,2, ... ,N) of interacting molecules in local coordinate systems 
fixed in them. 

Approximate formulas for the dispersion energies WD, WBA•2 , WBA,3' and WCD obtained in this section should be 
convenient in practice. Similarly as in the case of the induction categories WB,2' WB,3' WB,4 ~ WA ,2' W~,3' W~,3' WA ,4' they are 
directly related to the irreducible tensors describing electrical properties of interacting molecules in molecular (body-fixed) 
frames. Therefore full advantage can be taken from the point symmetry of the molecules under consideration, because 
spherical multipole moments and irreducible (hyper)polarizabilities possess very nice transformational properties. 10,30,31 
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APPENDIX: RELATION OF THE PRESENT WORK TO THE PREVIOUS RESULTS ON THE INTERACTIONS BETWEEN 
TWO MOLECULES 

In this Appendix we briefly show that expressions for the pairwise additive part of the third-order interactions between N 
molecules obtained in the present paper are in agreement with the recent results on the third-order interactions between two 
molecules. 11,12,14 Adapting general formulas for all possible categories ofthe third-order interactions in the uncoupled form 
given by Eqs. (15 )-( 19) to the case of two interacting molecules a and b, and denoting the third-order interaction energy 
between molecules a and b by W3,ab' we easily find 

W3,ab = L 

where 

I ~/::l ::'1;'1;:1;'" 

n;"':; n~" ni,nl: nb" 

C n~n;'Cn::n;;Cn~"n;'"/m~m::m~"m;'mbmb D l~ - 1 
/'/' /"/" /"'1'" /'["/'"['/"/'" , I (roa ) a b a b a b a a a b b b mana 

/m~m=m::mbm;:mb' _ /m:,m::m:;mbml:mb /m~::m:mbmbmb /m;PZ::m:;mbmi:mj," /m;,m::m:mbmbmb' 
1'1"1'"/~1"1'" - (B) ['["1"'['["["' + (A) /'["/'''l'[''["' + (BA) I'l"l"'l~l"l'" + (CD) ['["/'"/'/"/'" • aao"'bb aaabbb aaabhb aaab*bb aaabbb 

(AI) 

m'm"m"'m'm"m'" 
Here (X) //,~";",:,/"~",b b (X = B,A,BA,CD) correspond to the energies Wx (X = B,A,BA,CD) , respectively, and they are 

aDa bbb 

defined as 
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(A5) 

Note that in the case of two molecules WD = 0, so this type of interaction energy is not represented in the expression (AI). 
Recently we have proved that a formula of type (AI) can be put into the following closed formll,12,14: 

W = (41T) 1/2 3,ab ( _I)I;'+I;;+lbR -1~-I;'-I;:-I;;-I~N_Ib-3[/' +1' 1"+1"1"'+1"'] ab a b' a b' a b 

X (21 ~ + 21 ~)1I2 (21; + 21 ;;)112 (2/;' + 21 ;;')112 

U~ u; U: 

I~ 

I;; 

La. 

X (I ~ + I ~O,I; + I ;;Ol/abO) (/abO,I;' + I ;;'OILabO) [/a,lb,lab,La,Lb] [Lab] -I L ( - 1)Na
• 

Nab= -Lab 

X Y -Na'(R ) 
Lab ab 

X (I ;'m;',l ;;m;;l/bmb) (lbmb,1 ;;'mb'ILbMb )D;;.Na (roa- I)D!;;oN. (rob- I) (LaNa,LbNb ILabNab ), (A6) 

InsertingEqs, (A2), (A4), and (A5) intoEq, (A6) we immediately obtain the closed expressions for WB,2' WBA,2' and WCD' 
respectively, given in Sec. V adapted to the case of two interacting molecules [see Eqs, (21), (23), (58), (61), (62), (65), 
(66), (75), and (76) accompanied by Eq. (63)]. To obtain the closed formula for WA ,2 corresponding to the case of two 
interacting molecules a and b we must first change the coupling schemes that occur in Eq, (A6), It is seen that 

(A) f~~~f~':I~:~;;;mb contains two parts, for which two different coupling schemes are required, In the case of 

Qml,~al"::I':~N a~t'=;;Q ~£ the needed order of couplings is [(2 + 3) + I] forla 's and [(1 + 2) + 3] forlb 's.1t can be obtained in 
Q ao bb b 

Eq, (A6) owing to the following property ofthe Wigner 6-j symbols48: 

{
I" 

= ~ (/"m"I"'m"'I/(I)m(l»(/(I)m(I)/'m'ILM) a 
~ a a' a a a a a a' a a a Q L 

I'" a 

I' 
(A7) 

1~l)m~1) a a 

Similarly, in the case of a~~".:;:Q~: Q ~;'a~~:;;' the needed order of couplings is [( 1 + 2) + 3] for la's and [(2 + 3) + I] for 
ao a b bb 

Ib'S, Again we can introduce it into Eq. (A6) applying the following property of the 6-j symbols48: 

- ~ (I "m" I "'m"'ll (I)m(l» (I (I)m(1) I'm' IL M) b 
{
I" 

- ~ b b' b b b b b b' b b b b L 
I;;' 

I;' 
(A8) 

I~')m~') b 

If I fm~m::m;;mbmbmb' b fm~m::m::'mbm;:m;:' . 
we now rep ace l'INIONI'INlon y (A) l'INlonl'INI'" In 

aaabbb Qoab"bb 

Eq. (A6), then use Eq, (A7) to the part of the resulting 
m' m"m'" m'm" m'" 

formula where Q l:al':I",a al'~'''Q I'! occurs and Eq. (AS) 
a ao bb b 

. h m~m:: m::' mi, mbmi," to the part of It were al'IN Q I'" Q I' a INI ", appears, we get 
ao a b bb 

a clear expression for the energy WA ,2 corresponding to the 
case of two interacting molecules a and b, From Eqs, (22), 
(59a), (63), (69)-(71), and (77) it immediately follows 
that this expression is equal to the formula for WA ,2 given in 
Sec, V, when the interaction between two molecules a and b 
is considered. 

Therefore the general expressions for the pairwise addi-
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tive categories WB,2' WA,2' WBA,2' and WCD derived in the 
present paper are in complete agreement with the previous 
considerations concerning the third-order interactions 
between two molecules, 1 1,12,14 
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The investigation of the spectrum of the simplified differential equation describing the variation of 
the amplitUde of the ideal MHO ballooning instability along magnetic field lines constitutes a 
multiparameter Schrooinger eigenvalue problem. An exact eigenvalue relation for the discrete 
p~ of the spectrum is obtained in terms of the oblate spheroidal functions. The dependence of the 
eIgenvalues A on the two free parameters y and /1-2 of the equation is discussed, together with 
certain analytical approximations in the limits of small and large y. A brief review of the principal 
properties of the spheroidal functions is given in an appendix. 

I. INTRODUCTION 

An important mode of instability for many thermonu
clear plasma confinement systems is the ideal magnetohy
drodynamic (MHO) pressure-driven instability known as 
the interchange mode. A particularly dangerous form of this 
instability in toroidal magnetic confinement configurations 
is the so-called ballooning instability. This is a nonlocal ver
sion of an interchange mode that adapts itself to fit the vary
ing curvature of magnetic field lines in a torus. Ballooning 
instabilities can impose a serious limitation on the amount of 
plasma that can be stably confined in a toroidal device. The 
driving mechanism of these instabilities results from the in
teraction of the plasma pressure gradient with local regions 
of unfavorable magnetic curvature. This causes the plasma 
to bulge out, or to "balloon," in these regions in an analogous 
manner to the aneurysms that develop at weak spots in a 
pressurized elastic container. 

The ideal MHO ballooning instability has been investi
gated by various authors. 1-5 The structure of these modes is 
characterized by a rapid variation perpendicular to the mag
netic field in a magnetic flux surface (high toroidal mode 
number) with a slow variation along field lines and across 
flux surfaces. In the limit of high toroidal mode number, the 
system of ideal MHO equations for incompressible plasma 
displacements and negligible mode kinetic energy associated 
with the component of the displacement parallel to the field 
leads to a second-order ordinary differential equation de
scribing the variation of the mode amplitude along the mag
netic field lines on each flux surface. l

-4 The coefficients of 
this equation in the general toroidal case are extremely com
plicated functions of the independent variable. Recent theo
retical investigations6--9 have shown that in certain situations 
these coefficients may be simplified considerably to yield the 
differential equation describing the variation of the mode 
amplitudey(x) along the field lines in the form 

d
d [0 +X2) dY ] - [A +y(1 +X2) -~]y=o, 
x ~ 1+~ 

-oo<X<oo. (Ll) 

aj Present address: Association Euratom-CEA, Centre d'Etudes Nu
cJesires de Cadarache, BOlte Postale No. I, 13108 St. Paul-Iez-Durance, 
France. 

The parameter r is essentially the growth rate of the 
mode and A and /1-2 are parameters that depend on the pres
sure gradient and magnetic shear of the equilibrium configu
ration. The boundary condition that y(x)-o as x_ ± 00 

then constitutes a multiparameter eigenvalue problem for 
anyone ofthe three parameters A, y, or /1-2 in terms of the 
other two. Although in the physical problem it is the growth 
rate parameter y that is to be determined, it is customary
and entirely equivalent-in the mathematical treatment of 
Eq. (1.1) to consider r as the eigenvalue with A 2 and /1-2 as 
arbitrary parameters. 

The solution of Eq. (1.1) is expressed in terms of radial 
oblate spheroidal functions, for which the principal proper
ties have been reviewed in Ref. 10. The analytic solution is 
complicated by the existence of a parameter known as the 
characteristic exponent v, which depends in a transcenden
tal manner onA, y, and/1-2. This exponent arises in the the
ory in exactly the same way as the characteristic exponent in 
the solution of Mathieu's differential equation [to which Eq. 
( 1.1 ) is related in the particular case /1-2 = l] . Unlike the case 
of the spheroidal wave functions (which arise when the wave 
equation is separated in spheroidal coordinates), where v is 
necessarily an integer, 11 the characteristic exponent for the 
ballooning equation ( 1.1) is found to be complex over most 
of the range of the parameters and its determination proves 
to be a central issue in the theory. 

The aim of this paper is to discuss the nature and depen
dence of the spectrum of A-eigenvalues on the parameters y 
and /1-2. An exact eigenvalue relation for the even and odd 
solutions satisfyingy(x)-o as X-oo is derived in terms of 
the characteristic exponent and the joining factors for the 
spheroidal functions. Numerical results illustrating the de
pendence of the discrete spectrum of even and odd eigenval
ues on the parameters y and /1-2

, together with analytical 
approximations in the limits of small and large positive val
ues of y, are presented and briefly discussed. Representative 
examples of the corresponding eigenfunctions are also given. 

II. QUALITATIVE DISCUSSION OF THE SPECTRUM 

We consider the simplified ideal MHO ballooning equa
tion (1.1) expressed in the form 

Lry =AY, - 00 <x< 00 , (2.1) 
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where Ly denotes the differential operator 

L =~(1 +x2)~-r(1 +x2) +~. 
y ~ ~ 1+~ 

The solutions y(x) are subject to the boundary condition 
y(x)-D as x- ± 00. The parametersr and,u2 will be sup
posed throughout to be real quantities so that, since Ly is a 
self-adjoint operator, the A-eigenvalues must all be real. 

The nature ofthe spectrum of the operator Ly depends 
on the sign of r but not on its absolute value. To see this, we 
transform the above equation to the standard Schrodinger 
form by making the change of variables x = sinh t, 
rp(t) = coshl/2 t y(x) to find 

~;~+[A-q(t)]rp=o, -oo<t<oo, (2.2) 

where 

A = - 4 - 1, q(t) = r cosh2 t - ( ,u2 -1)sech2t . 

(2.3 ) 

When r> 0, q(t)- + 00 as t- ± 00, and, by a well
known result, 12.\3 the spectrum ofEq. (2.2), and hence that 
ofEq. (2.1), is an infinite pure point spectrum that is bound
ed below in A. When r = 0, q(t)-D as t- ± 00 and there 
is a finite point spectruml2 (which may be null) in 
- 00 < A < ° with a continuous spectrum in ° < A < 00. We 

remark that, since y(x) = 0 (x -1/2 ±;.JA) as x_ ± 00 when 
r = 0, the solutions belonging to the continuous spectrum 
do not belong to the space L 2 ( - 00, 00 ) of Lebesgue square 
integrable functions on the real x axis. For r < 0, the solu
tionsy(x) behave like exp( ± ilrlx)/x as x_ ± 00 and any 
linear combination of the two linearly independent solutions 
of Eqs. (2.1) is in L 2 ( - 00,(0). The spectrum in this case 
consequently extends continuously from - 00 to 00. 

In this paper, we shall be concerned with the depen
dence of the point spectrum of Lyon the parameters rand 
,u2 when r>O (corresponding to unstable modes in the 
physical problem) and the behavior of this spectrum as 
r-<> through positive values. In the limiting case r = 0, 
Eq. (2.1) reduces to Legendre's equation of imaginary argu
ment and has been discussed in Refs. 12 (p.103) and 14. The 
discrete eigenvalues of the operator Lo are given by 

4 n =(,u-n)(,u-n-I), 

n = O,I, ... ,N, N = [Il-!] (r = 0) , (2.4) 

with square brackets denoting the integral part. Thus, when r = 0, there is a finite sequence of eigenvalues satisfying 
- ! < 4 <Il ( Il - I), with the number of eigenvalues de

pending on the value of Il. When Il > 112, the sequence al-
ways contains at least one eigenvalue given by 
40 = Il ( Il - I) and an additional eigenvalue appears each 
time Il increases by unity; for 1l2 <1, the discrete part of the 
spectrum is null. This behavior may be understood qualita
tivelybynoticingfromEq. (2.3) that, when r = O,q(t) has 
a "potential well" of finite depth only whenll2 > 1. 

The eigenfunctions associated with Eq. (2.4) may be 
conveniently expressed in terms of terminating hypergeome
tric functions. Since Ly is unchanged if we replace x by - x, 
it is possible to consider even and odd solutions separately, 
which we shall denote by the superscripts e and 0, respective-
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ly. The even and odd solutions when r = ° are 

y<e)(x) = (I +x2) -(1/2)1' 

X 2F 1 ( -! v - !,u,! +!v - !,u;!; - X2) 

= (1 +X2) -1/2- (l/2)v 

X~I(! +! v + !,u,! +! v - Yt;!;X2/( 1 + x2»), 
(2.5) 

y<°)(x) = x(1 + x2) - (1/2)1' 

X ~I (! - ! v - ! Il, 1 + ! v - ! Il* - x2) 

= x( 1 + x2) - 1 - (l/2)v 

X~I(I +! v + !Il,l +! v - !1l;~;X2/(1 + x 2»), 
(2.6) 

where the parameter v is defined by 

V= -! + (4 +1)1/2 (r=O). (2.7) 

Since v> -! for the discrete spectrum, these solutions are 
seen to diverge at x = ± 00 unless, in Eq. (2.5), 
v = Il - 1 - 2n, n = O,I, ... ,N(e), N(e) = [!( Il-!>] and 
in Eq. (2.6) v=,u-2-2n, n=O,I, ... ,N(o), 

N(O) = B( Il-~)]' The even and odd eigenfunctions and 
eigenvalues of Lo associated with the discrete spectrum are 
therefore given by . 

y~e) (x) = (1 + x2)n - (1/2)1'~1( - n"u - n;!;x2/(1 + x2»), 
n = 0,1, ... ,[!(,u -!)] , (2.8) 

4 ~e) = (Il - 2n)( Il - 2n - I) (,u >!) , 
y~O)(x) 

= x(1 + x2)n - (l/2)1'2FI( - n"u - n;~;x2/(1 + x2», 
n=O,I, ... B(Il-~)]' (2.9) 

4 ~O) = (,u - 2n - 1)( Il - 2n - 2) (Il >~) . 

The lowest even and odd eigenfunctions and eigenvalues 
whenr =Oare 

Y6e) (x) = (1 +x2) -(1/2)1', 

46e)=,u(,u-l) (Il>!), 

Y6°)(X) = x(1 + X2) - (112)1', 

A 6°) = (1l-1)(1l-2) (Il>~)· 

(2.10) 

Since the hypergeometric functions appearing in Eqs. 
(2.8) and (2.9) are polynomials of degree n in x 2

/ (I + x2
), 

the eigenfunctions, when r = 0 and Il - ! is not equal to a 
positive integer, are always in L 2 ( - 00,(0). When,u - ! is 
either an even or an odd integer, however, the eigenfunction 
corresponding to n = N (e) or N (0), respectively, contains 
the multiplicative factor (1 + x2) -1/4 or x(1 + x2) -3/4. 

This particular eigenfunction therefore is no longer in 
L 2 ( - 00,00 ) and is associated with the eigenvalue A = - 1, 
which lies at the end point of the continuous (non-L 2) spec
trum in - 00 <A < -1. 

Simple bounds on the eigenvalues for r > 0 may be de
rived from consideration of the quadratic forms associated 
with either Eq. (2.1) or Eq. (2.3). When r>O, the eigen
functions behave like exp( - Irxl )/Ixl as x- ± 00 and we 
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consequently have 

f: J (1 +x
2
)(: r + {A + r(1 +X2) - 1 :2X2 }y2]dX 

= f: J(~~r + (A + !)~ +q(~)~]d~=O. 
For Jl2<i, or Jl2 > i and r>Jl2 - i, q(~) is n~n-negative o~ 
( - 00,00). Hence, the eigenvalues must satisfy the condi
tion 

-A>i (Jl2<i; Jl2>i, r>Jl2-i). (2.11) 

By suitable rearrangement of the "potential" function q(~) 
as 

q(~) = r - Jl2 + i + [rsinh2 ~ + (Jl2 - !)tanh2 ~] 

= 2r(! - Jl2) 1/2 + [r cosh ~ - (! - Jl2) 1/2sech ~ F 
(Jl2<i) , 

we then immediately deduce the bounds 

-A>r-Jl2+~ (Jl2>i; Jl 2<!, r>i-Jl2) , 

-A> i + 2r(i _Jl2)112 (Jl2 <!, O<r<! _Jl2) . 
(2.12) 

Note that the above rearrangements of q(~) correspond 
to separating off the minimum value of q(~) in the two dif
ferent cases which arise. For, whenJl2>i, or whenJl2 < i and 
r>i - Jl2, q(~) possesses a single minimum at ~ =20 with 
q(O) = r _Jl2 + i. When Jl2 <i and O<r <i - Jl , q(~) 
possesses in addition two symmetric minima at ~ = ± ~o' 
where r cosh2~0 = (i - Jl2) 1/2, with q( ± ~o) = 2r( 1/ 
4 - Jl2) 1/2 and the point ~ = 0 now being a local maximum 
(see Fig. 1). 

The above bounds on the point spectrum are illustrated 
in Fig. 2 which shows - A as a function of r with Jl2 as 
parameter. The inequality Eq. (2.11) indicates that the 
eigenvalues -An (n=0,1,2, ... ) for r>max(0,Jl2_i) 
must be located in the upper right-hand quadrant with ver
tex at (i,max (0.,u2 - i»). The conditions in Eq. (2.12) then 
define lower bounds on - An in this quadrant, where for 
r > 0 when Jl2>i or r>i - Jl2 when Jl2 < i, they form, for 
differentJl2, a family of parallel lines of unit positive slope. In 
the region 0 < r < i - Jl2 when Jl2 < i, the bounds are por
tions of a family of parabolas with common origin at the 
point (i,O), which join "smoothly" (i.e., in value and first 
derivative) with those in r>! - Jl2. The points of inter sec
tion between the two families of curves (Jl2 <i) lie on the 

q 

la) 

-~ 0 ~o ~ 

Ib) 

FIG. 1. The "potential" function q(;) for (a) p2>!, or p2 <! and 
r>! - p2, and (b) p2 <1 and 0< r <1- p2. 
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FIG. 2. The lower bounds in Eq. (2.12) on the eigenvalues - A as a func
tion of r for different values of p2. When p2 < 1 the bounds pass through the 
point - A = 1, r = o. 

straight line - A =! + 2r, which is shown dashed in Fig. 
2. This figure clearly suggests that the eigenvalue curves 
A (r) assume a different character according as to whether 
the value of Jl2 is less than or greater than the Mathieu func
tion case, Jl2 = i. 

To conclude this preliminary discussion of the nature of 
the spectrum, we note that the operator Lr can be considered 
as a perturbation of the operator Lo (with r = 0) associated 
with Legendre's differential equation of imaginary argu
ment. The spectrum of Lr is thus seen to be nonuniform in 
the limit r--+O + : when r > 0, we have a purely point spec
trum with an infinite number of eigenvalues for any Jl2 while, 
when r = 0, the spectrum is finite in - 00 < - A < i, given 
by Eq. (2.4), and continuous in i < - A < 00. We shall see 
that the point - A = i, r = 0, is, in fact, an accumulation 
point of the spectrum. This concentration of the eigenvalues 
in the neighborhood of r = 0 can be considered from the 
viewpoint of perturbation theory for linear operators, as de
scribed by Kato l5 and discussed in a specific example by 
Titchmarsh. 16 We shall find that, although Lr is a relatively 
unbounded perturbation of Lo, the change of the finite part 
of the spectrum of Lo in - 00 < - A <! is nevertheless con
tinuous as r increases continuously from zero. 

III. THE EIGENVALUE RELATION FOR 1'2> 0 

We now proceed to derive an exact eigenvalue relation 
for the point spectrum of the operator Lr in Eq. (2.1) when r > O. We shall adopt throughout the convention that when 
r (or Jl2) is positive, we take r (or Jl) to be positive. Equa
tion (2.1) is the oblate spheroidal differential equation of 
order Jl, expressed in the canonical form 

!!..-[(1_r)dY ] + [A +r(1-r) -~]Y=O, 
~ ~ l-r 

(3.1 ) 

whenz = ix. The standard solutions of this equation for gen
eralA, r, andJl2 are known as the spheroidal functions.~7.18 
A detailed review of the theory of these functions reqUired 
for the ballooning eigenvalue problem has been given in Ref. 
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10 and their principal properties are briefty summarized in 
the Appendix. 

The spheroidal functions of the first group involve ex
pansions in series of Legendre functions and are defined byl7 

00 

~(z;r) = L (-)' ~.2,(r)P~+2'(Z) , 
r= - 00 

(3.2) 
r= - 00 

(.u + V=FO, ± 1, ± 2, ... ) , 

where ~,2,(r) are coefficients independent of z. These 
functions converge uniformly and absolutely in any domain 
not including the points z = ± 1 and z = 00. It is assumed 
that.u + v is not an integer in the definition of Q~(z;r), 
since the Legendre function Q ~ + 2, is then no longer defined 
when.u + v + 2r is a negative integer. The spheroidal func
tions of the second group involve the expansions in series of 
Bessel functions 

00 

X L a~,2,(r)CG'~j~ 112+2,(YZ) 
r= - 00 

(j = 1,2,3,4) , (3.3) 

where 

These solutions are valid in the neighborhood of the point at 
infinity and are uniformly and absolutely convergent for 
Izl > 1. The coefficients a~,2' (r) satisfy the three-term re
currence relation given in Eq. (A 1 ) and are normalized such 
that ~,o (0) = 1. The quantity A ~ (r) is a normalizing fac
tor defined in Eq. (AI0), so chosen that the solutions 
S ~(j) (z;r) possess the leading asymptotic behavior 
(1T12yz) 1/2CG' v+ 112 (yz) as Izl-+oo in larg( yz) I < 1T. 

The parameter v appearing in the above expansions is 
known as the characteristic exponent of Eq. (3.1) and is 
analogous to that encountered in the solutions of Mathieu's 
equation. 19 The value of v depends on the parameters ..t,r, 
and.u2andisdefinedbyEq. (2.7) [orEq. (A7)] only when 
r = O. The determination of vas a function of..t, r, and.u2 
is obtained by the requirement of a nontrivial solution for the 
coefficients a~.2,(r). This functional dependence is ex
pressed by the condition 

(3.4) 

where fl.1'.v (..t,r) is the infinite determinant defined in Eq. 
(A3 ). For sufficiently small r, the expansion of..t as a series 
in ascending powers of r, with coefficients depending on v 
and.u, is given in Eq. (A5). 

We consider even and odd solutions of Eq. (1.1) and 
consequently restrict our attention to the interval [0,00). 
When r > 0, the solution associated with the characteristic 
exponent v and possessing the correct behavior as X-+ + 00 
is 
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00 

X L (- )'~,2,(r)Kv+1I2+2'(YX) (x> 1), 
r= - co 

(3.5) 

since, for yx > 0, the Hankel function can be expressed in 
terms of the modified Bessel function of the second kind by 

H~\)(iyx) = (2I1Ti)e- (1I2)1riVKv (YX) . 

From Eq. (A 11), this solution then has the leading asymp
totic behavior as x-+ + 00 

y(x) _(~)1/2Kv+ 112 (yx) -~ exp( - rx) . 
2yx 2yx 

(3.6) 

The continuation of this solution onto the interval [0,1] 
is given by Eq. (A15) as 

y(x) = (-!1Te,,";vI2){A~(ix;r) +BQ~(ix;r)}, 
(3.7) 

where the constants A and B involve the joining factors and 
are defined in Eq. (A17). The even and odd eigenvalue rela
tions are then obtained by requiring thaty(x) be, respective
ly, an even or odd function of x. This is equivalent to the 
conditions that the continuation of the spheroidal function 
S~(3)(z;r) inEq. (A15) be either an even or odd function of 
z. 

The definition of the Legendre functions in terms of 
Gauss hypergeometric functions in 1z21 < 1 [with Im(z) > 0 
since x > 0] is 

p~+ 2, (z) = 21'1T1/2(z2 - 1) - (l/2)I'{aF1 (z2) + bzF2(z2)} , 

Q~+2'(Z) 
= 21'1TI /2 (z2 - 1) - (1I2)l'e,,"I';{eF1 (z2) + dzF2 (z2)} , 

where 

and 

FI(z2)=~1 ( -! v -!.u - r,! +! v -!.u + r,!;z2) , 
F2(z2)=~I(! -! v -~.u - r,l +! v -~.u + r,i;z2) , 

a = [r(~ - ~ v -!.u - r)r(1 + ~ v -!.u + r)] -I, 
b= - 2[r(! + ~ v-~.u +r)r( - ~ v-~.u - r)]-I, 
e = ! e"";( I' - v-I - 2,)/2 [r q + ! v + ~.u + r) I 

r(1 + ~ v -!.u + r)] , 
d = e"";(1' - v- 2,)/2[r(1 +! v + !.u + r)l 

r(! +! v -!.u + r)] . 

The conditions for the right-hand side ofEq. (A16) to be an 
even or odd function of z, given by the vanishing of the coeffi
cients of zF2(z2) and F 1(z2) in the summand, are conse
quently Ab + Bde""l'; = 0 and Aa + Bee""l'; = 0, respectively; 
that is 

{
even, 

odd. 
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Substitution of the values of A and B from Eq. (A 17) then 
yields20 

KI'(y) + elri(1'-1I2)[ 1 ± e
lri

(1' + v) ]KI'_1'_1 (y) = 0, 
v 1 + e1rl( I' - v) 

Il ± v;60, ± 1, ± 2, ... , v + !;60, ± 1, ± 2, ... , 

where the upper or lower signs correspond to the even or odd 
solution, respectively. 

Equation (3.8) is the desired eigenvalue relation for the 
ballooning problem and describes the dependence of the 
characteristic exponent v on Il and y for the even and odd 
eigenvalues of Eq. (2.1). This dependence is expressed in 
terms of the joining factors K ~ ( y) and K 1'_ 1'- 1 (y) for the 
spheroidalfunctions defined in Eqs. (A 12) and (A 13 ). We 
remark that, although the eigenvalue A does not appear ex
plicitly in Eq. (3.8), it is contained implicitly through the 
dependence of the characteristic exponent v on A given by 
the functional relation [Eq. (3.4) ]. For most of the range of 
parameters, v is found to be complex in Eq. (3.8) with 
Re(v) = -! [so that A definedbyEq. (AS) isrealinaccor
dance with the fact that Ly is self-adjoint]. As mentioned in 
Sec. II, this behavior may be contrasted with that found in 
the case of the spheroidal wave functions, where the poloidal 
angular function satisfies an equation of type Eq. (3.1) on 
the interval ZE [ - I, 1], while the radial function satisfies an 
equation of type Eq. (2.1). The parameter Il in this latter 
case corresponds to the toroidal mode number and is conse
quently an integer m. The requirement that the angular solu
tion be bounded at Z = ± I then necessarily restricts the 
characteristic exponent v also to be an integer, n C;;.m) (see 
Refs. II and 17). Curves of A as a function of r for different 
values of m and n for the wave functions have been obtained 
by Meixner.21 

IV. SOLUTION OF THE EIGENVALUE RELATION 

To express the eigenvalue relations Eq. (3.8) in a form 
more suitable for numerical computation, we employ the 
definition of the joining factor K ~ ( y) given in Eq. (A 13) to 
find 

(
L)21'+ 1 r( Il + v + 1) [r(~ - V)]2 
4 r( Il - v) r(~ + v) 

(4.1 ) 

where we have defined 

s _ ( Il, - v - pS _ ( -.u, - v - !> 
S+(Il,V+~)S+(-.u,v+~) , 

00 (a) 
S ± (Il,a)= L a~, ± 2r (r)_,_r , 

r~O r. 
(4.2) 

and employed the result (1 - a) _ r = ( - r/(a)r with 
(a)r = rea + r)/r(a). Employing the properties of the 
gamma function, we may finally express the eigenvalue rela
tions in the more symmetrical form 
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F(e,o)(v) 

==(~ y)2V r(Ff 8 +!.u +! v)r(Lf 8 -!Il +! v) 
2 rq=F8+!.u-!v)r(!=F8-!Il-~v) 

x[ r(l-v) ]2HI'1'(Y) -I =0, 
r(l + v) , 

(4.3) 

where 

v=v+!, 8=l, 

and the upper and lower signs correspond to the even and 
odd eigenvalues, respectively. 

From the definition of HI'.1' (y) and the properties of the 
coefficientsa~,2r(r) in Eq. (A9), it is readily seen that 

HI'.1' (y) = H -1'.1' (y), HI'.1' (y)HI'. _ 1'- 1 (y) = 1 . 

The zeros of F(e.o) (v) are therefore invariant whenll is re
placed by -Il and v by - v (i.e., v_ - v - 1). This con
firms the independence of the eigenvalues on the sign of Il 
and whether the characteristic exponent is taken as v or 
-v-l [seeEq. (A6)]. 

In the complex v plane, symmetric pairs of zeros of 
F(e,o)(v) are found on the real and imaginary axes. The 
number of zeros on the imaginary axis is infinite, while, for 
sufficiently small r, the number of real zeros is finite when 
1l2> 1 and null when 1l2<1. When r = 0 the real zeros are 
situated at the points v = ± (Il - ! - k), 
k = O,I, ... ,[p -!] [even and odd k being associated with 
F (e,o) (v), respectively] and correspond to the eigenvalues in 
Eq. (2.4). As r steadily increases, these pairs of real zeros 
approach the origin and then successively move off the real 
axis as conjugate pairs on the imaginary axis. 

We observe from Eq. (AS) that only the zeros on the 
real and imaginary axes can lead to real values of A. This is 
evident when the zeros are real. To see this in the case of 
imaginary zeros, we write v = iu (u > 0) so that 

v = -! + iu, u = u(Y,Il) . (4.4) 

Then, for arbitrary integer r and real values of rand 1l2
, the 

coefficientsAr (Il,v), Br (Il,V), and Cr (Il,V), which appear 
in the recurrence relation [Eq. (AI)], satisfy the conjugate 
relations 

Ar(Il,V) =B~r(Il,V) (1l2>0) , 

Ar(Il,V) =B~r( -Il,v) (1l2<0) , 

with Cr ( Il,v) = C~ r( p,v) in both cases. From the sym
metry of the elements of the determinant [Eq. (A3)] with 
respect to the central element, al"1' (A,r) = a:,1' (A ·,r) 
and consequently al'.1' (A,r) is areal function when A is real. 
Considered as a function of A,al"1' (A,r) is analytic except at 
its simple poles situated at ..1= Co( Il,v) and the conjugate 
points ..1= C ± r (Il,v) (r = 1,2, ... ). Since al"1' (A,r)-1 as 
..1_ ± 00 and the simple pole at A = Co ( Il, v) lies on the real 
axis, it follows that there is always at least one real zero of 
al'.1'(A,r). 

For sufficiently small values of r it is certain that 
a (A,r) has one real zero near Co( p,v) (corresponding to 
tbt;1'expansion [Eq. (AS)]), together with conjugate pairs of 
zeros located near the points C ± r (Il,v), r = 1,2, .... It 
seems difficult to prove, however, that there is always just 
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one real zero for all values of y. There is strong evidence, 
both from numerical computations and analysis of the root 
loci for small y, to suggest that as y increases the zero 
described by Eq. (A5) remains on the real axis, while the 
loci of the complex zeros move away from the real axis. In 
what follows we shall assume this to be the case. 

Inspection of the recurrence relation [Eq. (AI)] then 
shows that, when v is defined by Eq. (4.4), the coefficients 
a~.2r (y) satisfy the conjugate relations 

av~!:2r(Y) = (av~2~(Y»)" (p.2>0), 

av~!:2r(Y) =(a0~(Y»)" (p.2<0), 
(4.5) 

and hence that IHIt.v(r)1 = 1. Introducing the real phase 
function l/J = l/J(r,f.L,u) by 

H It•v (r) = exp(2il/J), v = -! + iu , (4.6) 

we can write the even and odd eigenvalue relations in the 
form 

G (e.o)(u)=u In! r + l/J + e(e.o) + (n + 1)17' = 0, 

n = 0,1,2, ... , (4.7) 

where 

e(e.o) = arg[r(! =F 8 + !p. + ! iu)r(! =F 8 - !p. + ! iu)] 

- 2 arg r (l + iu) . (4.8) 

The restriction of the integer n in Eq. (4.7) to non-nega
tive values can be argued as follows. From Eq. (2.12) and 
Fig. 2, we observe that as - A-+! the admissible values of y 
must also approach zero whenp.2<!. The functional relation 
[Eq. (A5)] then shows that under these circumstances u 
also approaches zero. The eigenvalue relations in Eq. (4.7) 
yield y = O[exp( - 21T(n + l)/u)] as u-o when p.2<!, 
since, for p.2<!, e(e.o) and l/J are both O(u) in this limit. 
Hence n must take the values 0,1,2, ... and Eq. (4.7) then 
defines the dependence of v = -! + iu on the parameters r 
and p. corresponding to the even and odd eigenvalues 
A ~e,o), n = 0,1,2, .... The point - A =!, y = 0 is therefore 
an accumulation point of the spectrum. This has been shown 
previously in the case p. = 0 by Kulsrud.22 

An alternative representation of e(e,o) suitable when 
p. > ! and p. >~, respectively, which does not involve a gam
ma function whose argument has a negative real part, is giv
en by 

e(e.o) = - u In 2 + arg r(! + P. + iu) 

- 2 arg r( 1 + iu) _ () (e,o) (4.9) 

with 

() (e,o) = arg cos 1T(! p. ± ! - ! iu) 

= arctan [tanh ! 1TU tan! 17'( p. ±!>] + m( P.)1T, 
(4.10) 

respectively, where the inverse tangent takes its principal 
value. The integer m ( p.) is the "winding" number defined 
by 
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(4.11 ) 
m(p.)=k, k-I<!p.-!±8<k (k=I,2, ... ), 

where the upper or lower sign corresponds, respectively, to 
the even or odd mode and, as before, 8 = !. We observe that 
as u-o the phase angles e(e) (p. > !) and e(O) (p. >~) are 
no longer O(u) but approach the values m( P.)1T. 

v. RESULTS AND DISCUSSION 

The eigenvalue relations [Eqs. (4.3) and (4.7)] have 
been solved numerically for different values of y with p.2 as 
the parameter. For given values of p.2 and y, we guess an 
initial value of the characteristic exponent v; for small y, 
this initial guess is made by employing the approximate ana
lytical formulas developed in Sec. VI. The value of A corre
sponding to these values of V,f.L, and y is first estimated by 
means of the expansion [Eq. (A5)] and subsequently re
fined by iterative solution of the functional equation (A2). 
For this latter calculation, we truncate the infinite determi
nant alt,v (A,y) in Eq. (A3) and work with a determinant of 
dimension 2M + 1 (M = 2,3, ... ) based on the central ele
ment. The coefficients a~,2r (y) ( - M <.r<.M) are then ob
tained by solution of the recurrence relation [Eq. (Al)] 
expressed as truncated continued fractions (cf. Refs. 10 and 
17,pp. 102 and 136). The normalizing factors A v±lt(y) and 
the joining factors K ~ ( r), K It_ v-I (r), defined in Eqs. 
(AIO) and (A13), are then evaluated as truncated sums, 
with the precision of the calculation being verified by means 
of the identity [Eq. (AI4)]. The function Hlt,v (r) in Eq. 
( 4.2) is likewise determined and, according as v is real or 
complex, the values of F(e,o) (v) and G (e,o) (u) in Eqs. (4.3) 
and (4.7) are calculated. 

These calculations are repeated for a set of neighboring 
values of v until the corresponding functions F (e.o) or G (e,o) 

change sign, with the zero subsequently found by iteration. 
The eigenvalue A corresponding to this value of v is then 
obtained as described above. This procedure is repeated us
ing successively larger values of M until there is no further 
change in the value of A to within the prescribed accuracy. 

This procedure is found to work satisfactorily for values 
of y not too large. It is clear that as y increases the greater 
must be the value of M for a given accuracy. For y> 1, this 
process becomes unwieldy and the eigenvalues in this limit 
have been calculated by direct numerical solution of Eq. 
( 1.1 ). Solution in this case is facilitated by making the 
change of variable 

t=x/(l +x) 

in Eq. (1.1), so that the interval [0,00) is mapped onto the 
finite interval [0,1) and application of the boundary condi
tion at infinity becomes much easier to apply. The differen
tial equation (1.1) is then written in terms of the new vari
able t in the form 

!!... Y(t) =A(t)Y(t), O<t< 1, 
dt 

where Y(t) = (y(t),y'(t»)T and A (t) denotes the 2x2 ma-
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FIG. 3. The behavior of the lowest (n = 0) (a) even and (b) odd eigenvalues as a function of r for different values of Jt. 

trix with coefficients 

All = 0, AI2 = 1 , 

A - r + A 
21 - (1- t)4 (1 - t)2[t 2 + (1 - t)2] 

1',2 
[t 2+ (1-t)2j2 , 

A22 = 2(1- 2t)/[t 2 + (1 - t)2] . 

(a) 

The above equation, subject to the even and odd boundary 
conditions,y(O) = l,y'(O) = Oandy(O) = 0,y'(0) = I, re
spectively, together with y( 1) = 0, then constitutes a two
point boundary value problem and is solved by standard ma
trix inversion methods. 

The results of such calculations for the lowest even and 
odd eigenvalues A :,e) and A :'0), are shown plotted in Fig. 3 as 
functions of r with I" 2 as a parameter. The detailed behavior 
of these eigenvalues for small r is presented in Fig. 4. As 

4 

-1L-__ ~ __ ~ __ -4 ____ ~ __ ~ __ ~ __ -4~~. 

o 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 
12 

(b) 

FIG. 4. Thebehaviorofthe lowest (n = 0) (a) even and (b) odd eigenvalues for small valuesofr for different values ofJt. All the curves with (a) Jt <! and 
(b) Jt <~ pass through the accumulation point at - A. = 1. r = o. The dashed curve in (a) represents the boundary on which the characteristic exponent v 

changes from real to complex values as described in Eq. (4.4). 
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FIG. 5. The behavior of the lowest (n = 0) (a) even and (b) odd eigenvalues as a function ofl'2 for different values off. The solid line belonging to f = 0 
denotes the continuous spectrum of non-L 2 ( - 00,(0) eigenfunctions. Below the curve f = 0, the spectrum is continuous with L 2 ( - 00,(0) eigenfunc
tions. 

discussed in Sec. II, it is seen that, for p,2 .q, all the A. ~e) (y) 

curves pass through the point - A. =! as y-o, whereas 
when p,>!, A.~e)(y) approaches the value p,(p,- 1) as 
y -0 [cf. Eq. (2.10)]. A similar behavior is exhibited for 
the lowest odd eigenvalue curves A. ~O)(y): as y-o the 
curves all pass through the point - A. =! whenp,2<t, while 
A. ~O) (y) approaches the value ( p, - 1) ( p, - 2) whenp, > ~. 
In Fig. 5 we show the variation of A. ~e,o) as functions of p,2 
with y as parameter. 

The computed boundary upon which the characteristic 
exponent v changes from the complex value in Eq. (4.4) to 
real values as y decreases along an eigenvalue curve is 
shown in the case of A. ~e) by the dashed curve in Fig. 4(a). 
From Eq. (A5) in the limit v- -!, this curve is approxi
mately represented in the neighborhood of y = 0 by the 
envelope of the points of intersection of the family of curves 

- A. = ! - ! y( p,2 - i) - f& 1'( p,2 - n + ... , 
for different p,2 and the corresponding eigenvalue curves. 
Above this dashed curve, the characteristic exponent is of 
the form in Eq. (4.4), while below it v is real. 

In Fig. 6 we show the variation of the higher eigenvalues 
A. ~e,o), for n = 0,1,2, and 3, as functions of y for the case 
p, = O. All the eigenvalue curves for this value of p, accumu
lateatthepoint - A. = !asy-o [cf. Eq. (6.8)]. This result 
confirms the conjecture made in Ref. 23 that Eq. (1.1) for 
positive y andp, = 0 admits solutions satisfying the bound-
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ary conditions only when - A. >!. The qualitative behavior 
of the lowest even eigenvalues near y = 0 is depicted in Fig. 
7 for p, = 1 and p, = 3. The quantitative representation of 
these eigenvalue curves is difficult on account oftheir dispa
rate functional dependence on y in the neighborhood of 
y = 0 (see Sec. VI). From Eq. (2.4), N = 0 when p, = 1 
and as y -0 the eigenvalue curve A. ~e) (y) approaches the 

50 

40 

-~ .... 
30 

20 

10 

3 4 5 6 • 9 10 
i' 

FIG. 6. The behavior of the higher even and odd eigenvalues A. ~ •. o) as a 
function of f when I' = O. 
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FIG. 7. The qualitative behavior of the first four even eigenvalues A ~e) for 

small r whenJL = 1 andJL = 3. 

value f..l ( f..l - 1) belonging to the finite spectrum when 
r = O. The higher eigenvalue curves A. ~e)(r) (n = 1,2, ... ) 
all pass through the accumulation point - A. = 1, r = O. 
When f..l = 3, N = 2, and the eigenvalue curves A. ~e)(r), 
n = 0,1, approach the values f..l ( f..l - 1) and 
(f..l- 2)( f..l- 3) of the finite spectrum in Eq. (2.4) as 
r-+o, with the higher eigenvalue curves for n = 2,3, ... all 
accumulating at - A. = 1. A similar behavior is found for the 
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FIG. 8. The behavior of the first four even eigenvalues in the neighborhood 
of r = 0 in the case JL = 1. The lowest eigenvalue n = 0 approaches zero 
algebraically while the higher eigenvalues with n = 1,2,3 approach the ac
cumulation point - A = 1, r = 0 logarithmically. 

odd eigenvalue curves when f..l = 2 and f..l = 4. 
In general, when f..l2<! the eigenvalue curves A. ~e,o) (r) 

(n = 0,1,2, ... ) all pass through the accumulation point as 
r-+o. When f..l >~, the even eigenvalue curves for 

ODD 
n=O, 1'=0 

FIG. 9. Examples of the lowest even 

4 
and odd eigenfunctionsy~e.O)(x) for 

6 X 8 10 
different valuesofr when (a) JL = 0 
and (b) JL = 2. Note that when r = 0 there are no L 2 ( - 00,(0) ei-
genfunctions for JL = 0, while when 
JL = 2 the eigenfunctions are given 
by Eq. (2.10). 
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1'=2 
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X 
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1.0 __ -..,.----r---.---,.---,------,--.------. 

-0.5 

2 3 4 5 6 7 

FIG. 10. Thefirst four even eigenfunctionsy~e)(x) (n = 0,1,2,3) for II- = 0 
and y = 1. The nth even eigenfunction is associated with 2n zeros on the 
interval ( - 00,00). 

n = O,I, ... ,Ne, where N(e) = [~ (fL -~)], approach their 
limiting values (fL - 2n) ( fL - 2n - 1) in Eq. (2.S) as 
r -0, while for the curves with n > N (e) the point - A = !, 
r = 0 is an accumulation point of the spectrum. Similarly, 
when fL >~ the odd eigenvalue curves for n = O,I, ... ,N(o), 
where N (0) = B( fL -~)], approach the values 
(fL - 2n - 1)( fL - 2n - 2) in Eq. (2.9) as r-o, while 
the curves with n > N (0) all pass through the accumulation 
point in this limit. Figure S shows the detailed behavior 
when fL = 1 of the first four even eigenvalues as r -0. The 
dependence of the eigenvalue curves for n = 1,2,3 is seen to 
be logarithmic, in accordance with Eq. (6.S), while that of 
the eigenvalue curve for n = 0 is algebraic [cf. Fig. 4(a)]. 

In Fig. 9 we present examples of the lowest even and odd 
eigenfunctionsy~e.O)(x) [normalizedsothaty~e)(O) = 1 and 
y\;,)'(O) = 1] for different values of r when fL = 0 and 
fL = 2. The eigenfunctions are seen to decay more rapidly as 
r increases [in accordance with Eq. (3.6)] at fixedfL, and 
also as fL 2 increases at fixed r. In the case fL = 0, there is no 
discrete eigenvalue and the solutions spread about x = 0 
progressively as r-o. WhenfL = 2, the even and odd eigen
functions for r = 0 are, from Eq. (2.10), given by 
y~e,o) (x) = 1 + x 2 and x/(l + x 2

), respectively; these 
curves represent upper limits on the amount of spread about 
x = 0 of the solutions for r > O. 

Finally, in Fig. 10 we show the behavior of the higher 
normalized even eigenfunctions y~e)(x) for the particular 
case fL = 0 when r = 1. Application of the Sonine--Polya 
theorem24 to Eq. (1.1) shows that for a given eigenfunction 
(with eigenvalue An) the moduli of the successive maxima 
and minima form a decreasing or increasing sequence ac
cording as ( - An/2r)~I, respectively. Reference to Fig. 6 
shows that for the eigenfunctions depicted in Fig. 10 (as well 
as thosewithn>4) ( - An/2r) is indeed greater than unity. 
In the case of large fL, where ( - An/2r) can be less than 
unity for certain values of n, the corresponding eigenfunc
tions are found to possess an increasing sequence of moduli 
of the successive maxima and minima [cf. also the eigen
functions in Eqs. (2.S) and (2.9) when r = 0]. 
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VI. APPROXIMATE EXPRESSIONS FOR THE 
EIGENVALUES WHEN y2<1 

In the final two sections we derive approximate fomulas 
for the eigenvalues in the limits of small and large values of 
r. Such expressions are of considerable interest not only in 
physical applications but also in explaining the main qualita
tive features of the eigenvalue curves given in the preceding 
section. 

When r < 1, we find from Eq. (AS) that 

HI',v(Y) = 1 + OCr) . (6.1) 

The eigenvalue relation Eq. (4.3) in the small r limit then 
becomes 

x [ r(l - v) ]2 _ 1 = 0 . 
r(l + v) 

(6.2) 

Consider first real values of v = v +~. We recall from 
Sec. IV that it suffices to consider v> 0 only, since the zeros 
ofF (e) (v) occur in symmetric pairs with respect to the point 
v = O. When fL > ~, the eigenvalues correspond to those val
ues of v situated near the poles v = fL - ! - 2n, 
n = O,I, ... ,N(e), where N(e) = [!( fL -!)] [cf. Eq. (2.S)]. 
If we denote these zeros by v = fL - ! - 2n - 2E n' where we 
suppose lEn 1<1 for small r, we find from Eq. (6.2) 

En~- -r (
1 )1'-1I2-2n 

4 

X 1Tr(fL-n)r(fL+~-n)sec1TfL 

n !r(n + !){r( fL +! - 2n)r( fL -! - 2n)}2' 
n = O,I, ... ,N(e) • (6.3) 

It should be noticed that this approximation is not uniformly 
valid infL in the neighborhood offL = !, ~, ... ; for these values 
of fL more delicate approximations of the gamma functions 
would be required. 

Restricting our attention to the lowest eigenvalue with 
n =0, we have 

v-- _ 1 _ 1Tl/2r( fL ) sec 1T fL (.l )1'- 112 . 

c::::p, r2( fL - Dr( fL + !) 4 r 
From Eq. (AS) the eigenvalue A ~e) forr<1 is then given by 

A ~e)--fL( fL _ 1) + 41T1/ 2 (fL - pre fL)sec 1T fL 
r 2 

( fL - !) r ( fL + D 
X(!r)I'-1I2, !<fL<~, (6.4) 

c::::p,(fL-l) - [1 + 1!(4l- 3)]r, fL>~. 

A similar procedure for the odd eigenvalue relation in 
Eq. (4.3) showsthatwhenfL>~therealzerosofF(O)(v) are 
situated at v = fL - ~ - 2n - 2En, n = O,I, ... ,N(O), where 
N(O) = B( fL -~)]. For small r, En is now given by 

E --(.lr)1' -312 - 2n 
n- 4 

X 1Tr(fL-n)r(fL-i-n)sec1TfL 
n !r(n + ~){r( fL -! - 2n)r( fL - ~ - 2n)}2 , 

n = O,I, ... ,N(O) , (6.5) 

Paris, Auby. and Dagazian 2197 



                                                                                                                                    

provided p, is not in the neighborhood of the values 
p, = ~, ~, .... The lowest odd eigenvalue is then approximately 

(p, - ~)r( p,)sec 1T p, 
).. f,0) ~ ( p, - 1)( p, - 2) + 81T1/2 --c:----=-----

r2( p, - ~)r( p, -!) 
X (!r)I'-3/2, ~<p,<~, (6.6) 

~(p,-1)(p,-2) - [1 +3/(2p,-5)]r, p,>~. 

The expression in Eq. (6.4) at once reveals that for p, > ~ 
the eigenvalue curves).. f,e) (r) are linear as r -0 with slope 

a).. f,e) I 1 
- :J....2 = 1 +-- (p,>~). 

vr r=O 2p,-3 

Thus, as p, steadily increases the slopes of the eigenvalue 
curves steadily approach unity near the ordinate axis. When 
! <p, <~, however, the eigenvalue curves are no longer linear 
but are tangential to the ordinate axis as r -0 (cf. Figs. 3 
and 4). The odd eigenvalue curves).. f,0) (r) are similarly 
seen to be linear as r-o for p, > ~ and to approach the ordi
nate axis tangentially for ~ <p, <~. 

We now consider the case when the parameters are such 
that the characteristic exponent v is complex as given in Eq. 
(4.4) [cf. Fig. 3 (a) ] . In this case it becomes more expedient 
to consider r as the eigenvalue, with)" and p,2 as parameters. 
In this domian we obtain from Eq. (4.7) the approximate 
eigenvalue relations for r<l, 

r~e.o)~2 exp[ - {a(e.o) + (n + 1)1T}/u], n = 0,1,2, ... , 

where, from Eq. (A5), the value of).. is related to u by 

-).. =! + u2 +! r[l- (p,2 - 1>/0 + u2)] + 0(1') . 

(6.7) 

In the limit u-o, we find, from Eqs. (4.9) and (4.10) when 
p, is real, 

a(e.o)~u[t/I( p, +!) - 2t/10) -In 2] - 0 (e,o) , 

where t/I denotes the logarithmic derivative of the gamma 
function and 

o (e,o)~! 1TU tan ! 1T( p, ± !> + m ( p, )1T( p, ± ! # 1,3,5, ... ) , 

=! 1T( p, ±!) (p, ±! = 1,3,5, ... ) , 

with m ( p,) defined in Eq. (4.11). We then have the approxi
mations 

r~e,o)~4 expl! 1T tan! 1T( p, ± !) - 2r - t/I( p, + !)] 

Xe1m( 1') - n -1)11'Iu (p, ±!# 1,3,5, ... ), (6.8) 

~4 exp[ - 2r _ t/I( p, + !) ]e((I/2)( I' ± I) - n - 1)".lu 

(p, ±! = 1,3,5, ... ) n = 0,1,2, ... , 

respectively, where r = 0.5772 ... is Euler's constant. 
The first approximation in Eq. (6.8) is not uniformly 

valid in p, in the neighborhood of the values p, ± ! = 2k + 1, 
k = 0,1,2, ... , since the corresponding approximation for 
o (e,o) breaks down. Asp, ± ! passes through these values, the 
phase angles 0 (e,o), respectively, can be seen to vary extreme
ly rapidly when u<1. The description of r~e.O)in the neigh
borhood of p, ± ! = 2k + 1 would require more refined ap-
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proximations to 0 (e,o) depending on the relative magnitude 
ofuandp,±!-2k-1. 

The formulas in Eq, (6.8) are valid as u-o only for 
those values ofp,2 andn for which r<l. The larger the value 
of n, the greater is the range of values of p,2 that is covered. 
Inspection of Fig. 3 reveals that the range of p,2 for which the 
lowest eigenValues rf,e,o) are adequately described by Eq. 
(6.8) is limited above by roughly p,2 = 2 and p,2 = 4, respec
tively. For fixed u and p,2, the eigenvalues r~e,o) depend ex
ponentially on u and form a decreasing sequence of values 
with zero as limit point. It is clear from Eqs. (6.7) and (6.8) 
that there is an infinite number of eigenvalues for any given 
p,2 that accumulate at the point -).. = 1, r = 0. 

For a given value of u < 1, the ratio of the even and odd 
eigenvalues in the small r limit is given by 
r~e)/r~O)~exp[(O(e)-O(O»lu]. This ratio is always 
greater than unity and is periodic in p, with period 2. In the 
particular case p, = 0, we have from Eq. (6.7), as u-o, 

r~e'O)~I6e-y±(I/2)"'exp[ - (n + l)1Tlu], 

n=0,1,2, ... (p,=0), (6.9) 

so that in the neighborhood of the accumulation point 
r~e) Ir~O) ;::::;elf. 

When the parameters are such that u is somewhat larger 
than unity (but with r still small), it can be shown from 
Eqs. (4.9) or (4.8) (according asp, is real or imaginary) by 
Stirling's formula that 

- a(e.o) -! 1T~U In 2u - u ±! 1T + (1I2u) (p,2 - -fl) , 

when p,2 is not too large. In this limit the eigenvalues are 
approximated by 

r~e,o)~~ exp[ ± ~ + _1_(p,2 _ ~)]e - (n + 1/2)lflu, 
e 4u 2u2 12 

n = 0,1,2, ... , (6.10) 

whence r~e) Ir~0)~e"'/2u independent of p,2. 
We emphasize that the approximations in Eqs. (6.4) 

and (6.6)-(6.10) can only be applied for those values of 
U,p,2, and n that correspond to r< 1. It is found that there is 
satisfactory agreement with the numerically computed val
ues shown in Figs. 3 and 4 in their respective domains of 
validity. 

The even eigenvalue relation Eq. (6.7) for r < 1 has 
been previously obtained in the case p, = ° by Kulsrud22 and 
Stringer.25 By approximate solution ofEq. (1.1) in terms of 
Bessel and Legendre functions in two overlapping regions, 
x> 1 and rx< I).. 1112

, these authors employed the method of 
matched asymptotic expansions to obtain Eq. (6.7). A simi
lar procedure has been employed by Antonsen et 01. 7 and 
Paris26 for the general case with p, arbitrary. The matched 
asymptotic expansion approach is equivalent to the small r 
limit employed in Eq. (6.1), since this consists of taking only 
the first term in the expansion of S':,(3) (ix;r) in Eq. (3.5) 
and its continuation involving Legendre functions in Eq. 
(3.7). 
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VII. APPROXIMATE EXPRESSIONS FOR THE 
EIGENVALUES WHEN y2~ + 00 

The determination of the eigenvalues from Eq. (3.8) 
and the functional equation (A2) in terms of the character
istic exponent vis not suitable as y_ + 00 on account of the 
increasing number of terms that have to be retained in the 
determinant. To determine the dependence of A on y and p2 
in this limit, we adopt a different procedure that does not 
require knowledge of the characteristic exponent. It is well 
known (e.g., Ref. 27, p. 521) thatthe density of the eigenval
ues ofEq. (2.2) for large y is described by the Weyl formula 

f~}A - q(b)]
1/2d

b= (n + ~}T+ o( ~), 
n = 0,1,2, ... , 

where A and q(b) are defined in Eq. (2.3) and ± A denote 
the roots of A = q(b) given by 

A = arccosh[ {A + [A2 + 4y( p2 _!) ] 1I2}/2y j1 12 . 

This leads to the estimate 

-A" =y+ (2n+ 1)y+O(1), y-+ 00, 

n = 0,1,2, ... , 

where even and odd values of n correspond to the even and 
odd eigenvalues, respectively. 

To obtain the constant implied in the O( 1) term and 
higher-order correction terms, we put y(x) = (1 + X 2

)/l/2 

v(s),s= (2y)1/2X (r>O) inEq. (1.1) to obtain 

( 1 + L) d 2V + (1 + p) s ~ + (X -~ S 2)V = 0 
2y ds 2 Y ds 4 ' 

(7.1) 

X = [ - A - Y + p (1 + p) ] /2y , 

subject to the conditions that v(s)-D as s- ± 00. Since the 
limiting form ofEq. (7.1) as y- + 00 is Weber's equation, 
we expand v(s) in terms of normalized Hermite functions 

00 

v(s) = L a"u" (s) . (7.2) 
,,=0 

The coefficients a" are independent of sand u" (s) is defined 
in terms of the parabolic cylinder function D" (S) by 

u" (S) = [(217') -1/4/(n !) 1/2]D" (S) 

= (- )" e(1I4)s' ~e-(1/2)s' 
(217')1/4(n !)1/2 ds" 

(n = 0,1,2, ... ) 

and satisfy the differential equation 

u;(s) + (n +! - !S2)U" (S) = O. 

Formal substitution ofEq. (7.2) into Eq. (7.1) and ap
plication ofthe orthogonality property of the Hermite func
tions yields 

A-n-- a -- ~ a I =0 (- 1) 1 00 

2 " 2y m~o m lIm , 
(7.3) 

where 
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l"m = f: Js2(n + ~ - ! S2)Um (S) 

- 2(1 + p)S u;" (S) ]u" (s)ds . (7.4) 

The integrals I"m involve moments of products of Hermite 
functions and have been evaluated in Ref. 10. It is found that 
l"m possesses a banded structure in n and m, taking nonzero 
values only when m = n, n ± 1, and n ± 2. It is this banded 
structure that makes the sum in Eq. (7.3) a sum over a finite 
number of terms, thus simplifying considerably the asymp
totic evaluation of A. 

The infinite secular determinant resulting from Eq. 
(7.3) is 

(7.5) 

where 8 denotes the Kronecker delta. Since l"m vanishes for 
nand m of different parity, we can uncouple the even and 
odd solutions. A first approximation to the even and odd 
eigenvalues may be obtained by equating the diagonal ele
ments to zero, to find 

X~e) - 2n - ! - (1I2y)12",2" = 0 , 
-(0) 
A" - 2n - ~ - (1I2y)/2" + 1,2" + I = 0 , 

n = 0,1,2, .... 

From Ref. 10, we have the integrals 

12",2" =p + ~ + n(2n + 1), 

12,,+ 1,2,,+ I =p + a + n(2n + 3), 

so that for y_ + 00 the even and odd eigenvalues are given 
by 

- A ~e) = y + (4n + 1)r _ p2 + ~ 
+ n(2n + 1) + O(r- I) , 

- A ~O) = r + (4n + 3)r - p2 + a 
+ n(2n + 3) + O(y-I) , 

n = 0,1,2, .... 

(7.6) 

The higher-order terms in the expansion of A ~e,o) can be 
obtained by requiring that the determinant in Eq. (7.5) van
ish order by order in inverse powers of y. For the lowest 
eigenvalues with n = 0 it is found lo that, for y- + 00, 

1 (e).:2 2 3 1 (2 3 ) 
-J'l.0 =r +y-p +-+- P --

4 2y 8 

_ ~(p2 _..2....) + O(y-3) 
4y 16 ' (7.7) 

1 (0) .:2 3 2 7 3 (2 5 ) 
-J'l.0 =r + y-p +-+- P --

4 2r 8 

15 (2 7 ) 3 - - P - - + O(y- ) . 
4y 16 

These asymptotic approximations are found to agree well 
with the numerically computed values for large y shown in 
Figs. 4 and 6 as illustrated in Table I. It is clear from Eq. 
(7.6) thatthe eigenvalue curves A ~e,o) (y) are linear in y to 
leading order and that for n = 1,2, ... this approximate linear 
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TABLE I. Comparison of the lowest even and odd eigenvalues with the 
asymptotic values in Eq. (7.7) for Jl = 0 andJl = I. 

Jl=O A. (e> 
- 0 

A. (0) 
- 0 

i Exact Asymptotic Exact Asymptotic 

5 7.92912 7.9491 13.20395 13.3671 
10 13.86823 13.8764 21.03599 21.1044 
25 30.71945 30.7219 41.60728 41.6281 
50 57.79830 57.7992 72.85520 72.8634 

J.I = 1 A. (e> 
- 0 

A. (0) 
- 0 

i Exact Asymptotic Exact Asymptotic 

5 7.06935 7.0227 12.54106 12.7098 
10 12.97871 12.9595 20.31236 20.4147 
25 29.79756 29.7919 40.81204 40.7781 
50 56.85715 56.8549 72.01417 72.0006 

dependence is obtained for progressively larger values of r 
(cf. Fig. 6). 

The asymptotic expansion of A as r - + 00 for the 
spheroidal differential equation (3.1), when f.l is an integer, 
has been given in Refs. 11, 18 (p. 243), and 28 as far as the 
term in y-5. With y(z) = (1 - Z2)O/2)I'V(S), S = (2y) 1/2Z 

the corresponding transformed equation has the same form 
as Eq. (7.1) when y is replaced by - y. The requirement 
thaty(z) be finite atz = ± 1 is then equivalent, in the limit 
r- + 00, to the requirement v(S)-<> as S- ± 00 in Eq. 
(7.1). Consequently, the expansion of the eigenvalues for 
Eq. (1.1) as r- + 00 for arbitrary realf.l2 may be obtained 
from that given by Meixner and Schatkel8 and Meixner28 for 
Eq. (3.1) in the same limit, provided that in their expansion 
we replace y by - yand their definition of q by q = 4n + 1 
and q = 4n + 3 (n = 0,1,2, ... ) for the even and odd solu
tions, respectively. 

The corresponding eigenfunctionsy~e,O)(x) in the large r limit may be approximated by solving for the coefficients 
an in Eq. (7.3) in descending powers ofy. The lowest even 
and odd eigenfunctions corresponding to Eq. (7.7) are 
found (to within arbitrary constant multiples) to be given 
by 10 

y<e)(x) = (1 +X2)(1/2)1' ~ (- )n[(2n)!]1/2 
o n~o 22n 

XC2n U2n [(2y)1/2X ] , (7.8) 

y<0)(x) = (1 +X2)(1I2)1' ~ (- )n[(2n + 1)!]1/2 
o ~ 2~ 

XC2n+IU2n+1 [(2y)1/2X], 

where the coefficients Cn up to O(y-3) are given by 

Co = C I = 1, 

C2 = !:!:..-[1 - ~ + _1_(63 - 8f.l2) + ... ] , 
Y 8y 32r 

C3 = !:!:..-[1-~ + _1_(155 - 8f.l2) + ... ] , 
Y 8y 32r 
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C4 = _1_[1 + _1_(4f.l2 - 15) 
2y 2y 

+ _1_(~ _ 52f.l2) + ... J 
16r 4 ' 

C5 = _1_[ 1 + _1_( 4f.l2 _ 7) + _1_( 283 _ 76f.l2) + ... ] , 
2y 4y 16r 4 

C6 = ir [ 1 + 3~ 02 
- 7:) + ... ] , 

C7 = ~[1 + _1 (f.l2 - ~) + ... ] 
2r 3y 8 ' 

C8=8~[I+ ~(2f.l2- ~)+ ... ], 
C9 = 8~ [ 1 + ~ (2Jl2 

- ~) + ... ] , 
CIO = f.l/8r + ... , CII = f.l/8r + ... , 
C12 = l/48r + ... , 
C13 = l/48r + ... . 

When due account is taken of the normalization em
ployed in Eq. (7.2), the above expansions for r- + 00 of 
the coefficients for arbitrary real f.l2 may be seen to be the 
same as those given in Ref. 28 for the eigenfunctions of Eq. 
(3.1) for integer f.l on the interval [ - 1, + 1], provided y is 
again replaced by - Y with q = 1,3, .... 
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APPENDIX: PRINCIPAL PROPERTIES OF THE 
SPHEROIDAL FUNCTIONS 

The oblate spheroidal differential equation (3.1) has 
two limiting cases for which simple solutions may be given. 
These are r = 0, when the solution may be expressed in 
terms of the Legendre functions p~ (z) and Q~ (z) and 
IZ21> 1, when Eq. (3.1) reduces to Bessel's equation with 
solution (yz) -1/2~ v+ 112 (yz), where ~ denotes any Bessel 
function and v (in these cases) is defined in Eq. (2.7). Based 
on these limiting forms, solutions of Eq. (3.1) can be found 
in series of Bessel and Legendre functions. The spheroidal 
functions of the first and second groups are defined in Eqs. 
(3.2) and (3.3). In addition to these solutions, there are also 
the solutions associated with the parameter - f.l, namely 
PSv-l'(z;y), Qsv-I'(z;y), and S v-I'(j)(z;y), together with 
the solutions PS~~_l (z;y), QS~~_I (z;y), and 
S ~~<.!)I (z;y) (j = 1,2,3,4). 

The parameter v is known as the characteristic exponent 
of Eq. (3.1) and, for general values of r, is determined by 
the condition of a nontrivial solution for the coefficients 
a~,2r(r) appearinginEqs. (3.2) and (3.3). Use of the recur
rence relations for either the Legendre or Bessel functions 
shows that the coefficients a2r =a~.2r (r) satisfy the three-
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term recurrence relation 

[ 
A, (Jt,V) 

O2, + () A _ C, (Jt,v) a2,_ 2 

B,(Jt,v) ] + a2,+2 = 0, 
A - C,( Jt,V) 

where 

() = ! y, r = 0, ± 1, ± 2, ... 

(v±!¥O,± I,±2, ... ), 

A ( ) _(v+2r-Jt)(v+2r-Jt-1) 
, Jt,v - , 

(v + 2r - V (v + 2r - ~) 

--. 

(AI) 

B ( ) _ (v+2r+Jt+ I)(v+2r+Jt+2) 
, Jt,v - , 

(v + 2r +~)( v + 2r + ~) 

C,(Jt,v) = (v+2r)(v+2r+ 1) -2() 

[( v + 2r)( v + 2r + 1) + Jt2 - 1] X . 
(v + 2r - !)( v + 2r + ~) 

Equation (A 1 ) then possesses a nontrivial solution provided 

(A2) 

where ll.Il'v (A,y) is the absolutely convergent infinite deter
minant (with diagonal elements all equal to unity) defined 
by 

0 ()A_I/(A - C_ I ) 1 ()B_I/(A - C_ I ) 0 0 0 

= 0 0 ()Ac/(A - Co) 1 ()Bc/(A - Co) 0 0 
0 0 0 ()AI/(A - C I ) 1 ()BI/(A - C I ) 0 

From the properties of the coefficients A, ( Jt, v), B, ( Jt, v), 
and C, (Jt,v), it is readily demonstrated that ll.Il'v (A,y) is 
an even function of Jt and is invariant under the transforma
tion v_ - v-I; that is, 

ll._Il,.,(A,y) = ll.Il,.,(A,y), 

ll.Il'v (A,y) = ll.Il, _., _ dA,y) . 
(A4) 

The determinantal equation (A2) describes the func-
tional relationship betweenA,y,p., and the characteristic ex
ponent v. The functional dependence of A on y, Jt, and v is 
represented by the notation A ==A. ~ (Y). For sufficiently 
small y, the expansion of A in ascending powers of y can be 
obtained by setting the central 3 X 3 determinant in Eq. 
(A.3) to zero to find 

A==A.~(Y) =v(v+ 1) _..!.. [1 + 4p,2_1 ]Y 
2 (2v- I)(2v+ 3) 

+ 1 [ (v-Jt2){(v-I)2-Jt2} 
2 (2v-3)(2v-1)3(2v+ 1) 

_ {(v + 1)2 - Jt
2
}{(v + 2)2 - Jt2}]r- + O(y6) . 

(2v + I)(2v + 3)3(2v + 5) 
(A5) 

By retaining more central rows and columns, the functional 
relation for A ~ ( y) has been obtained as far as the term in y8 
in Ref. 18 (p. 269). The value of A ~ (y) is invariant under 
the transformation Jt- - Jt and v_ - v-I, so that 

A~(Y) =Av-Il(y) =A ~~-dY) (A6) 

and [cf. Eq. (2.7)] 

A~(O) =A Il_ v_ 1 (0) =v(v+ 1). (A7) 

The coefficients av~2~(Y) are normalized such that 
a;':oll(O) = 1, and as y-o satisfy 

a~~(y) = O( y I2,1) (r¥O). (A8) 
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. . . 
(A3) 

From the recurrence relation [Eq. (AI)], it is readily seen 
that 

Ov~2~(Y) =a~~_I,_2'(Y)' (A9) 

O"-:-2~(Y) 

= r(v-Jt+1)r(v+Jt+2r+I) a~2'(Y)' 
r(v+Jt+I)r(v-Jt+2r+1) , 

The quantities A !Il(y) are normalizing factors chosen to 
be 

00 

A v±ll(y) = L (-)' av~2~(Y) =A ~~_I (y) , 
r= - 00 

so that as Izl-oo in larg(yz)I <17' [cf. Eq. (3.3)], 

S v±Il(j) (z;y) - (17'/2yz) 1/2 'i!f~~ 112 (yz) 

(j = 1,2,3,4) . 

(AW) 

(All) 

The different spheroidal functions must be related since 
there can only be two linearly independent solutions of Eq. 
(3.1). The pair of solutions S~(I)(z;y) and Qi'_.,_1 (z;y) 
are found to be multiples of each other, expressed by the 
relation 10,17,18 

XK~(y)Qi'_v_1 (z;y) . (AI2) 

The right-hand side of Eq. (AI2) represents the analytic 
continuation of the solution S ~(I) (z;y) into the unit circle 
Izl < 1. The quantity K ~ (y) is a constant (dependent on v, 
Jt, and y) known as the joining factor that links the 
S~(I)(z;y) and Qi'_ v- I (z;y) functions in their common do
main of convergence. The representation of K ~ (y) may be 
determined by expanding both sides ofEq. (AI2) in a Laur
ent double series in powers of r and equating like powers of 
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r to find lo,I8 

K I' ( ) = J...(.r...)V r (1 + v - Jl )e
1TVi 

v y 2 4 A v-I'(r) 

l::,=o [( - )'av-:-~2r(r)lr!r(v-r+~)] 
x----~----~--------------~~ 

l::,=o [( - )'a~,2r(r)lr!rq-v-r)] 
(A13) 

The joining factor K 1'_ v _ I (y), which links the solu
tions SI'~~_1 (z;y) and Q~(z;y), is obtained from Eq. 
(A 13) by replacing v by - v-I. Use of the properties of 
the coefficients in Eq. (A9) then leads to the relation 
between the joining factors associated with the exponents v 
and - v - 1 and the normalizing constants associated with 

±Jl 

K~(y)KI'_v_l (y)A~(r)A ;I'(r) 

= - (lly)r(l +v-Jl)r( -v-Jl). (Al4) 

Similar continuations exist for the other Bessel function 
expansion solutions. In Sec. III we require the continuation 
formula corresponding to Eq. (Al2) for the Hankel func
tion expansion solution S~(3) (z;y). To obtain this, we 
use lO,17,I8 

cos ?TV S~(3) (z;y) = e -1TViS~(I) (z;y) - i SI'~~_ I (z;y) , 

sin 1T( v - Jl )Qs"_ v- 1 (z;y) 

= sin 1T(V + Jl)Q~(z;y) _ 1Terril' cos 1TV P~(z;y) , 

which follow from the standard properties of the Bessel and 
Legendre functions. We then deduce from these relations, 
together with Eqs. (Al2) and (3.2), that 

S~(3)(z;y) =AP~(z;y) + BQ~(z;y) (AlS) 

00 

L (-)' a~.2r ( r) 

(Al6) 

where 

A =e- 21TVi K~(y), 

2202 J. Math. Phys., Vol. 27, No.8, August 1986 

B = _ e-rrl'i sin 1T(V + Jl) 

1T cos 1TV 
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Basic physical principles for the resonant and nonresonant thermonuclear reaction rates are 
applied to find their standard representations for nuclear astrophysics. Closed-form 
representations for the resonant reaction rate are derived in terms of Meijer's G-function. 
Analytic representations of the resonant and nonresonant nuclear reaction rates are compared 
and the appearance of Meijer's G-function is discussed in physical terms. 

I. INTRODUCTION 

At present it is believed that nuclear reactions govern all 
aspects of the chemical evolution of the universe. Any deep 
understanding of nuclear reactions in the cosmological and 
stellar nucleosynthesis must be based on a sound theory of 
nuclear reaction dynamics. 1.2 The rate of nuclear reactions is 
usually expressed in terms of a quantum-mechanical quanti
ty known as the reaction cross section. In describing a reac
tion involving neutrons, protons, alpha particles, or heavier 
atomic nuclei it is convenient to introduce an effective cross 
section of the target nuclei that indicates what area of the 
incident beam is affected. If the relative velocity of the react
ing particles is v, the nuclear cross section for reactions is u, 
and the number densities of incident and target particles are 
nm (m = i,j,k,i) , then the number of two-particle reactions, 
abbreviated as i + j_k + I, in unit volume and in unit time 
is 

Rij = njnjov. (1) 

However, under the physical conditions realized in the cos
mological and stellar nucleosynthesis there is no distinction 
between incident and target particles. This does not matter 
as far as the relative velocity of the reacting particles is con
cerned. In addition, not all the relative velocities of the react
ing particles are the same and the nuclear cross section de
pends strongly on the relative velocities. Thus, formula (1) 
for the number of two-particle reactions has to be general
ized by integrating over all values of the relative velocity of 
the particles. If the corrections due to quantum-mechanical 
effects (long-range interactions, many-body collisions, high
energy fluctuations) and relativity are negligible, for both 
the incident and target particles, then we can assume a Max
well-Boltzmann distribution of the relative velocity, 

dvj(v) = (_J.l_)3/Zexp{ - ~} 41ro2 dv, (2) 
21TkT 2kT 

where J.l = mimj/(mj + mj ) denotes the reduced mass of 
the two particles under consideration, T is the temperature, 
and k is the Boltzmann constant. The assumption of the 
Maxwell-Boltzmann distribution also implies that the nu
clear reaction proceeds under the physical conditions of 
thermodynamic equilibrium.3 In thermodynamic equilibri
um all of the physical properties of the system can be calcu-

lated in terms ofits density, temperature, and chemical com
position alone. 

In terms of the relative kinetic energy E = J.lVz /2, we 
obtain, with (1) and (2), 

rij = n;nj{ov) , 

where 

( 
8 )lIZ( 1 )3/2 r"" {E } 

(OV) = 1TJ.l kT Jo dE u(E)E exp - kT 

(3) 

(4) 

is the probability per unit time that two particles, confined to 
a unit volume, will react with each other.3 

In the last few years there has been considerable interest 
in the development of mathematical methods for analytic 
representations of the thermonuclear reaction rate r ij in (3) 
with (4) depending on the specific analytic structure of the 
cross section u(E) in (4) .2-5 A review of early work on the 
closed-form representation of nuclear reaction rates has 
been given by Haubold and John.6 

In Sec. II we summarize the results for the closed-form 
representation of the nonresonant thermonuclear reaction 
rate obtained by us recently. 3 In Sec. III we specify the nu
clear cross section u(E) of (4) for the resonant reaction rate 
by means ofthe one-level Breit-Wigner dispersion formula. 
A most general parametrization for the resonant nuclear re
action rate integral will be given that will be suitable for 
deducing all special cases of physical interest. By taking ad
vantage of the theory of generalized hypergeometric func
tions known as Meijer's G-function we obtain the closed
form representation of the resonant nuclear reaction rate. 
The type of results obtained will be discussed aqd the con
nections between the analytic representation of the nonre
sonant reaction rate given in Sec. II and the resonant reac
tion rate will be pointed out. Finally the conclusions will be 
given in Sec. IV. 

II. ANALYTIC RESULTS FOR THE NONRESONANT 
THERMONUCLEAR REACTION RATE 

Here we shall compute the quantity (ov) in (4) for the 
standard case of a low-energy nuclear reaction far from any 
resonance as discussed by Frank-Kameneckif and Clay
ton.2 For reactions induced by charged particles such as pro-
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tons, alpha particles, or heavier nuclei the rapid variation of 
the cross section u(E) in (4) is tackled by eliminating the 
exponentially varying term of the Gamow penetration factor 
governing transmission through the Coulomb barrier 

u(E) = [S(E)/E]exp{ - 2117J(E)} , (5) 

1](E) = (p/2)1/2(Z;Zj e2/flEI/2) , (6) 

where Z; and ~ are the charge numbers of the interacting 
nuclei, fl is Planck's quantum of action, and e is the quantum 
of electric charge. The dependence of u(E) to the inverse of 
the relative kinetic energy E goes back to the quantum-me
chanical interaction between two particles which is always 
proportional to a geometrical factor, 1T,1 2 ex: E -I, where A. is 
the de Broglie wavelength. Equation (5) defines the cross 
section factor S(E), representing the intrinsically nuclear 
parts of the probability for the occurrence of a nuclear reac
tion. The cross section factor SeE) is often found to be con
stant or a slowly varying function of energy over a limited 
energy range and it may be conveniently expressed in terms 
of the power series expansion 1,2,5,6 

Ifwe use relations (5 )-(7) we may write (4) with the substi
tution y = E /kTin the form 

(ov) = - '" --------'--( 
8 )112 2 1 S(v)(O) 

1Tp v~o (kn- v+ 1I2 v! 

(8) 

where 

Z = 21T(p/2kT) I/ZCZ;Zj e2/fl) . (9) 

Equation (8) is the basic parametrized representation of the 
nonresonant thermonuclear reaction probability per unit 
time that two charged particles, confined to a unit volume, 
will react with each other. 

The closed-form representation of the parameter-de
pendent integral in (8), 

( to) 

can be obtained by means of the integration theory of gener
alized hypergeometric functions as discussed by Mathai and 
Saxena.8 Here we quote the final result derived by Haubold 
and Mathai3

: 

. _ 1 G 3,0 (Z2j ) Nlv(Z) -~ 0,3 - , 
1T 4 0.112,1 + v 

(11 ) 

where Z is defined in (9); G;:qn(zl::) denotes Meijer's G
function (see Mathai and Saxena8

). Representations of the 
right-hand side of ( 11), which are suitable for the numerical 
evaluation of the collision probability integral for all classes 
of the parameter v, are given in the Appendix (cf. also Hau
bold and Mathai3

). The result ( 11 ) generalizes approximat
ed representations of the integral (8) contained in the papers 
of Bahca1l5 and Critchfield4 as discussed in detail by Hau
bold and John.6 
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III. ANAL VTIC RESULTS FOR THE RESONANT 
THERMONUCLEAR REACTION RATE 

In the following we will illustrate the approach for the 
closed-form evaluation of the reaction probability (4) when 
a strong resonance occurs in the low-energy range under 
consideration in cosmological and stellar nuclear reactions. 
Resonant cross sections are many orders of magnitude 
greater than nonresonant cross sections (5) at energies near 
the resonance, so that a resonance can dominate the reaction 
probability (4) in spite of the required integration over the 
particle velocity distribution function given in (2).1.2.7 

A. Brelt-Wlgner resonance cross section 

For a single resonance at E = E r, where Er is a reso
nance energy, the cross section u(E) of the nuclear reaction 
proceeding via the formation of a compound nucleus can be 
represented as a function of energy in terms of the Breit
Wigner formula2

•
7 

u(E) = mFcur ijr kl/[ (Er - E)2 + (!r)2] , (12) 

where * = fl/(2pE) 1/2 is the reduced de Broglie wavelength 
corresponding to the relative motion between particles i and 
j when far apart. The first factor in (12) is the maximum 
possible cross section for a partial wave with zero angular 
momentum. The second statistical factor, cu = (2J + 1)/ 
[ (2J; + 1)( 2Jj + 1)], is of order unity and accounts for the 
spins or internal angular momenta of the interacting parti
cles, where J is the angular momentum of the resonant state, 
and J; and ~ are the angular momenta of particles of the 
type i and j, respectively. The total width r of the resonance 
state is given by r = flIT = r ij + r kl + ... , where 'T is the 
effective lifetime of the state. The partial width r ij is the 
width for reemission of particles i with j, and r kl is the 
partial width for emission of particles k and I. 

The partial width r ij for the absorption of a certain par
ticle by the compound nucleus is a strongly energy-depen
dent function and can be written2,7 as 

(13) 

where Ro is the characteristic wavelength of nucleons inside 
the nucleus, D is the energy spacing between neighboring 
states of the compound nucleus, and peE) denotes the Cou
lomb barrier penetration factor. At low energy the zero an
gular momentum interactions dominate and the barrier pen
etration factor peE) can be written as 

peE) = 2117J (E)exp{ - 21T1] (E)} , (14) 

where 1](E) is defined in (6). 
For the total width, which increases with increasing ex

citation energy of the compound nucleus, we assume an ad 
hoc linear energy dependence in the form 

r(E)=ro+rIE, (15) 

where r 0 and r I are empirical constants measured in nu
clear experiments. 

Inserting (13)-(15) into (12) we obtain the parame
trized form of the Breit-Wigner one-resonance-Ievel for
mula 
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(16) 

B. Resonant reaction rate Integral 

We put the resonant cross section ( 16) into (4) and get 
the representation of the reaction probability for resonant 
thermonuclear reaction as 

( ) 
_ 5/2 ZjZj e2RrPJr kiD 

ov - (21T) p1l2(kn3/2 

i
oo exp{ - E IkT - qlE I12} 

X dE , 
o (Er -E)2+(Hro+rIE])2 

(17) 

where q is given by 

q = 21T(p/2)1/2(ZjZj e211i) = z(kT)1/2, (18) 

and z is defined in (9). From (17) we remove the integral, 

i
oo exp{ - E IkT ~ qlE 1/2} 

R = dE 2 2 ' (19) 
o (Er-E) + (Hro+rIE]) 

which may be rewritten more conveniently as 

1 i oo exp{ - E IkT - qlE 1/2} R = dE _ _, (20) 
1+(!rl)2 0 (Er -E)2+qn2 

where Er denotes a modified resonance energy, 

Er = (Er -~rorl)/[1 + (!rl)2], (21) 

and r is a modified total width, 

r= (ro+Er r l )/[1 + (!r l )2]. (22) 

The form of the resonance denominator with r 0 is conserved 
if one transforms r o--r 0 + r IE. Choosing the variable 
E=yl(1 + [!rd 2

) leads to 

R(q,a,b,g) = dy exp - ay - qy , i
oo { -1/2} 

o (b_y)2+g2 
(23) 

Note that 

dxxke- tfx = dXX(k+l)-le -tfx = . , i
oo ioo k' 

o 0 g2(g2)k 

and according to Haubold and MathaP we have 

where 

a= lIkT(1 + [!rd 2
), b=Er-~rOrl' 

g = !(ro + Er r l ), q = q(l + [! rIF)1I2. (24) 

Now we can rewrite (17) with (23) in a more convenient 
form 

C. Closed-form evaluation of the resonant reaction rate 
Integral 

To comprehend cases in which a cross section factor 
S(E) according to (7) will be introduced in the resonant 
cross section (16), we consider in the following the more 
general integral 

i
oo exp{ - at - qt - nlm} 

RI(q,a,b,g;v,n,m) = dtt V 
2 g2 , 

o (b - t) + 
(26) 

which includes (23) as a special case for v = 0, n = 1, and 
m = 2. We may replace the denominator [ (b - t) 2 + g2] -I 

in (26) by an equivalent integral for g2 > O. That is, 

1 i oo 

2 ..2 = dx exp{ - [(b - t)2 + g2]x}. (27) 
(b - t) + ~ 0 

But, we can also write 

e-x(b-t)' = .f (_1)k Xk 
k=O k! 

(28) 

where, for example, 

(m) _ m! O! = 1 . 
n - n!(m -n)! ' 

From (26)-(28) we have 

(29) 

(30) 

X G m + n,O (qma
n I ) 

O,m+n mn . 
m n O,l/m, ... ,(m -l)lm,(1 + v+ k,l/n, .... (n + v+ k,lln 

(31) 

2205 

It may be noted that the result (31) contains (10) and (11) as a special case (k l = 0, a = 1, q = z, n = 1, m = 2). 
Substituting (30) and (31) in (29) we have thefollowing: 
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m)mIl2nIl2+v+k, 

(q~nl ) XG m + n•O 
--O,m+ n m n • 
m n O.lIm •...• (m-ll/m.(I+v+k,)ln •...• (n+v+k,)ln 

(32) 

Put n = 1, m = 2, v = 0, to get (23) 

RI (q,a,b,g;0,1,2) 

1 00 (_ 1)k 
= R (q,a,b,g) =:2 L i k 

l5 a k=O ( ) 

X f (2k) (- l)k b2k-k, _1_ 
k, =0 kl ak , 1TI/2 

XG 3•O q a 
( 2 I ) 

0.3 ""4 0.112.1 + k, 

for (b - v/a)2/i < 1, where v = (q2a/4) 1/3. 

IV. CONCLUSIONS 

(33) 

The central quantity for the description of cosmological 
and stellar nucleosynthesis is the thermonuclear reaction 
rate. There are a few basic physical principles that are com
mon to the evaluation of all thermonuclear reaction rates, as 
discussed by Fowler l (Table I on p. 154 and Table II on p. 
155). The aim of the present paper is to take into account 
these basic physical principles for deriving closed-form re
presentations for the two fundamental cases of nuclear reac
tion rates: the nonresonant and the resonant ones. We can 
make the following conclusions. 

(i) The main energy dependence of the nonresonant nu
clear cross section (5) comes from the Gamow penetration 
factor, which is based on the solution of the Schrodinger 
equation for the Coulomb wave functions. The average of 
the nonresonant nuclear cross section (5) over the Max
well-Boltzmann distribution (2) leads to a parameter-de
pendent integral ( 10), which is expressible in closed form by 
a Meijer's G-function of the type G ~:~( (z2/4) 10.112.1 + v), We 
can conclude that always all nonresonant thermonuclear re
action rates find their closed form representation in the 
Meijer's G-function considered. As can be shown the asymp
totic representations of the nonresonant thermonuclear re
action rate for small and large values of the characteristic 
parameter (9) often used in nuclear astrophysics 1.4.5 follow 
immediately from asymptotic considerations of the G-func
tion under consideration.6

•
8 

(ii) For deriving the closed-form representation of the 
resonant thermonuclear reaction rate we took into account 
the full energy dependence of the one-resonant level formula 

of Breit-Wigner (16). Comparing the resonant result (33) 
with the nonresonant one ( 11) we observe that the former is 
an infinite sum over nonresonant contributions (note that 
q2a = Z2). Thus, the direct connection of the closed-form 
representation of resonant and nonresonant thermonuclear 
reaction rates is obtained via the Meijer's G-function of the 
type G b:~ (xlb, ..... b

p
). For a detailed mathematical discussion 

of that type of Meijer's G-function see Mathai and Saxena. 8 

(iii) The appearance of Meijer's G-function of the type 
G b:~ (xlb, ..... b) in the closed-form representation of nonre
-sonant ( 11 ) and resonant (33) thermonuclear reaction rates 
can be discussed in physical terms. As can be seen from (31 ) 
the characteristic numbers of Meijer's G-function under dis
cussion (p = 1 + 2 = 3) goes back to the well-known ener
gy dependence of Gamow's barrier penetration factor [cf. 
(5) and (6)]. The third term of the parameters (b l ,b2,b3 ) of 
the G-function contains directly the exponent v of the power 
series expansion of the cross section factor (7) if it is neces
sary to take it into account for the evaluation of the nonre
sonant or resonant thermonuclear reaction rate [cf. (11) 
and (32)]. That parameter is of some importance for the 
asymptotic behavior of the Meijer's G-function.6

•
8 As will be 

shown in a forthcoming paper, a modification of the Max
well-Boltzmann distribution function (2) for averaging the 
nuclear cross sections will lead to a change in the G-function 
of the type G b:~ (x I b, ..... b) giving a G-function of the type 
G P.O (zla, ..... aq ). 

q. P b, •...• bp 

(iv) The advantage of the representation (33) of the 
resonant thermonuclear reaction rate in comparison to other 
representations published earlier9 is that it is accessible to 
numerical computation via the series representation given in 
the Appendix. These computations are needed for special 
physical problems (cr., e.g., Fetisov and Kopysov lO ). 
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APPENDIX: SERIES REPRESENTATIONS FOR MEIJER'S G·FUNCTION 

Here we give representations of the Meijer's G-function contained in ( 11 ) and (33) that are termwise integrable over any 
finite range of the variable and that can be used for the numerical computation of the nonresonant and resonant thermonu
clear reaction rates. In the following pFq (ap;b q;Z) denotes the generalized hypergeometric function, t/J(z) is a psi function or 
digamma function, and 

rep + r) 
(P> = =P(P+ l)···(p+r-l) , (P>O = 1 , rep) 
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is the Pochammer symbol. 

Case (i): For v# ± A /2, A = 0,1,2, ... , 

_1 G3'o(z2 I ) = r(1 + V)oF2( - . ..!.. - V' - z2) - 2r(..!.. + V)(z2)112 oF2( _. ~,..!.. _ V' _ z2) 
11'1/2 0,3 4 0,112,1 + v ' 2' , 4 2 4 ' 2 2 ' 4 

+ r(-1-V)r(-!-v)(z2)I+voF2(_·V+2'V+~'_z2). (Al) 
r(!) 4 ' 2' 4 

Case (ii): For v a positive integer, 

1 (z2 I) v 1 (z2)r ( 1 )(z2)112 ( 3 1 z2) --G ~'~ - = r(1 + v) L - - 2r - + v - oF2 -; - ,- - v; - -
11'1/2 ' 4 0,112,1 +v r=O(!)r( - v)r r! 4 2 4 2 2 4 

1 (z2)1 +v co (z2)r{ (z2) } + -- - L - -In - + Ar Br , 
r(!) 4 r=O 4 4 

(A2) 

where 
Ar =f/!(r+ 1) +f/!(r+v+2) +f/!( -!-v-r), Br = (_1)I+v+T( -!-v)/r!(r+v+ l)!(~+v)r' 
Case {iii}: For v a negative integer, 

1 G3,o(z21 )_ r(-v-1)r(-!-v) (z2)I+V -f2 (-1)' (z2)r 1 
11'1/2 0,34' O,1I2,1+v - r(!) 4 r=O r! 4 (v+2)r(v+Vr 

_ 2r (..!.. + v)(z2) 1/2 oF2( _; ~,..!.. _ v, _ z2) + f _1 (z2)r{ _In(z2) +A;} B;, 
2 4 2 2 4 r=O r(!) 4 4 

where 

A; = f/!(r+ 1) + f/!(r- v) + f/!(! - r), B; = r(! - r)( _1)v+ I/r!(r_ v-1)!. 
Case (iv): For v a positive half-integer, v = m + !, m = 0,1,2, ... , 

-h- G~:~(z2 I ) = r(m +~) oF2( -; -..!.., - m -..!..; - z2) - 2r(m + 1)(z2)112 f (- 1)r 
11' / 4 O,1I2,1+v 2 2 2 4 4 r=O r! 

(A3) 

X (~r (~)r( ~ m)r + r:!) (~r+3/2r~J:r{ -In(:) +Dr} Cr , (A4) 

where 

Dr = f/!(r + 1) + f/!(m + r + 2) + f/!( - m - ~ - r), Cr = ( - 1)m + 1 + T( - m - V/r!(m + 1 + r)!(m + ~)r . 
Case (v): For v a negative half-integer, v = m - !,m = 0,1,2, ... , 

_1 G3'o(z2 I ) = r(..!.. _ m) ,.. (_ . ..!.. m +..!... _ z2) + r(m)r(m - p (z2)-m+ 112 
11'1/2 0,3 4 0,112,1 + v 2 ()& 2 , 2 ' 2' 4 r(!) 4 

m - 1 (_ 1)r (z2)r 1 1 (z2)1/2 co (z2)r 
X r~o r! 4' (-m+l)r(-m+Vr + rep 4' r~o 4' 

X { - In( ~) + D ; } C; , (AS) 

where 
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ERRATA 

Erratum: The relation of a theory of countable sets to the field equations of 
physics [J. Math. Phys. 26, 585 (1985)] 

D. J. BenDaniel 
Malott Hall, Cornell University, Ithaca, New York 14853-4201 

(Received 20 March 1986; accepted for publication 30 April 1986) 

For reasons of both typographical and author-responsi
ble errors, the reader is asked to replace the paragraph begin
ning "Let us now construct sets which have physical rel
evance ... " by the paragraph following. 

Let us now construct sets which have physical rel
evance, that is, functions having a range and domain of con
tinuous real of complex variables. We first state the simple 
result that the range of a constant function is given by AC. 
To show the range of nonconstant functions of a real vari
able, we start by looking at bounded continuous bijective 
mappings from the real numbers into the real numbers. In 
theory T, since we have only a countable set of reals, we 
obtain the basic result that an interval of the real line can 
have nonzero length if and only if its points map one-to-one 
with the reals. It follows from this result that a mapping 
¢l(u,x) from all the reals in (0,1) into the reals in (0,1) can 
be bijective only if it is constructed of pieces such that for 
each piece 

VXE(O,1 )3UE(0,l) [¢l(x,u) /\ VX'E(0,l)VU'E(0,l)3Cxu 3Cux 

(Cxu >O/\Cux >O/\¢l(x',u')-Ix -x'I;;.Cxu Iu - u'l 

/\ lu - u'l;;.Cux Ix - x'I)]· 

The range (set of all u) exists by ABR. This statement de
scribes a continuous, strictly monotonic piece. It follows 
that any change in one variable must be accompanied by a 
change in the other and, applied to physical variables, may 
be considered a concise description of universal tight cou
pling. Furthermore, since the reciprocals of Cxu and Cux 

each have a least upper bound at every set of points x, u, x', 
u', we obtain 

VXE(O,I) 3uE(0,1) [¢l(x,u) /\ 3C)3C2 Vx'E(O,I) Vu'E(O,I) 

(l/C) >0/\ l!C2 >0/\¢l(x',u')-lu - u'I<C)lx - x'i 

/\ Ix -x'I<C2 Iu - u'I)]· 

This result is a bi-Lipschitz condition, thus u(x) and x(u) 
are both Lipschitz continuous. 

Also, in the paragraph following, please replace the 
word "bi-Lipschitz" by "Lipschitz continuous." 

Erratum: Scalar formalism for quantum electrodynamics [J. Math. Phys. 26, 
1348 (1985)] 

Levere C. Hostler 
Wilkes College, Wilkes Barre, Pennsylvania 18766 

(Received 23 September 1985; accepted for publication 30 April 1986) 

Since publication of "Scalar formalism for quantum 
electrodynamics," a number of related references, listed be
low, have been pointed out to me. Feynman rules equivalent 
to our Table II, p. 1352, were obtained before in the article by 
Brown) using the c-number formalism, and were obtained 
again by Tonin,2 who second-quantized a special Lagran
gian that was developed in Ref. I for the second-order Dirac 
equation. 

The additional references are listed below. 

IL. M. Brown, Phys. Rev. 111,957 (1958). 
2M. Tonin, Nuovo Cimento 14, 1108 (1959). 
3W. R. Theis, Fortschr. Phys. 7, 559 (1959). 
4H. Pietschmann, Acta Phys. Austriaca 14, 63 (1961). 
'L. M. Brown, "Two-component fermion theory," in Lectures in Theoreti
cal Physics, Vol. IV (lnterscience, New York, 1962). 

6L. M. Brown, "Quantum electrodynamics at high energy," in Topics in 
Theoretical Physics, Proceedings of the Liperi Summer School in Theoreti
cal Physics 1967, edited by Christofer Cronstrom (Gordon and Breach, 
New York, 1969), p. 113. 
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Erratum: Petrov type 0 perfect-fluid solutions in generalized Kerr-5child 
form [J. Math. Phys. 27, 265 (1986)] 

J. Martfn and J. M. M. Senovilla 
Departamento de Ffsica Te6rica, Universidad de Salamanca, 37008-Salamanca, Spain 

(Received 10 April 1986; accepted for publication 7 May 1986) 

There is a mistake in Eq. (5.20). The correct version of pt::.1 - pi ( J.L + Y - y) +1 (;5 I + a/) = 0, 
this equation reads as follows: t::.a = a( J.L + Y - y). 

pt::.U + ;5~u - 3a;5U + U [3aa - p(5J.L + 3y + y)] = O. The authors are grateful to F. Martin-Pascual for pointing 
Consequently, Eqs. (5.27) and (5.28) become, respectively, out the mistake in question. 

Erratum: Imparting to a Bianchi type II space-time [J. Math. Phys. 27, 417 
(1986)] 

2209 

M. J. Rebougas 
School of Mathematical Sciences, Queen Mary Col/ege, Mile End Road, London E14NS, England 

J. B. S. d'Olival 
Departamento de Ffsica, Universidade Federal Fluminense, 24210 Niteroi RJ, Brazil 

(Received 1 May 1986; accepted for publication 13 May 1986) 

Equation (3.9) should read 

(B IB)"-(2B) -2 = o. 

J. Math. Phys. 27 (8), August 1986 

(3.9) 

Equation (3.11) should read 

B = (l/2P)coshP( t - to). 

0022-2488/86/082209-01 $02.50 @ 1986 American Institute of Physics 

(3.11 ) 
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